Citation: | Hui Song, Jinjiang Chou, Peng Zhao, Meijun Chen, Jue Yang, Xiaojiang Hao. Exploring TGFBR3 in disease pathogenesis: Mechanisms, clinical implications, and pharmacological modulation[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101372 |
[1] |
J.E. de Larco, G.J. Todaro, Growth factors from murine sarcoma virus-transformed cells, Proc. Natl. Acad. Sci. U. S. A. 75 (1978) 4001-4005.
|
[2] |
A. Hata, Y.G. Chen, TGF-β Signaling from Receptors to Smads, Cold Spring Harb. Perspect. Biol. 8 (2016), a022061.
|
[3] |
J. Massague, D. Sheppard, TGF-β signaling in health and disease. Cell 186 (2023) 4007-4037.
|
[4] |
F. Lopez-Casillas, J.L. Wrana, J. Massague, Betaglycan presents ligand to the TGF beta signaling receptor, Cell 73 (1993) 1435-1444.
|
[5] |
K.L. Stenvers, M.L. Tursky, K.W. Harder, et al., Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos, Mol. Cell. Biol. 23 (2003) 4371-4385.
|
[6] |
L.A. Compton, D.A. Potash, C.B. Brown, et al., Coronary vessel development is dependent on the type III transforming growth factor beta receptor, Circ. Res. 101 (2007) 784-791.
|
[7] |
A. Kamaid, T. Molina-Villa, V. Mendoza, et al., Betaglycan knock-down causes embryonic angiogenesis defects in zebrafish, Genesis 53 (2015), 583-603.
|
[8] |
T. Molina-Villa, L. Ramirez-Vidal, V. Mendoza, et al., Chordacentrum mineralization is delayed in zebrafish betaglycan-null mutants, Dev. Dyn. 251 (2022), 213-225.
|
[9] |
S.J. Duesman, S. Ortega-Francisco, R. Olguin-Alor, et al., Transforming growth factor receptor III (Betaglycan) regulates the generation of pathogenic Th17 cells in EAE, Front. Immunol. 14 (2023), 1088039.
|
[10] |
UniProt Consortium, UniProt: the Universal Protein Knowledgebase in 2023, Nucleic Acids Res. 51 (2023) D523-D531.
|
[11] |
D. Peng, M. Fu, M. Wang, et al., Targeting TGF-β signal transduction for fibrosis and cancer therapy, Mol. Cancer 21 (2022), 104.
|
[12] |
J. Esparza-Lopez, J.L. Montiel, M.M. Vilchis-Landeros, et al., Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A, J. Biol. Chem. 276 (2001) 14588-14596.
|
[13] |
M.A. Henen, P. Mahlawat, C. Zwieb, et al., TGF-β2 uses the concave surface of its extended finger region to bind betaglycan's ZP domain via three residues specific to TGF-β and inhibin-α, J. Biol. Chem. 294 (2019) 3065-3080.
|
[14] |
J.L. Andres, D. DeFalcis, M. Noda, et al., Binding of two growth factor families to separate domains of the proteoglycan betaglycan, J. Biol. Chem. 267 (1992) 5927-5930.
|
[15] |
C.E. Gatza, J.L. Elderbroom, S.Y. Oh, et al., The balance of cell surface and soluble type III TGF-β receptor regulates BMP signaling in normal and cancerous mammary epithelial cells, Neoplasia 16 (2014) 489-500.
|
[16] |
F. Lopez-Casillas, S. Cheifetz, J. Doody, et al., Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system, Cell 67 (1991) 785-795.
|
[17] |
G.C. Blobe, W.P. Schiemann, M.C. Pepin, et al., Functional roles for the cytoplasmic domain of the type III transforming growth factor beta receptor in regulating transforming growth factor beta signaling, J. Biol. Chem. 276 (2001) 24627-24637.
|
[18] |
W. Chen, K.C. Kirkbride, T. How, et al., Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling, Science 301 (2003) 1394-1397.
|
[19] |
H.J. You, T. How, G.C. Blobe, The type III transforming growth factor-beta receptor negatively regulates nuclear factor kappa B signaling through its interaction with beta-arrestin2, Carcinogenesis 30 (2009) 1281-1287.
|
[20] |
K. Mythreye, G.C. Blobe, The type III TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 8221-8226.
|
[21] |
G.C. Blobe, X. Liu, S.J. Fang, et al., A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC, J. Biol. Chem. 276 (2001) 39608-39617.
|
[22] |
M.J. Goldman, B. Craft, M. Hastie, et al., Visualizing and interpreting cancer genomics data via the Xena platform, Nat. Biotechnol. 38 (2020) 675-678.
|
[23] |
C.E. Gatza, S.Y. Oh, G.C. Blobe, Roles for the type III TGF-beta receptor in human cancer, Cell Signal. 22 (2010) 1163-1174.
|
[24] |
C.E. Gatza, A. Holtzhausen, K.C. Kirkbride, et al., Type III TGF-β receptor enhances colon cancer cell migration and anchorage-independent growth, Neoplasia 13 (2011) 758-770.
|
[25] |
X. Zhang, Y. Chen, Z. Li, et al., TGFBR3 is an independent unfavourable prognostic marker in oesophageal squamous cell cancer and is positively correlated with Ki-67, Int. J. Exp. Pathol. 101 (2020) 223-229.
|
[26] |
D. Jurisic, I. Erjavec, V. Trkulja, et al., Soluble type III TGFβ receptor in diagnosis and follow-up of patients with breast cancer, Growth Factors 33 (2015) 200-209.
|
[27] |
M. Dong, T. How, K.C. Kirkbride, et al., The type III TGF-beta receptor suppresses breast cancer progression, J. Clin. Invest. 117 (2007) 206-217.
|
[28] |
B. Jovanovic, M.W. Pickup, A. Chytil, et al., TβRIII Expression in Human Breast Cancer Stroma and the Role of Soluble TβRIII in Breast Cancer Associated Fibroblasts, Cancers 8 (2016), 100.
|
[29] |
Y. He, Y. Cao, X. Wang, et al., Identification of Hub Genes to Regulate Breast Cancer Spinal Metastases by Bioinformatics Analyses, Comput. Math. Methods Med. 2021 (2021), 5548918.
|
[30] |
Y.J. Hsu, Y.J. Yin, K.F. Tsai, et al., TGFBR3 supports anoikis through suppressing ATF4 signaling, J. Cell Sci. 135 (2022), jcs258396.
|
[31] |
A. Bandyopadhyay, Y. Zhu, S.N. Malik, et al., Extracellular domain of TGFbeta type III receptor inhibits angiogenesis and tumor growth in human cancer cells, Oncogene 21 (2002) 3541-3551.
|
[32] |
X. Lei, A. Bandyopadhyay, T. Le, et al., Autocrine TGFbeta supports growth and survival of human breast cancer MDA-MB-231 cells, Oncogene 21 (2002) 7514-7523.
|
[33] |
L. Sun, C. Chen, Expression of transforming growth factor beta type III receptor suppresses tumorigenicity of human breast cancer MDA-MB-231 cells, J. Biol. Chem. 272 (1997) 25367-25372.
|
[34] |
B.A. Hanks, A. Holtzhausen, K.S. Evans, et al., Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment, J. Clin. Invest. 123 (2013) 3925-3940.
|
[35] |
B. Jovanovic, J.S. Beeler, M.W. Pickup, et al., Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer, Breast Cancer Res. 16 (2014), R69.
|
[36] |
T.L. Criswell, N. Dumont, J.V. Barnett, et al., Knockdown of the transforming growth factor-beta type III receptor impairs motility and invasion of metastatic cancer cells, Cancer Res. 68 (2008) 7304-7312.
|
[37] |
R.S. Turley, E.C. Finger, N. Hempel, et al., The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer, Cancer Res. 67 (2007) 1090-1098.
|
[38] |
L.Y. Yu-Lee, G. Yu, Y.C. Lee, et al., Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFβRIII-p38MAPK-pS249/T252RB Pathway, Cancer Res. 78 (2018) 2911-2924.
|
[39] |
L. Luo, L.L. Zhang, W. Tao, et al., Prediction of potential prognostic biomarkers in metastatic prostate cancer based on a circular RNA-mediated competing endogenous RNA regulatory network, PloS One 16 (2021), e0260983.
|
[40] |
A. Bandyopadhyay, L. Wang, F. Lopez-Casillas, et al., Systemic administration of a soluble betaglycan suppresses tumor growth, angiogenesis, and matrix metalloproteinase-9 expression in a human xenograft model of prostate cancer, Prostate 63 (2005) 81-90.
|
[41] |
L.M. Cook, J.S. Frieling, N. Nerlakanti, et al., Betaglycan drives the mesenchymal stromal cell osteogenic program and prostate cancer-induced osteogenesis, Oncogene 38 (2019) 6959-6969.
|
[42] |
J. Nishida, K. Miyazono, S. Ehata, Decreased TGFBR3/betaglycan expression enhances the metastatic abilities of renal cell carcinoma cells through TGF-β-dependent and -independent mechanisms, Oncogene 37 (2018) 2197-2212.
|
[43] |
K.J. Gordon, M. Dong, E.M. Chislock, et al., Loss of type III transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression, Carcinogenesis 29 (2008) 252-262.
|
[44] |
K.J. Gordon, K.C. Kirkbride, T. How, et al., Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2, Carcinogenesis 30 (2009) 238-248.
|
[45] |
X. Hou, L. Yang, K. Wang, et al., HELLS, a chromatin remodeler is highly expressed in pancreatic cancer and downregulation of it impairs tumor growth and sensitizes to cisplatin by reexpressing the tumor suppressor TGFBR3, Cancer Med. 10 (2021) 350-364.
|
[46] |
E.C. Finger, R.S. Turley, M. Dong, et al., TbetaRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity, Carcinogenesis 29 (2008) 528-535.
|
[47] |
Z. Xu, C. Chen, Abnormal Expression and Prognostic Significance of Bone Morphogenetic Proteins and Their Receptors in Lung Adenocarcinoma, Biomed Res Int. 2021 (2021), 6663990.
|
[48] |
G. Zou, Y. Wu, B. Ren, et al., Low expression of INHB co-receptor TGFBR3 in connection with metastasis and immune infiltration in lung adenocarcinoma, Am. J. Transl. Res. 14 (2022) 5263-5279.
|
[49] |
A. Szymanowska-Narloch, E. Jassem, M. Skrzypski, et al., Molecular profiles of non-small cell lung cancers in cigarette smoking and never-smoking patients, Adv. Med. Sci. 58 (2013) 196-206.
|
[50] |
C. Liu, Z. Yang, Z. Deng, et al., Upregulated lncRNA ADAMTS9-AS2 suppresses progression of lung cancer through inhibition of miR-223-3p and promotion of TGFBR3, IUBMB Life 70 (2018) 536-546.
|
[51] |
M. Rotunno, N. Hu, H. Su, et al., A gene expression signature from peripheral whole blood for stage I lung adenocarcinoma, Cancer Prev. Res. (Phila) 4 (2011) 1599-1608.
|
[52] |
J.J. Huang, A.L. Corona, B.P. Dunn, et al., Increased type III TGF-β receptor shedding decreases tumorigenesis through induction of epithelial-to-mesenchymal transition, Oncogene 38 (2019) 3402-3414.
|
[53] |
H.J. Bae, J.W. Eun, J.H. Noh, et al., Down-regulation of transforming growth factor beta receptor type III in hepatocellular carcinoma is not directly associated with genetic alterations or loss of heterozygosity, Oncol. Rep. 22 (2009) 475-480.
|
[54] |
S. Zhang, W.Y. Sun, J.J. Wu, et al., Decreased expression of the type III TGF-β receptor enhances metastasis and invasion in hepatocellullar carcinoma progression, Oncol. Rep. 35 (2016) 2373-2381.
|
[55] |
W.Y. Fang, Y.Z. Kuo, J.Y. Chang, et al., The Tumor Suppressor TGFBR3 Blocks Lymph Node Metastasis in Head and Neck Cancer, Cancers (Basel) 12 (2020), 1375.
|
[56] |
W. Meng, Q. Xia, L. Wu, et al., Downregulation of TGF-beta receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts, BMC Cancer 11 (2011), 88.
|
[57] |
M. Wu, H. Yuan, X. Li, et al., Identification of a Five-Gene Signature and Establishment of a Prognostic Nomogram to Predict Progression-Free Interval of Papillary Thyroid Carcinoma, Front. Endocrinol. (Lausanne) 10 (2019), 790.
|
[58] |
C. Arora, D. Kaur, L.D. Naorem, et al., Prognostic biomarkers for predicting papillary thyroid carcinoma patients at high risk using nine genes of apoptotic pathway, PloS One 16 (2021), e0259534.
|
[59] |
F. Zhang, X. Yu, Z. Lin, et al., Using Tumor-Infiltrating Immune Cells and a ceRNA Network Model to Construct a Prognostic Analysis Model of Thyroid Carcinoma, Front. Oncol. 11 (2021), 658165.
|
[60] |
Y. Luo, R. Chen, Z. Ning, et al., Identification of a Four-Gene Signature for Determining the Prognosis of Papillary Thyroid Carcinoma by Integrated Bioinformatics Analysis, Int. J. Gen. Med. 15 (2022) 1147-1160.
|
[61] |
K. De Preter, J. Vandesompele, P. Heimann, et al., Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes, Genome Biol. 7 (2006), R84.
|
[62] |
E.H. Knelson, A.L. Gaviglio, A.K. Tewari, et al., Type III TGF-β receptor promotes FGF2-mediated neuronal differentiation in neuroblastoma, J. Clin. Invest. 123 (2013) 4786-4798.
|
[63] |
H. Sung, J. Ferlay, R.L. Siegel, et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA Cancer J. Clin. 71 (2021) 209-249.
|
[64] |
O. Peart, Metastatic Breast Cancer, Radiol. Technol. 88 (2017) 519m-539m.
|
[65] |
G.M. Calaf, L.A. Crispin, J.P. Munoz, et al., Ionizing Radiation and Estrogen Affecting Growth Factor Genes in an Experimental Breast Cancer Model, Int. J. Mol. Sci. 23 (2022) 14284.
|
[66] |
J.D. Lee, N. Hempel, N.Y. Lee, et al., The type III TGF-beta receptor suppresses breast cancer progression through GIPC-mediated inhibition of TGF-beta signaling, Carcinogenesis 31 (2010) 175-183.
|
[67] |
J.L. Elderbroom, J.J. Huang, C.E. Gatza, et al., Ectodomain shedding of TβRIII is required for TβRIII-mediated suppression of TGF-β signaling and breast cancer migration and invasion, Mol. Biol. Cell 25 (2014) 2320-2332.
|
[68] |
A.E. Meyer, C.E. Gatza, T. How, et al., Role of TGF-β receptor III localization in polarity and breast cancer progression, Mol. Biol. Cell 25 (2014) 2291-2304.
|
[69] |
A. Zhang, T. Fan, Y. Liu, et al., Regulatory T cells in immune checkpoint blockade antitumor therapy, Mol. Cancer 23 (2024), 251.
|
[70] |
R.J. Rebello, C. Oing, K.E. Knudsen, et al., Prostate cancer, Nat. Rev. Dis. Primers 7 (2021), 9.
|
[71] |
C. Logothetis, M.J. Morris, R. Den, et al., Current perspectives on bone metastases in castrate-resistant prostate cancer, Cancer Metastasis Rev. 37 (2018) 189-196.
|
[72] |
H. Sicotte, K.R. Kalari, S. Qin, et al., Molecular Profile Changes in Patients with Castrate-Resistant Prostate Cancer Pre- and Post-Abiraterone/Prednisone Treatment, Mol. Cancer Res. 20 (2022) 1739-1750.
|
[73] |
J.J. Hsieh, M.P. Purdue, S. Signoretti, et al., Renal cell carcinoma, Nat. Rev. Dis. Primers 3 (2017), 17009.
|
[74] |
R.E. Gray, G.T. Harris, Renal Cell Carcinoma: Diagnosis and Management, Am. Fam. Physician. 99 (2019) 179-184.
|
[75] |
S.C. Campbell, R.G. Uzzo, J.A. Karam, et al., Renal Mass and Localized Renal Cancer: Evaluation, Management, and Follow-up: AUA Guideline: Part II, J. Urol. 206 (2021) 209-218.
|
[76] |
J.A. Copland, B.A. Luxon, L. Ajani, et al., Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression, Oncogene 22 (2003) 8053-8062.
|
[77] |
S.J. Cooper, H. Zou, S.N. Legrand, et al., Loss of type III transforming growth factor-beta receptor expression is due to methylation silencing of the transcription factor GATA3 in renal cell carcinoma, Oncogene 29 (2010) 2905-2915.
|
[78] |
X. Wu, W. Xie, B. Gong, et al., Development of a TGF-β signaling-related genes signature to predict clinical prognosis and immunotherapy responses in clear cell renal cell carcinoma, Front. Oncol. 13 (2023), 1124080.
|
[79] |
A.J. Armstrong, A.B. Nixon, A. Carmack, et al., Angiokines Associated with Targeted Therapy Outcomes in Patients with Non-Clear Cell Renal Cell Carcinoma, Clin. Cancer Res. 27 (2021) 3317-3328.
|
[80] |
GBD 2017 Pancreatic Cancer Collaborators, The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017, Lancet Gastroenterol. Hepatol. 4 (2019) 934-947.
|
[81] |
J.D. Mizrahi, R. Surana, J.W. Valle, et al., Pancreatic cancer, Lancet 395 (2020) 2008-2020.
|
[82] |
C. Fang, C.Y. Dai, Z. Mei, et al., microRNA-193a stimulates pancreatic cancer cell repopulation and metastasis through modulating TGF-β2/TGF-βRIII signalings, J. Exp. Clin. Cancer Res. 37(2018), 25.
|
[83] |
Z. Yin, T. Ma, B. Huang, et al., Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway, Exp. Clin. Cancer Res. 38 (2019), 310.
|
[84] |
M.B. Schabath, M.L. Cote, Cancer Progress and Priorities: Lung Cancer, Cancer Epidemiol. Biomarkers Prev. 28 (2019) 1563-1579.
|
[85] |
M. Hansen, M.H. Andersen, The role of dendritic cells in cancer, Semin. Immunopathol. 39 (2017) 307-316.
|
[86] |
H. Kagamu, S. Kitano, O. Yamaguchi, et al., CD4(+) T-cell Immunity in the Peripheral Blood Correlates with Response to Anti-PD-1 Therapy, Cancer Immunol. Res. 8 (2020) 334-344.
|
[87] |
Y. Zhang, X. Chen, M. Qiao, et al., Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells, Oncol. Rep. 32 (2014) 1013-1020.
|
[88] |
K. Motoyama, F. Tanaka, Y. Kosaka, et al., Clinical significance of BMP7 in human colorectal cancer, Ann. Surg. Oncol. 15 (2008) 1530-1537.
|
[89] |
X.L. Liu, B.X. Xue, Z. Lei, et al., TGFBR3 co-downregulated with GATA3 is associated with methylation of the GATA3 gene in bladder urothelial carcinoma, Anat. Rec. (Hoboken) 296 (2013) 1717-1723.
|
[90] |
X.L. Liu, K. Xiao, B. Xue, et al., Dual role of TGFBR3 in bladder cancer, Oncol. Rep. 30 (2013) 1301-1308.
|
[91] |
C. Bellucci, C. Lilli, T. Baroni, et al., Differences in extracellular matrix production and basic fibroblast growth factor response in skin fibroblasts from sporadic and familial Alzheimer's disease, Mol. Med. 13 (2007) 542-550.
|
[92] |
X. Quan, H. Liang, Y. Chen, et al., Related Network and Differential Expression Analyses Identify Nuclear Genes and Pathways in the Hippocampus of Alzheimer Disease, Med. Sci. Monit. 26 (2020), e919311.
|
[93] |
H. Song, J. Yang, W. Yu, Promoter Hypomethylation of TGFBR3 as a Risk Factor of Alzheimer's Disease: An Integrated Epigenomic-Transcriptomic Analysis, Front. Cell Dev. Biol. 9 (2021), 825729.
|
[94] |
H. Song, M. Xia, P. Zhao, et al., Overexpression of TGFBR3 Aggravates Cognitive Impairment and Neuroinflammation by Promoting Microglia M1 Polarization in the APP/PS1 Mouse Model of Alzheimer's Disease, Mol. Neurobiol. 2025. https://doi.org/10.1007/s12035-025-04731-w.
|
[95] |
L. Zhou, N. Wang, W. Feng, et al., Soluble TGF-β decoy receptor TGFBR3 exacerbates Alzheimer's disease pathology by modifying microglial function, Glia 72 (2024) 2201-2216.
|
[96] |
S.A. Kent, T.L. Spires-Jones, C.S. Durrant, The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics, Acta Neuropathol. 140 (2020) 417-447.
|
[97] |
C.R. Blair, J.B. Stone, R.G. Wells, The type III TGF-β receptor betaglycan transmembrane-cytoplasmic domain fragment is stable after ectodomain cleavage and is a substrate of the intramembrane protease γ-secretase, Biochim. Biophys. Acta 1813 (2011) 332-339.
|
[98] |
World Health Organization, Cardiovascular diseases (CVDs).
|
[99] |
J. Liu, X. Bu, L. Wei, et al., Global burden of cardiovascular diseases attributable to hypertension in young adults from 1990 to 2019, J. Hypertens. 39 (2021) 2488-2496.
|
[100] |
N.S. Sanchez, C.R. Hill, J.D. Love, et al., The cytoplasmic domain of TGFβR3 through its interaction with the scaffolding protein, GIPC, directs epicardial cell behavior, Dev. Biol. 358 (2011) 331-343.
|
[101] |
C.Y. Chen, O.K. Choong, L.W. Liu, et al., MicroRNA let-7-TGFBR3 signalling regulates cardiomyocyte apoptosis after infarction, EBioMedicine 46 (2019) 236-247.
|
[102] |
X. Tan, Q. Dai, H. Sun, et al., Systematic Bioinformatics Analysis Based on Public and Second-Generation Sequencing Transcriptome Data: A Study on the Diagnostic Value and Potential Mechanisms of Immune-Related Genes in Acute Myocardial Infarction, Front. Cardiovasc. Med. 9 (2022), 863248.
|
[103] |
B. Indumathi, S.S. Oruganti, S.M. Naushad, et al., Probing the epigenetic signatures in subjects with coronary artery disease, Mol. Biol. Rep. 47 (2020) 6693-6703.
|
[104] |
P. Sharma, G. Garg, A. Kumar, et al., Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients, Gene 541 (2014) 31-40.
|
[105] |
C.B. Brown, A.S. Boyer, R.B. Runyan, et al., Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart, Science 283 (1999) 2080-2082.
|
[106] |
N.S. Sanchez, J.V. Barnett, TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway, Cell. Signal. 24 (2012) 539-548.
|
[107] |
P. Allison, D. Espiritu, J.V. Barnett, et al., Type III TGFβ receptor and Src direct hyaluronan-mediated invasive cell motility, Cell. Signal. 27 (2015) 453-459.
|
[108] |
D.M. DeLaughter, C.R. Clark, D.C. Christodoulou, et al., Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 In Vitro, PloS One 11 (2016), e0159710.
|
[109] |
T.A. Townsend, J.Y. Robinson, T. How, et al., Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC, Cell. Signal. 24 (2012) 247-256.
|
[110] |
S. Sankar, N. Mahooti-Brooks, M. Centrella, et al., Expression of transforming growth factor type III receptor in vascular endothelial cells increases their responsiveness to transforming growth factor beta 2, J. Biol. Chem. 270 (1995) 13567-13572.
|
[111] |
W. Chu, X. Li, C. Li, et al., TGFBR3, a potential negative regulator of TGF-β signaling, protects cardiac fibroblasts from hypoxia-induced apoptosis, J. Cell. Physiol. 226 (2011) 2586-2594.
|
[112] |
N. Hermida, B. Lopez, A. Gonzalez, et al., A synthetic peptide from transforming growth factor-beta1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats, Cardiovasc. Res. 81 (2009) 601-609.
|
[113] |
C. Arce, I. Rodriguez-Rovira, K. De Rycke, et al., Anti-TGFβ (Transforming Growth Factor β) Therapy With Betaglycan-Derived P144 Peptide Gene Delivery Prevents the Formation of Aortic Aneurysm in a Mouse Model of Marfan Syndrome, Arterioscler. Thromb. Vasc. Biol. 41 (2021) e440-e452.
|
[114] |
F. Sun, W. Duan, Y. Zhang, et al., Simvastatin alleviates cardiac fibrosis induced by infarction via up-regulation of TGF-β receptor III expression, Br. J. Pharmacol. 172 (2015) 3779-3792.
|
[115] |
H. Liang, C. Zhang, T. Ban, et al., A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis, Int. J. Biochem. Cell Biol. 44 (2012) 2152-2160.
|
[116] |
W. Du, H. Liang, X. Gao, et al., MicroRNA-328, a Potential Anti-Fibrotic Target in Cardiac Interstitial Fibrosis, Cell. Physiol. Biochem. 39 (2016) 827-836.
|
[117] |
Z. Yang, Z. Xiao, H. Guo, et al., Novel role of the clustered miR-23b-3p and miR-27b-3p in enhanced expression of fibrosis-associated genes by targeting TGFBR3 in atrial fibroblasts, J. Cell. Mol. Med. 23 (2019) 3246-3256.
|
[118] |
H. Sun, P. Saeedi, S. Karuranga, et al., IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045, Diabetes Res. Clin. Pract. 183 (2022), 109119.
|
[119] |
Z. Li, J. Liu, W. Wang, et al., Investigation of hub genes involved in diabetic nephropathy using biological informatics methods, Ann. Transl. Med. 8 (2020), 1087.
|
[120] |
C. Li, F. Su, L. Zhang, et al., Identifying Potential Diagnostic Genes for Diabetic Nephropathy Based on Hypoxia and Immune Status, J. Inflamm. Res. 14 (2021) 6871-6891.
|
[121] |
L. Chen, C. Klass, A. Woods, Syndecan-2 regulates transforming growth factor-beta signaling, J. Biol. Chem. 279 (2004) 15715-15718.
|
[122] |
T. Yamamoto, T. Nakamura, N.A. Noble, et al., Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 1814-1818.
|
[123] |
K. Nomura, H. Tada, K. Kuboki, et al., Transforming growth factor-beta-1 latency-associated peptide and soluble betaglycan prevent a glucose-induced increase in fibronectin production in cultured human mesangial cells, Nephron 91 (2002) 606-611.
|
[124] |
P. Juarez, M.M. Vilchis-Landeros, J. Ponce-Coria, et al., Soluble betaglycan reduces renal damage progression in db/db mice, Am. J. Physiol. Renal Physiol. 292 (2007) F321-F329.
|
[125] |
D.M. Morens, G.K. Folkers, A.S. Fauci, The challenge of emerging and re-emerging infectious diseases, Nature 430 (2004) 242-249.
|
[126] |
M.J. Langelier, D.C. Vinh, Host-directed immunotherapy to fight infectious diseases, Curr. Opin. Pediatr. 34 (2022) 616-624.
|
[127] |
R. Hernandez-Pando, H. Orozco-Esteves, H.A. Maldonado, et al., A combination of a transforming growth factor-beta antagonist and an inhibitor of cyclooxygenase is an effective treatment for murine pulmonary tuberculosis, Clin. Exp. Immunol. 144 (2006) 264-272.
|
[128] |
Q. Zhang, Y. Hu, P. Wei, et al., Identification of hub genes for adult patients with sepsis via RNA sequencing, Sci. Rep. 12 (2022), 5128.
|
[129] |
X. Hao, H. Wei, LncRNA H19 alleviates sepsis-induced acute lung injury by regulating the miR-107/TGFBR3 axis, BMC Pulm. Med. 22 (2022), 371.
|
[130] |
J.H. Kim, S.J. Yu, B.L. Park, et al., TGFBR3 polymorphisms and its haplotypes associated with chronic hepatitis B virus infection and age of hepatocellular carcinoma occurrence, Dig. Dis. 29 (2011) 278-283.
|
[131] |
X. He, Y. Wang, X. Fan, et al., A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor III, J. Hepatol. 72 (2020) 519-527.
|
[132] |
L. Wang, J. Huang, M. Jiang, CREB5 computational regulation network construction and analysis between frontal cortex of HIV encephalitis (HIVE) and HIVE-control patients, Cell Biochem. Biophys. 60 (2011) 199-207.
|
[133] |
S.P. Brooks, Z.P. Bernstein, S.L. Schneider, et al., Role of transforming growth factor-beta1 in the suppressed allostimulatory function of AIDS patients, AIDS 12 (1998) 481-487.
|
[134] |
I.J. Ezquerro, J.J. Lasarte, J. Dotor, et al., A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury, Cytokine 22 (2003) 12-20.
|
[135] |
J. Medina-Echeverz, J. Fioravanti, N. Diaz-Valdes, et al., Harnessing high density lipoproteins to block transforming growth factor beta and to inhibit the growth of liver tumor metastases, PloS One 9 (2014), e96799.
|
[136] |
N. Hempel, T. How, M. Dong, et al., Loss of betaglycan expression in ovarian cancer: role in motility and invasion, Cancer Res. 67 (2007) 5231-5238.
|
[137] |
Q. Gong, Y. Wang, K. Zhu, et al., CUL4B enhances the malignant phenotype of esophageal squamous cell carcinoma by suppressing TGFBR3 expression, Biochem. Biophys. Res. Commun. 676 (2023) 58-65.
|
[138] |
Z. Wei, K. Chang, C. Fan, Hsa_circ_0042666 inhibits proliferation and invasion via regulating miR-223/TGFBR3 axis in laryngeal squamous cell carcinoma, Biomed. Pharmacother. 119 (2019), 109365.
|
[139] |
J.T. Schwartze, S. Becker, E. Sakkas, et al., Glucocorticoids recruit Tgfbr3 and Smad1 to shift transforming growth factor-β signaling from the Tgfbr1/Smad2/3 axis to the Acvrl1/Smad1 axis in lung fibroblasts, J. Biol. Chem. 289 (2014) 3262-3275.
|
[140] |
M.J. Lee, R.T. Pickering, V. Shibad, et al., Impaired Glucocorticoid Suppression of TGFβ Signaling in Human Omental Adipose Tissues Limits Adipogenesis and May Promote Fibrosis, Diabetes 68 (2019) 587-597.
|
[141] |
S.K. Meurer, B. Lahme, L. Tihaa, et al., N-acetyl-L-cysteine suppresses TGF-beta signaling at distinct molecular steps: the biochemical and biological efficacy of a multifunctional, antifibrotic drug, Biochem. Pharmacol. 70 (2005) 1026-1034.
|
[142] |
P. Rath, C. Nardiello, D.E. Surate Solaligue, et al., Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia, Pediatr. Res. 81 (2017) 795-805.
|
[143] |
C. Diodovich, C. Urani, D. Maurici, et al., Modulation of different stress pathways after styrene and styrene-7,8-oxide exposure in HepG2 cell line and normal human hepatocytes, J. Appl. Toxicol. 26 (2006) 317-325.
|
[144] |
J.M. Lee, Y.S. Jang, B.R. Jin, et al., Retinoic acid enhances lactoferrin-induced IgA responses by increasing betaglycan expression, Cell. Mol. Immunol. 13 (2016) 862-870.
|
[145] |
Y.L. Shih, M.K. Au, K.L. Liu, et al., Ouabain impairs cell migration, and invasion and alters gene expression of human osteosarcoma U-2 OS cells, Environ. Toxicol. 32 (2017) 2400-2413.
|
[146] |
G. Stabellini, C. Balducci, C. Lilli, et al., Toremifene decreases type I, type II and increases type III receptors in desmoid and fibroma and inhibits TGFbeta1 binding in desmoid fibroblasts, Biomed. Pharmacother. 62 (2008) 436-442.
|
[147] |
Y. Omori, K. Nakamura, S. Yamashita, et al., Effect of follicle-stimulating hormone and estrogen on the expression of betaglycan messenger ribonucleic acid levels in cultured rat granulosa cells, Endocrinology 146 (2005) 3379-3386.
|
[148] |
K. Mucha, B. Foroncewicz, K. Koziak, et al., The effects of indomethacin on angiogenic factors mRNA expression in renal cortex of healthy rats, J. Physiol. Pharmacol. 58 (2007) 165-178.
|
[149] |
T.M. Lovell, S.L. Al-Musawi, R.T. Gladwell, et al., Gonadotrophins modulate hormone secretion and steady-state mRNA levels for activin receptors (type I, IIA, IIB) and inhibin co-receptor (betaglycan) in granulosa and theca cells from chicken prehierarchical and preovulatory follicles, Reproduction 133 (2007) 1159-1168.
|
[150] |
A. Evangelou, S.K. Jindal, T.J. Brown, et al., Down-regulation of transforming growth factor beta receptors by androgen in ovarian cancer cells, Cancer Res. 60 (2000) 929-935.
|