Turn off MathJax
Article Contents
Na Deng, Qiang Sun, Shuying Wang, Shiheng Jia, Cheng Zheng, Fanglin Wang, Shuang Ma, Heng Zhou, Weiwei Liu. Mechanisms and therapeutic potential of YTHDF readers: linking epitranscriptomics to cancer[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101371
Citation: Na Deng, Qiang Sun, Shuying Wang, Shiheng Jia, Cheng Zheng, Fanglin Wang, Shuang Ma, Heng Zhou, Weiwei Liu. Mechanisms and therapeutic potential of YTHDF readers: linking epitranscriptomics to cancer[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101371

Mechanisms and therapeutic potential of YTHDF readers: linking epitranscriptomics to cancer

doi: 10.1016/j.jpha.2025.101371
Funds:

This work was supported by the Young Scientist Project of the Basic Scientific Research Project of Colleges and Universities of Liaoning Provincial Department of Education (LJ212410159033). We thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.

  • Received Date: Jan. 05, 2025
  • Accepted Date: Jun. 16, 2025
  • Rev Recd Date: May 28, 2025
  • Available Online: Jun. 21, 2025
  • YT521-B homology domain-containing family paralogs (YTHDFs), as RNA epigenetic modification effector proteins, fully or partially participate in N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C) modifications, which play critical roles in tumor biology and contribute to obtaining and maintaining cancer hallmarks relying on their characteristic protein structures. Accumulating evidence has underscored the involvement of YTHDFs in manipulating RNA stability, translation, and RNA metabolism, thereby influencing tumor initiation, progression, and anti-tumor treatment efficacy through independent RNA epigenetic modification pathways. This review aims to illustrate the essential regulatory mechanisms and pathological consequences of YTHDFs in tumorigenesis and therapeutic resistance. Additionally, we highlight the potential of targeting YTHDFs for cancer therapy, offering promising avenues for the elimination of tumor cells and the amelioration of tumor treatment efficacy.
  • loading
  • [1]
    Z. Zhang, D. Theler, K.H. Kaminska, et al. The YTH domain is a novel RNA binding domain. J Biol Chem. 2010;285:14701-14710 https://doi.org/10.1074/jbc.M110.104711.
    [2]
    V. Sikorski, S. Selberg, M. Lalowski, et al. The structure and function of YTHDF epitranscriptomic m(6)A readers. Trends Pharmacol Sci. 2023;44:335-353 https://doi.org/10.1016/j.tips.2023.03.004.
    [3]
    X. Dai, T. Wang, G. Gonzalez, et al. Identification of YTH Domain-Containing Proteins as the Readers for N1-Methyladenosine in RNA. Anal Chem. 2018;90:6380-6384 https://doi.org/10.1021/acs.analchem.8b01703.
    [4]
    X. Dai, G. Gonzalez, L. Li, et al. YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Anal Chem. 2020;92:1346-1354 https://doi.org/10.1021/acs.analchem.9b04505.
    [5]
    Q. Lan, P.Y. Liu, J. Haase, et al. The Critical Role of RNA m(6)A Methylation in Cancer. Cancer Res. 2019;79:1285-1292 https://doi.org/10.1158/0008-5472.CAN-18-2965.
    [6]
    X. Wang, B.S. Zhao, I.A. Roundtree, et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388-1399 https://doi.org/10.1016/j.cell.2015.05.014.
    [7]
    X. Wang, Z. Lu, A. Gomez, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117-120 https://doi.org/10.1038/nature12730.
    [8]
    H. Shi, X. Wang, Z. Lu, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27:315-328 https://doi.org/10.1038/cr.2017.15.
    [9]
    J. Li, K. Chen, X. Dong, et al. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif. 2022;55:e13157 https://doi.org/10.1111/cpr.13157.
    [10]
    Q. Zheng, H. Gan, F. Yang, et al. Cytoplasmic m(1)A reader YTHDF3 inhibits trophoblast invasion by downregulation of m(1)A-methylated IGF1R. Cell Discov. 2020;6:12 https://doi.org/10.1038/s41421-020-0144-4.
    [11]
    Z. Zou, C. Sepich-Poore, X. Zhou, et al. The mechanism underlying redundant functions of the YTHDF proteins. Genome Biol. 2023;24:17 https://doi.org/10.1186/s13059-023-02862-8.
    [12]
    R.J. Ries, S. Zaccara, P. Klein, et al. m(6)A enhances the phase separation potential of mRNA. Nature. 2019;571:424-428 https://doi.org/10.1038/s41586-019-1374-1.
    [13]
    W. Zhang, T. Wu, Y. Zhang, et al. Targeting m(6)A binding protein YTHDFs for cancer therapy. Bioorg Med Chem. 2023;90:117373 https://doi.org/10.1016/j.bmc.2023.117373.
    [14]
    L. Ma, X. Xue, X. Zhang, et al. The essential roles of m(6)A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J Exp Clin Cancer Res. 2022;41:36 https://doi.org/10.1186/s13046-021-02200-5.
    [15]
    C. Shen, J. Liu, F. Xie, et al. N6-Methyladenosine enhances the translation of ENO1 to promote the progression of bladder cancer by inhibiting PCNA ubiquitination. Cancer Lett. 2024;595:217002 https://doi.org/10.1016/j.canlet.2024.217002.
    [16]
    H. Jin, X. Ying, B. Que, et al. N(6)-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine. 2019;47:195-207 https://doi.org/10.1016/j.ebiom.2019.07.068.
    [17]
    J. Wen, L. Xue, Y. Wei, et al. YTHDF2 Is a Therapeutic Target for HCC by Suppressing Immune Evasion and Angiogenesis Through ETV5/PD-L1/VEGFA Axis. Adv Sci (Weinh). 2024;11:e2307242 https://doi.org/10.1002/advs.202307242.
    [18]
    J. Zhong, X. Wu, Y. Gao, et al. Circular RNA encoded MET variant promotes glioblastoma tumorigenesis. Nat Commun. 2023;14:4467 https://doi.org/10.1038/s41467-023-40212-1.
    [19]
    Y. Xu, X. He, S. Wang, et al. The m(6)A reading protein YTHDF3 potentiates tumorigenicity of cancer stem-like cells in ocular melanoma through facilitating CTNNB1 translation. Oncogene. 2022;41:1281-1297 https://doi.org/10.1038/s41388-021-02146-0.
    [20]
    K. Zeng, J. Peng, Y. Xing, et al. A positive feedback circuit driven by m(6)A-modified circular RNA facilitates colorectal cancer liver metastasis. Mol Cancer. 2023;22:202 https://doi.org/10.1186/s12943-023-01848-1.
    [21]
    Y. Wu, Z. Chen, G. Xie, et al. RNA m(1)A methylation regulates glycolysis of cancer cells through modulating ATP5D. Proc Natl Acad Sci U S A. 2022;119:e2119038119 https://doi.org/10.1073/pnas.2119038119.
    [22]
    X. Gu, A. Zhuang, J. Yu, et al. Histone lactylation-boosted ALKBH3 potentiates tumor progression and diminished promyelocytic leukemia protein nuclear condensates by m1A demethylation of SP100A. Nucleic Acids Res. 2024;52:2273-2289 https://doi.org/10.1093/nar/gkad1193.
    [23]
    J. Chen, X. Bai, W. Zhang, et al. YTHDF1 promotes gallbladder cancer progression via post-transcriptional regulation of the m6A/UHRF1 axis. J Cell Mol Med. 2024;28:e18328 https://doi.org/10.1111/jcmm.18328.
    [24]
    X. Zhang, T. Su, Y. Wu, et al. N6-Methyladenosine Reader YTHDF1 Promotes Stemness and Therapeutic Resistance in Hepatocellular Carcinoma by Enhancing NOTCH1 Expression. Cancer Res. 2024;84:827-840 https://doi.org/10.1158/0008-5472.CAN-23-1916.
    [25]
    W.X. Peng, F. Liu, J.H. Jiang, et al. N6-methyladenosine modified LINC00901 promotes pancreatic cancer progression through IGF2BP2/MYC axis. Genes Dis. 2023;10:554-567 https://doi.org/10.1016/j.gendis.2022.02.014.
    [26]
    P. Zhang, W. Zhang, X. Wang, et al. BCLAF1 drives esophageal squamous cell carcinoma progression through regulation of YTHDF2-dependent SIX1 mRNA degradation. Cancer Lett. 2024;591:216874 https://doi.org/10.1016/j.canlet.2024.216874.
    [27]
    J. Chen, H. Zhang, C. Xiu, et al. METTL3 promotes pancreatic cancer proliferation and stemness by increasing stability of ID2 mRNA in a m6A-dependent manner. Cancer Lett. 2023;565:216222 https://doi.org/10.1016/j.canlet.2023.216222.
    [28]
    D. Dixit, B.C. Prager, R.C. Gimple, et al. The RNA m6A Reader YTHDF2 Maintains Oncogene Expression and Is a Targetable Dependency in Glioblastoma Stem Cells. Cancer Discov. 2021;11:480-499 https://doi.org/10.1158/2159-8290.CD-20-0331.
    [29]
    K.W. Seo, R.E. Kleiner. YTHDF2 Recognition of N(1)-Methyladenosine (m(1)A)-Modified RNA Is Associated with Transcript Destabilization. ACS Chem Biol. 2020;15:132-139 https://doi.org/10.1021/acschembio.9b00655.
    [30]
    Z. Chen, C. Zeng, L. Yang, et al. YTHDF2 promotes ATP synthesis and immune evasion in B cell malignancies. Cell. 2024; https://doi.org/10.1016/j.cell.2024.11.007.
    [31]
    H. Zhang, Y. Sun, Z. Wang, et al. ZDHHC20-mediated S-palmitoylation of YTHDF3 stabilizes MYC mRNA to promote pancreatic cancer progression. Nat Commun. 2024;15:4642 https://doi.org/10.1038/s41467-024-49105-3.
    [32]
    N. Liu, X. Jiang, G. Zhang, et al. LncRNA CARMN m6A demethylation by ALKBH5 inhibits mutant p53-driven tumour progression through miR-5683/FGF2. Clin Transl Med. 2024;14:e1777 https://doi.org/10.1002/ctm2.1777.
    [33]
    S. Zaccara, S.R. Jaffrey. A Unified Model for the Function of YTHDF Proteins in Regulating m(6)A-Modified mRNA. Cell. 2020;181:1582-1595 e1518 https://doi.org/10.1016/j.cell.2020.05.012.
    [34]
    D. Jang, C. Hwa, S. Kim, et al. RNA N(6)-Methyladenosine-Binding Protein YTHDFs Redundantly Attenuate Cancer Immunity by Downregulating IFN-gamma Signaling in Gastric Cancer. Adv Sci (Weinh). 2025;12:e2410806 https://doi.org/10.1002/advs.202410806.
    [35]
    Y.G. Hong, Z. Yang, Y. Chen, et al. The RNA m6A Reader YTHDF1 Is Required for Acute Myeloid Leukemia Progression. Cancer Res. 2023;83:845-860 https://doi.org/10.1158/0008-5472.CAN-21-4249.
    [36]
    S. Wang, L. Xu, D. Wang, et al. YTHDF1 promotes the osteolytic bone metastasis of breast cancer via inducing EZH2 and CDH11 translation. Cancer Lett. 2024;597:217047 https://doi.org/10.1016/j.canlet.2024.217047.
    [37]
    L. Zhang, X. Luo, S. Qiao. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br J Cancer. 2022;127:30-42 https://doi.org/10.1038/s41416-022-01757-y.
    [38]
    J. Xiong, L. He, X. Chai, et al. YTHDF1 boosts the lactate accumulation to potentiate cervical cancer cells immune escape. Cell Death Dis. 2024;15:843 https://doi.org/10.1038/s41419-024-07128-0.
    [39]
    N. Liu, J. Zhang, W. Chen, et al. The RNA methyltransferase METTL16 enhances cholangiocarcinoma growth through PRDM15-mediated FGFR4 expression. J Exp Clin Cancer Res. 2023;42:263 https://doi.org/10.1186/s13046-023-02844-5.
    [40]
    Y. Bao, J. Zhai, H. Chen, et al. Targeting m(6)A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 2023;72:1497-1509 https://doi.org/10.1136/gutjnl-2022-328845.
    [41]
    P. Ruan, S. Wang, C. Yang, et al. m(6)A mRNA methylation regulates the ERK/NF-kappaB/AKT signaling pathway through the PAPPA/IGFBP4 axis to promote proliferation and tumor formation in endometrial cancer. Cell Biol Toxicol. 2023;39:1611-1626 https://doi.org/10.1007/s10565-022-09751-z.
    [42]
    S. Guo, F. Chen, L. Li, et al. Intracellular Fusobacterium nucleatum infection increases METTL3-mediated m6A methylation to promote the metastasis of esophageal squamous cell carcinoma. J Adv Res. 2024;61:165-178 https://doi.org/10.1016/j.jare.2023.08.014.
    [43]
    J. Pi, W. Wang, M. Ji, et al. YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of FZD7. Cancer Res. 2021;81:2651-2665 https://doi.org/10.1158/0008-5472.CAN-20-0066.
    [44]
    V. Tassinari, V. Cesarini, S. Tomaselli, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol. 2021;22:51 https://doi.org/10.1186/s13059-021-02271-9.
    [45]
    Q. Li, Y. Ni, L. Zhang, et al. HIF-1alpha-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther. 2021;6:76 https://doi.org/10.1038/s41392-020-00453-8.
    [46]
    H. Guo, Q. Han, X. Guan, et al. M6A reader YTHDF1 promotes malignant progression of laryngeal squamous carcinoma through activating the EMT pathway by EIF4A3. Cell Signal. 2024;114:111002 https://doi.org/10.1016/j.cellsig.2023.111002.
    [47]
    X. Liu, W. Yu, W. Song, et al. METTL3/YTHDF1 stabilizes CORO6 expression promoting osteosarcoma progression through glycolysis. Exp Cell Res. 2024;443:114328 https://doi.org/10.1016/j.yexcr.2024.114328.
    [48]
    T. Liu, Q. Wei, J. Jin, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48:3816-3831 https://doi.org/10.1093/nar/gkaa048.
    [49]
    K. Chen, Y. Wang, X. Dai, et al. FBXO31 is upregulated by METTL3 to promote pancreatic cancer progression via regulating SIRT2 ubiquitination and degradation. Cell Death Dis. 2024;15:37 https://doi.org/10.1038/s41419-024-06425-y.
    [50]
    J. Paris, M. Morgan, J. Campos, et al. Targeting the RNA m(6)A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell. 2019;25:137-148 e136 https://doi.org/10.1016/j.stem.2019.03.021.
    [51]
    X. Bai, J. Liu, S. Zhou, et al. METTL14 suppresses the expression of YAP1 and the stemness of triple-negative breast cancer. J Exp Clin Cancer Res. 2024;43:307 https://doi.org/10.1186/s13046-024-03225-2.
    [52]
    D. Shen, J. Lin, Y. Xie, et al. RNA demethylase ALKBH5 promotes colorectal cancer progression by posttranscriptional activation of RAB5A in an m6A-YTHDF2-dependent manner. Clin Transl Med. 2023;13:e1279 https://doi.org/10.1002/ctm2.1279.
    [53]
    Y. Zhu, X. Peng, Q. Zhou, et al. METTL3-mediated m6A modification of STEAP2 mRNA inhibits papillary thyroid cancer progress by blocking the Hedgehog signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis. 2022;13:358 https://doi.org/10.1038/s41419-022-04817-6.
    [54]
    Z. Xu, S. Chen, R. Liu, et al. Circular RNA circPOLR2A promotes clear cell renal cell carcinoma progression by facilitating the UBE3C-induced ubiquitination of PEBP1 and, thereby, activating the ERK signaling pathway. Mol Cancer. 2022;21:146 https://doi.org/10.1186/s12943-022-01607-8.
    [55]
    L. Liang, Y. Zhu, J. Li, et al. ALKBH5-mediated m6A modification of circCCDC134 facilitates cervical cancer metastasis by enhancing HIF1A transcription. J Exp Clin Cancer Res. 2022;41:261 https://doi.org/10.1186/s13046-022-02462-7.
    [56]
    K. Du, Y. Luo, L. Zhang, et al. m(6)A modification of lipoyltransferase 1 inhibits bladder cancer progression by activating cuproptosis. Oncogene. 2024;43:2971-2985 https://doi.org/10.1038/s41388-024-03139-5.
    [57]
    C.S. Huang, Y.Q. Zhu, Q.C. Xu, et al. YTHDF2 promotes intrahepatic cholangiocarcinoma progression and desensitises cisplatin treatment by increasing CDKN1B mRNA degradation. Clin Transl Med. 2022;12:e848 https://doi.org/10.1002/ctm2.848.
    [58]
    Y. Wang, C. Wang, X. Guan, et al. PRMT3-Mediated Arginine Methylation of METTL14 Promotes Malignant Progression and Treatment Resistance in Endometrial Carcinoma. Adv Sci (Weinh). 2023;10:e2303812 https://doi.org/10.1002/advs.202303812.
    [59]
    X. Bai, J. Chen, W. Zhang, et al. YTHDF2 promotes gallbladder cancer progression and gemcitabine resistance via m6A-dependent DAPK3 degradation. Cancer Sci. 2023;114:4299-4313 https://doi.org/10.1111/cas.15953.
    [60]
    Y. Fang, X. Wu, Y. Gu, et al. LINC00659 cooperated with ALKBH5 to accelerate gastric cancer progression by stabilising JAK1 mRNA in an m(6) A-YTHDF2-dependent manner. Clin Transl Med. 2023;13:e1205 https://doi.org/10.1002/ctm2.1205.
    [61]
    C. Zhang, Q. Sun, X. Zhang, et al. Gene amplification-driven RNA methyltransferase KIAA1429 promotes tumorigenesis by regulating BTG2 via m6A-YTHDF2-dependent in lung adenocarcinoma. Cancer Commun (Lond). 2022;42:609-626 https://doi.org/10.1002/cac2.12325.
    [62]
    X. Chen, T. Lu, M. Ding, et al. Targeting YTHDF2 inhibits tumorigenesis of diffuse large B-cell lymphoma through ACER2-mediated ceramide catabolism. J Adv Res. 2024;63:17-33 https://doi.org/10.1016/j.jare.2023.10.010.
    [63]
    J. Yu, P. Chai, M. Xie, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22:85 https://doi.org/10.1186/s13059-021-02308-z.
    [64]
    Z. Yang, Z. Cai, C. Yang, et al. ALKBH5 regulates STAT3 activity to affect the proliferation and tumorigenicity of osteosarcoma via an m6A-YTHDF2-dependent manner. EBioMedicine. 2022;80:104019 https://doi.org/10.1016/j.ebiom.2022.104019.
    [65]
    Z. Tan, S. Shi, J. Xu, et al. RNA N6-methyladenosine demethylase FTO promotes pancreatic cancer progression by inducing the autocrine activity of PDGFC in an m(6)A-YTHDF2-dependent manner. Oncogene. 2022;41:2860-2872 https://doi.org/10.1038/s41388-022-02306-w.
    [66]
    J. Ning, X. Hou, J. Hao, et al. METTL3 inhibition induced by M2 macrophage-derived extracellular vesicles drives anti-PD-1 therapy resistance via M6A-CD70-mediated immune suppression in thyroid cancer. Cell Death Differ. 2023;30:2265-2279 https://doi.org/10.1038/s41418-023-01217-x.
    [67]
    S. Zhong, Q. Guo, X. Chen, et al. The inhibition of YTHDF3/m(6)A/LRP6 reprograms fatty acid metabolism and suppresses lymph node metastasis in cervical cancer. Int J Biol Sci. 2024;20:916-936 https://doi.org/10.7150/ijbs.87203.
    [68]
    L. Liao, Y. He, S.J. Li, et al. Anti-HIV Drug Elvitegravir Suppresses Cancer Metastasis via Increased Proteasomal Degradation of m6A Methyltransferase METTL3. Cancer Res. 2022;82:2444-2457 https://doi.org/10.1158/0008-5472.CAN-21-4124.
    [69]
    H.Z. Shi, J.S. Xiong, L. Gan, et al. N6-methyladenosine reader YTHDF3 regulates melanoma metastasis via its 'executor'LOXL3. Clin Transl Med. 2022;12:e1075 https://doi.org/10.1002/ctm2.1075.
    [70]
    P. Yu, T. Xu, W. Ma, et al. PRMT6-mediated transcriptional activation of ythdf2 promotes glioblastoma migration, invasion, and emt via the wnt-beta-catenin pathway. J Exp Clin Cancer Res. 2024;43:116 https://doi.org/10.1186/s13046-024-03038-3.
    [71]
    G. Chang, L. Shi, Y. Ye, et al. YTHDF3 Induces the Translation of m(6)A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell. 2020;38:857-871 e857 https://doi.org/10.1016/j.ccell.2020.10.004.
    [72]
    F. Xu, J. Li, M. Ni, et al. FBW7 suppresses ovarian cancer development by targeting the N(6)-methyladenosine binding protein YTHDF2. Mol Cancer. 2021;20:45 https://doi.org/10.1186/s12943-021-01340-8.
    [73]
    C. Dai, J. Cao, Y. Tang, et al. YTHDF3 phase separation regulates HSPA13-dependent clear cell renal cell carcinoma development and immune evasion. Cancer Sci. 2024;115:2588-2601 https://doi.org/10.1111/cas.16228.
    [74]
    Y. Luo, C. Zeng, Z. Ouyang, et al. YTH domain family protein 3 accelerates non-small cell lung cancer immune evasion through targeting CD8(+) T lymphocytes. Cell Death Discov. 2024;10:320 https://doi.org/10.1038/s41420-024-02084-2.
    [75]
    D. Jang, C. Hwa, S. Kim, et al. RNA N(6)-Methyladenosine-Binding Protein YTHDFs Redundantly Attenuate Cancer Immunity by Downregulating IFN-gamma Signaling in Gastric Cancer. Adv Sci (Weinh). 2024;e2410806 https://doi.org/10.1002/advs.202410806.
    [76]
    R. Zhou, W. Ni, C. Qin, et al. A functional loop between YTH domain family protein YTHDF3 mediated m(6)A modification and phosphofructokinase PFKL in glycolysis of hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41:334 https://doi.org/10.1186/s13046-022-02538-4.
    [77]
    M. Chen, L. Wei, C.T. Law, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254-2270 https://doi.org/10.1002/hep.29683.
    [78]
    L. Zhong, D. Liao, M. Zhang, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 2019;442:252-261 https://doi.org/10.1016/j.canlet.2018.11.006.
    [79]
    Z. Sun, Z. Su, Z. Zhou, et al. RNA demethylase ALKBH5 inhibits TGF-beta-induced EMT by regulating TGF-beta/SMAD signaling in non-small cell lung cancer. FASEB J. 2022;36:e22283 https://doi.org/10.1096/fj.202200005RR.
    [80]
    J. Li, G. Xie, Y. Tian, et al. RNA m(6)A methylation regulates dissemination of cancer cells by modulating expression and membrane localization of beta-catenin. Mol Ther. 2022;30:1578-1596 https://doi.org/10.1016/j.ymthe.2022.01.019.
    [81]
    L. Hao, J.M. Wang, B.Q. Liu, et al. m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. Biochim Biophys Acta Mol Cell Res. 2021;1868:118878 https://doi.org/10.1016/j.bbamcr.2020.118878.
    [82]
    B. Han, S. Yan, S. Wei, et al. YTHDF1-mediated translation amplifies Wnt-driven intestinal stemness. EMBO Rep. 2020;21:e49229 https://doi.org/10.15252/embr.201949229.
    [83]
    B. Li, Y. Xia, J. Lv, et al. miR-151a-3p-rich small extracellular vesicles derived from gastric cancer accelerate liver metastasis via initiating a hepatic stemness-enhancing niche. Oncogene. 2021;40:6180-6194 https://doi.org/10.1038/s41388-021-02011-0.
    [84]
    Y. Li, X. Guo, X. Liang, et al. YTHDF1 Promotes Proliferation and Inhibits Apoptosis of Gastric Cancer Cells via Upregulating TCF7 mRNA Translation. Front Biosci (Landmark Ed). 2024;29:117 https://doi.org/10.31083/j.fbl2903117.
    [85]
    J. Ye, Y. Wu, Y. Chen, et al. ALKBH5 promotes hypopharyngeal squamous cell carcinoma apoptosis by targeting TLR2 in a YTHDF1/IGF2BP2-mediated manner. Cell Death Discov. 2023;9:308 https://doi.org/10.1038/s41420-023-01589-6.
    [86]
    J.M. Einstein, M. Perelis, I.A. Chaim, et al. Inhibition of YTHDF2 triggers proteotoxic cell death in MYC-driven breast cancer. Mol Cell. 2021;81:3048-3064 e3049 https://doi.org/10.1016/j.molcel.2021.06.014.
    [87]
    K. Wang, G. Wang, G. Li, et al. m6A writer WTAP targets NRF2 to accelerate bladder cancer malignancy via m6A-dependent ferroptosis regulation. Apoptosis. 2023;28:627-638 https://doi.org/10.1007/s10495-023-01817-5.
    [88]
    Y. Qiao, M. Su, H. Zhao, et al. Targeting FTO induces colorectal cancer ferroptotic cell death by decreasing SLC7A11/GPX4 expression. J Exp Clin Cancer Res. 2024;43:108 https://doi.org/10.1186/s13046-024-03032-9.
    [89]
    F. Wang, Y. Liao, M. Zhang, et al. N6-methyladenosine demethyltransferase FTO-mediated autophagy in malignant development of oral squamous cell carcinoma. Oncogene. 2021;40:3885-3898 https://doi.org/10.1038/s41388-021-01820-7.
    [90]
    Z. Li, Y. Peng, J. Li, et al. N(6)-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun. 2020;11:2578 https://doi.org/10.1038/s41467-020-16306-5.
    [91]
    X. Yao, W. Li, L. Li, et al. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis. Cell Death Dis. 2022;13:258 https://doi.org/10.1038/s41419-022-04711-1.
    [92]
    F. Wang, Y. Hu, H. Wang, et al. LncRNA FTO-IT1 promotes glycolysis and progression of hepatocellular carcinoma through modulating FTO-mediated N6-methyladenosine modification on GLUT1 and PKM2. J Exp Clin Cancer Res. 2023;42:267 https://doi.org/10.1186/s13046-023-02847-2.
    [93]
    D. Liu, Z. Li, K. Zhang, et al. N(6)-methyladenosine reader YTHDF3 contributes to the aerobic glycolysis of osteosarcoma through stabilizing PGK1 stability. J Cancer Res Clin Oncol. 2023;149:4601-4610 https://doi.org/10.1007/s00432-022-04337-y.
    [94]
    H. Wang, W. Cui, S. Yue, et al. Malic enzymes in cancer: Regulatory mechanisms, functions, and therapeutic implications. Redox Biol. 2024;75:103273 https://doi.org/10.1016/j.redox.2024.103273.
    [95]
    Y. Han, Y. Pu, X. Liu, et al. YTHDF1 regulates GID8-mediated glutamine metabolism to promote colorectal cancer progression in m6A-dependent manner. Cancer Lett. 2024;601:217186 https://doi.org/10.1016/j.canlet.2024.217186.
    [96]
    Y. Chen, Z. Ling, X. Cai, et al. Activation of YAP1 by N6-Methyladenosine-Modified circCPSF6 Drives Malignancy in Hepatocellular Carcinoma. Cancer Res. 2022;82:599-614 https://doi.org/10.1158/0008-5472.CAN-21-1628.
    [97]
    Y. Chen, C. Pan, X. Wang, et al. Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics. 2021;11:7640-7657 https://doi.org/10.7150/thno.61178.
    [98]
    J. Li, H. Xie, Y. Ying, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 2020;19:152 https://doi.org/10.1186/s12943-020-01267-6.
    [99]
    X. Zhang, Z. Li, Q. Peng, et al. Epstein-Barr virus suppresses N(6)-methyladenosine modification of TLR9 to promote immune evasion. J Biol Chem. 2024;300:107226 https://doi.org/10.1016/j.jbc.2024.107226.
    [100]
    D. Han, J. Liu, C. Chen, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566:270-274 https://doi.org/10.1038/s41586-019-0916-x.
    [101]
    S. Xiao, S. Ma, B. Sun, et al. The tumor-intrinsic role of the m(6)A reader YTHDF2 in regulating immune evasion. Sci Immunol. 2024;9:eadl2171 https://doi.org/10.1126/sciimmunol.adl2171.
    [102]
    W. Lin, L. Chen, H. Zhang, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat Commun. 2023;14:265 https://doi.org/10.1038/s41467-022-35710-7.
    [103]
    L. Zhan, J. Zhang, J.H. Zhang, et al. METTL3 facilitates immunosurveillance by inhibiting YTHDF2-mediated NLRC5 mRNA degradation in endometrial cancer. Biomark Res. 2023;11:43 https://doi.org/10.1186/s40364-023-00479-4.
    [104]
    T. Li, Y.T. Tan, Y.X. Chen, et al. Methionine deficiency facilitates antitumour immunity by altering m(6)A methylation of immune checkpoint transcripts. Gut. 2023;72:501-511 https://doi.org/10.1136/gutjnl-2022-326928.
    [105]
    X. Qiu, S. Yang, S. Wang, et al. M(6)A Demethylase ALKBH5 Regulates PD-L1 Expression and Tumor Immunoenvironment in Intrahepatic Cholangiocarcinoma. Cancer Res. 2021;81:4778-4793 https://doi.org/10.1158/0008-5472.CAN-21-0468.
    [106]
    L. Wang, L. Zhu, C. Liang, et al. Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis. J Hepatol. 2023;79:1185-1200 https://doi.org/10.1016/j.jhep.2023.06.021.
    [107]
    L. Zhang, Y. Li, L. Zhou, et al. The m6A Reader YTHDF2 Promotes Bladder Cancer Progression by Suppressing RIG-I-Mediated Immune Response. Cancer Res. 2023;83:1834-1850 https://doi.org/10.1158/0008-5472.CAN-22-2485.
    [108]
    Z. Yang, X. Wang, Y. Fu, et al. YTHDF2 in peritumoral hepatocytes mediates chemotherapy-induced antitumor immune responses through CX3CL1-mediated CD8(+) T cell recruitment. Mol Cancer. 2024;23:186 https://doi.org/10.1186/s12943-024-02097-6.
    [109]
    J. Cai, Z. Chen, Y. Zhang, et al. CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m(6)A modification in hepatocellular carcinoma. Mol Ther Oncolytics. 2022;24:755-771 https://doi.org/10.1016/j.omto.2022.02.021.
    [110]
    L. Yang, Y. Chen, N. Liu, et al. CircMET promotes tumor proliferation by enhancing CDKN2A mRNA decay and upregulating SMAD3. Mol Cancer. 2022;21:23 https://doi.org/10.1186/s12943-022-01497-w.
    [111]
    L. Zhou, J. Jiang, Z. Huang, et al. Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/beta-catenin signaling to promote colorectal cancer progression by preventing m(6)A-mediated degradation of STEAP3 mRNA. Mol Cancer. 2022;21:168 https://doi.org/10.1186/s12943-022-01638-1.
    [112]
    M. Wei, L. Lu, J. Ma, et al. LINC00707 impairs the Natural Killer cell antitumour activity in hepatocellular carcinoma through decreasing YTHDF2 stability. J Cell Mol Med. 2024;28:e18106 https://doi.org/10.1111/jcmm.18106.
    [113]
    D. Luo, H. Tang, L. Tan, et al. lncRNA JPX Promotes Tumor Progression by Interacting with and Destabilizing YTHDF2 in Cutaneous Melanoma. Mol Cancer Res. 2024;22:524-537 https://doi.org/10.1158/1541-7786.MCR-23-0701.
    [114]
    W. Filipowicz, S.N. Bhattacharyya, N. Sonenberg. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102-114 https://doi.org/10.1038/nrg2290.
    [115]
    C. Du, C. Lv, Y. Feng, et al. Activation of the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate cancer progression. J Exp Clin Cancer Res. 2020;39:223 https://doi.org/10.1186/s13046-020-01735-3.
    [116]
    H. Li, N. Zhang, X. Jiao, et al. Downregulation of microRNA-6125 promotes colorectal cancer growth through YTHDF2-dependent recognition of N6-methyladenosine-modified GSK3beta. Clin Transl Med. 2021;11:e602 https://doi.org/10.1002/ctm2.602.
    [117]
    J. Guo, J. Zhang, Y. Xiang, et al. Long noncoding RNA SNHG3 interacts with microRNA-502-3p to mediate ITGA6 expression in liver hepatocellular carcinoma. Cancer Sci. 2024;115:2286-2300 https://doi.org/10.1111/cas.16190.
    [118]
    Y. Hu, J. Tang, F. Xu, et al. A reciprocal feedback between N6-methyladenosine reader YTHDF3 and lncRNA DICER1-AS1 promotes glycolysis of pancreatic cancer through inhibiting maturation of miR-5586-5p. J Exp Clin Cancer Res. 2022;41:69 https://doi.org/10.1186/s13046-022-02285-6.
    [119]
    Y. Luo, M. He, J. Yang, et al. A novel MYCN-YTHDF1 cascade contributes to retinoblastoma tumor growth by eliciting m(6)A -dependent activation of multiple oncogenes. Sci China Life Sci. 2023;66:2138-2151 https://doi.org/10.1007/s11427-022-2288-4.
    [120]
    W. Ni, S. Yao, Y. Zhou, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer. 2019;18:143 https://doi.org/10.1186/s12943-019-1079-y.
    [121]
    S. Ma, Y. Sun, G. Gao, et al. The ubiquitin ligase STUB1 suppresses tumorigenesis of renal cell carcinomas through regulating YTHDF1 stability. Carcinogenesis. 2024; https://doi.org/10.1093/carcin/bgae033.
    [122]
    Y. Liao, Y. Liu, C. Yu, et al. HSP90beta Impedes STUB1-Induced Ubiquitination of YTHDF2 to Drive Sorafenib Resistance in Hepatocellular Carcinoma. Adv Sci (Weinh). 2023;10:e2302025 https://doi.org/10.1002/advs.202302025.
    [123]
    Y. Chen, R. Wan, Z. Zou, et al. O-GlcNAcylation determines the translational regulation and phase separation of YTHDF proteins. Nat Cell Biol. 2023;25:1676-1690 https://doi.org/10.1038/s41556-023-01258-x.
    [124]
    Y. Yang, Y. Yan, J. Yin, et al. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an N(6)-methyladenosine-dependent manner. Signal Transduct Target Ther. 2023;8:63 https://doi.org/10.1038/s41392-023-01316-8.
    [125]
    P. Shrestha, G. Kim, H. Kang, et al. The PIN1-YTHDF1 axis promotes breast tumorigenesis via the m(6)A-dependent stabilization of AURKA mRNA. Arch Pharm Res. 2024;47:66-81 https://doi.org/10.1007/s12272-023-01480-z.
    [126]
    R. Fang, X. Chen, S. Zhang, et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun. 2021;12:177 https://doi.org/10.1038/s41467-020-20379-7.
    [127]
    G. Hou, X. Zhao, L. Li, et al. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Res. 2021;49:2859-2877 https://doi.org/10.1093/nar/gkab065.
    [128]
    X. Yuan, Q. Wang, J. Zhao, et al. The m6A methyltransferase METTL3 modifies Kcnk6 promoting on inflammation associated carcinogenesis is essential for colon homeostasis and defense system through histone lactylation dependent YTHDF2 binding. Int Rev Immunol. 2024;1-16 https://doi.org/10.1080/08830185.2024.2401358.
    [129]
    Y. Sun, D. Chen, S. Sun, et al. RBMS1 Coordinates with the m(6)A Reader YTHDF1 to Promote NSCLC Metastasis through Stimulating S100P Translation. Adv Sci (Weinh). 2024;11:e2307122 https://doi.org/10.1002/advs.202307122.
    [130]
    C. Zhang, S. Wang, X. Lu, et al. POP1 Facilitates Proliferation in Triple-Negative Breast Cancer via m6A-Dependent Degradation of CDKN1A mRNA. Research (Wash D C). 2024;7:0472 https://doi.org/10.34133/research.0472.
    [131]
    S. Liu, C. Lin, X. Lin, et al. NAT10 Phase Separation Regulates YTHDF1 Splicing to Promote Gastric Cancer Progression. Cancer Res. 2024;84:3207-3222 https://doi.org/10.1158/0008-5472.CAN-23-4062.
    [132]
    R. Zhang, P. Chen, Y. Wang, et al. Targeting METTL3 enhances the chemosensitivity of non-small cell lung cancer cells by decreasing ABCC2 expression in an m(6)A-YTHDF1-dependent manner. Int J Biol Sci. 2024;20:4750-4766 https://doi.org/10.7150/ijbs.97425.
    [133]
    Y. Zhao, H. Zhao, D. Zhang, et al. YTHDF3 Facilitates eIF2AK2 and eIF3A Recruitment on mRNAs to Regulate Translational Processes in Oxaliplatin-Resistant Colorectal Cancer. ACS Chem Biol. 2022;17:1778-1788 https://doi.org/10.1021/acschembio.2c00131.
    [134]
    X. Ou, Y. Tan, J. Xie, et al. Methylation of GPRC5A promotes liver metastasis and docetaxel resistance through activating mTOR signaling pathway in triple negative breast cancer. Drug Resist Updat. 2024;73:101063 https://doi.org/10.1016/j.drup.2024.101063.
    [135]
    F. Luo, M. Zhang, B. Sun, et al. LINC00115 promotes chemoresistant breast cancer stem-like cell stemness and metastasis through SETDB1/PLK3/HIF1alpha signaling. Mol Cancer. 2024;23:60 https://doi.org/10.1186/s12943-024-01975-3.
    [136]
    Z. Lin, A.H. Wan, L. Sun, et al. N6-methyladenosine demethylase FTO enhances chemo-resistance in colorectal cancer through SIVA1-mediated apoptosis. Mol Ther. 2023;31:517-534 https://doi.org/10.1016/j.ymthe.2022.10.012.
    [137]
    C. Lin, T. Li, Y. Wang, et al. METTL3 enhances pancreatic ductal adenocarcinoma progression and gemcitabine resistance through modifying DDX23 mRNA N6 adenosine methylation. Cell Death Dis. 2023;14:221 https://doi.org/10.1038/s41419-023-05715-1.
    [138]
    K. Lin, E. Zhou, T. Shi, et al. m6A eraser FTO impairs gemcitabine resistance in pancreatic cancer through influencing NEDD4 mRNA stability by regulating the PTEN/PI3K/AKT pathway. J Exp Clin Cancer Res. 2023;42:217 https://doi.org/10.1186/s13046-023-02792-0.
    [139]
    L. Wang, W. Si, X. Yu, et al. Epitranscriptional regulation of TGF-beta pseudoreceptor BAMBI by m6A/YTHDF2 drives extrinsic radioresistance. J Clin Invest. 2023;133: https://doi.org/10.1172/JCI172919.
    [140]
    J. Yin, F. Ding, Z. Cheng, et al. METTL3-mediated m6A modification of LINC00839 maintains glioma stem cells and radiation resistance by activating Wnt/beta-catenin signaling. Cell Death Dis. 2023;14:417 https://doi.org/10.1038/s41419-023-05933-7.
    [141]
    H. Du, N.Y. Zou, H.L. Zuo, et al. YTHDF3 mediates HNF1alpha regulation of cervical cancer radio-resistance by promoting RAD51D translation in an m6A-dependent manner. FEBS J. 2023;290:1920-1935 https://doi.org/10.1111/febs.16681.
    [142]
    Z. Lin, Y. Niu, A. Wan, et al. RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J. 2020;39:e103181 https://doi.org/10.15252/embj.2019103181.
    [143]
    H. Liu, H. Lyu, G. Jiang, et al. ALKBH5-Mediated m6A Demethylation of GLUT4 mRNA Promotes Glycolysis and Resistance to HER2-Targeted Therapy in Breast Cancer. Cancer Res. 2022;82:3974-3986 https://doi.org/10.1158/0008-5472.CAN-22-0800.
    [144]
    A. Benavides-Serrato, J.T. Saunders, S. Kumar, et al. m(6)A-modification of cyclin D1 and c-myc IRESs in glioblastoma controls ITAF activity and resistance to mTOR inhibition. Cancer Lett. 2023;562:216178 https://doi.org/10.1016/j.canlet.2023.216178.
    [145]
    S. Yang, J. Wei, Y.H. Cui, et al. m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 2019;10:2782 https://doi.org/10.1038/s41467-019-10669-0.
    [146]
    M. Micaelli, A. Dalle Vedove, L. Cerofolini, et al. Small-Molecule Ebselen Binds to YTHDF Proteins Interfering with the Recognition of N (6)-Methyladenosine-Modified RNAs. ACS Pharmacol Transl Sci. 2022;5:872-891 https://doi.org/10.1021/acsptsci.2c00008.
    [147]
    Z. Zou, J. Wei, Y. Chen, et al. FMRP phosphorylation modulates neuronal translation through YTHDF1. Mol Cell. 2023;83:4304-4317 e4308 https://doi.org/10.1016/j.molcel.2023.10.028.
    [148]
    L. Wang, X. Dou, S. Chen, et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell. 2023;41:1294-1308 e1298 https://doi.org/10.1016/j.ccell.2023.04.019.
    [149]
    X. Lin, L. Xu, M. Gu, et al. Gegen Qinlian Decoction reverses oxaliplatin resistance in colorectal cancer by inhibiting YTHDF1-regulated m6A modification of GLS1. Phytomedicine. 2024;133:155906 https://doi.org/10.1016/j.phymed.2024.155906.
    [150]
    C. Wen, L. Wang, A. Piffko, et al. YTHDF1 loss in dendritic cells potentiates radiation-induced antitumor immunity via STING-dependent type I IFN production. J Clin Invest. 2024; https://doi.org/10.1172/JCI181612.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (24) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return