Citation: | Na Deng, Qiang Sun, Shuying Wang, Shiheng Jia, Cheng Zheng, Fanglin Wang, Shuang Ma, Heng Zhou, Weiwei Liu. Mechanisms and therapeutic potential of YTHDF readers: linking epitranscriptomics to cancer[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101371 |
[1] |
Z. Zhang, D. Theler, K.H. Kaminska, et al. The YTH domain is a novel RNA binding domain. J Biol Chem. 2010;285:14701-14710 https://doi.org/10.1074/jbc.M110.104711.
|
[2] |
V. Sikorski, S. Selberg, M. Lalowski, et al. The structure and function of YTHDF epitranscriptomic m(6)A readers. Trends Pharmacol Sci. 2023;44:335-353 https://doi.org/10.1016/j.tips.2023.03.004.
|
[3] |
X. Dai, T. Wang, G. Gonzalez, et al. Identification of YTH Domain-Containing Proteins as the Readers for N1-Methyladenosine in RNA. Anal Chem. 2018;90:6380-6384 https://doi.org/10.1021/acs.analchem.8b01703.
|
[4] |
X. Dai, G. Gonzalez, L. Li, et al. YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Anal Chem. 2020;92:1346-1354 https://doi.org/10.1021/acs.analchem.9b04505.
|
[5] |
Q. Lan, P.Y. Liu, J. Haase, et al. The Critical Role of RNA m(6)A Methylation in Cancer. Cancer Res. 2019;79:1285-1292 https://doi.org/10.1158/0008-5472.CAN-18-2965.
|
[6] |
X. Wang, B.S. Zhao, I.A. Roundtree, et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388-1399 https://doi.org/10.1016/j.cell.2015.05.014.
|
[7] |
X. Wang, Z. Lu, A. Gomez, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117-120 https://doi.org/10.1038/nature12730.
|
[8] |
H. Shi, X. Wang, Z. Lu, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27:315-328 https://doi.org/10.1038/cr.2017.15.
|
[9] |
J. Li, K. Chen, X. Dong, et al. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif. 2022;55:e13157 https://doi.org/10.1111/cpr.13157.
|
[10] |
Q. Zheng, H. Gan, F. Yang, et al. Cytoplasmic m(1)A reader YTHDF3 inhibits trophoblast invasion by downregulation of m(1)A-methylated IGF1R. Cell Discov. 2020;6:12 https://doi.org/10.1038/s41421-020-0144-4.
|
[11] |
Z. Zou, C. Sepich-Poore, X. Zhou, et al. The mechanism underlying redundant functions of the YTHDF proteins. Genome Biol. 2023;24:17 https://doi.org/10.1186/s13059-023-02862-8.
|
[12] |
R.J. Ries, S. Zaccara, P. Klein, et al. m(6)A enhances the phase separation potential of mRNA. Nature. 2019;571:424-428 https://doi.org/10.1038/s41586-019-1374-1.
|
[13] |
W. Zhang, T. Wu, Y. Zhang, et al. Targeting m(6)A binding protein YTHDFs for cancer therapy. Bioorg Med Chem. 2023;90:117373 https://doi.org/10.1016/j.bmc.2023.117373.
|
[14] |
L. Ma, X. Xue, X. Zhang, et al. The essential roles of m(6)A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J Exp Clin Cancer Res. 2022;41:36 https://doi.org/10.1186/s13046-021-02200-5.
|
[15] |
C. Shen, J. Liu, F. Xie, et al. N6-Methyladenosine enhances the translation of ENO1 to promote the progression of bladder cancer by inhibiting PCNA ubiquitination. Cancer Lett. 2024;595:217002 https://doi.org/10.1016/j.canlet.2024.217002.
|
[16] |
H. Jin, X. Ying, B. Que, et al. N(6)-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine. 2019;47:195-207 https://doi.org/10.1016/j.ebiom.2019.07.068.
|
[17] |
J. Wen, L. Xue, Y. Wei, et al. YTHDF2 Is a Therapeutic Target for HCC by Suppressing Immune Evasion and Angiogenesis Through ETV5/PD-L1/VEGFA Axis. Adv Sci (Weinh). 2024;11:e2307242 https://doi.org/10.1002/advs.202307242.
|
[18] |
J. Zhong, X. Wu, Y. Gao, et al. Circular RNA encoded MET variant promotes glioblastoma tumorigenesis. Nat Commun. 2023;14:4467 https://doi.org/10.1038/s41467-023-40212-1.
|
[19] |
Y. Xu, X. He, S. Wang, et al. The m(6)A reading protein YTHDF3 potentiates tumorigenicity of cancer stem-like cells in ocular melanoma through facilitating CTNNB1 translation. Oncogene. 2022;41:1281-1297 https://doi.org/10.1038/s41388-021-02146-0.
|
[20] |
K. Zeng, J. Peng, Y. Xing, et al. A positive feedback circuit driven by m(6)A-modified circular RNA facilitates colorectal cancer liver metastasis. Mol Cancer. 2023;22:202 https://doi.org/10.1186/s12943-023-01848-1.
|
[21] |
Y. Wu, Z. Chen, G. Xie, et al. RNA m(1)A methylation regulates glycolysis of cancer cells through modulating ATP5D. Proc Natl Acad Sci U S A. 2022;119:e2119038119 https://doi.org/10.1073/pnas.2119038119.
|
[22] |
X. Gu, A. Zhuang, J. Yu, et al. Histone lactylation-boosted ALKBH3 potentiates tumor progression and diminished promyelocytic leukemia protein nuclear condensates by m1A demethylation of SP100A. Nucleic Acids Res. 2024;52:2273-2289 https://doi.org/10.1093/nar/gkad1193.
|
[23] |
J. Chen, X. Bai, W. Zhang, et al. YTHDF1 promotes gallbladder cancer progression via post-transcriptional regulation of the m6A/UHRF1 axis. J Cell Mol Med. 2024;28:e18328 https://doi.org/10.1111/jcmm.18328.
|
[24] |
X. Zhang, T. Su, Y. Wu, et al. N6-Methyladenosine Reader YTHDF1 Promotes Stemness and Therapeutic Resistance in Hepatocellular Carcinoma by Enhancing NOTCH1 Expression. Cancer Res. 2024;84:827-840 https://doi.org/10.1158/0008-5472.CAN-23-1916.
|
[25] |
W.X. Peng, F. Liu, J.H. Jiang, et al. N6-methyladenosine modified LINC00901 promotes pancreatic cancer progression through IGF2BP2/MYC axis. Genes Dis. 2023;10:554-567 https://doi.org/10.1016/j.gendis.2022.02.014.
|
[26] |
P. Zhang, W. Zhang, X. Wang, et al. BCLAF1 drives esophageal squamous cell carcinoma progression through regulation of YTHDF2-dependent SIX1 mRNA degradation. Cancer Lett. 2024;591:216874 https://doi.org/10.1016/j.canlet.2024.216874.
|
[27] |
J. Chen, H. Zhang, C. Xiu, et al. METTL3 promotes pancreatic cancer proliferation and stemness by increasing stability of ID2 mRNA in a m6A-dependent manner. Cancer Lett. 2023;565:216222 https://doi.org/10.1016/j.canlet.2023.216222.
|
[28] |
D. Dixit, B.C. Prager, R.C. Gimple, et al. The RNA m6A Reader YTHDF2 Maintains Oncogene Expression and Is a Targetable Dependency in Glioblastoma Stem Cells. Cancer Discov. 2021;11:480-499 https://doi.org/10.1158/2159-8290.CD-20-0331.
|
[29] |
K.W. Seo, R.E. Kleiner. YTHDF2 Recognition of N(1)-Methyladenosine (m(1)A)-Modified RNA Is Associated with Transcript Destabilization. ACS Chem Biol. 2020;15:132-139 https://doi.org/10.1021/acschembio.9b00655.
|
[30] |
Z. Chen, C. Zeng, L. Yang, et al. YTHDF2 promotes ATP synthesis and immune evasion in B cell malignancies. Cell. 2024; https://doi.org/10.1016/j.cell.2024.11.007.
|
[31] |
H. Zhang, Y. Sun, Z. Wang, et al. ZDHHC20-mediated S-palmitoylation of YTHDF3 stabilizes MYC mRNA to promote pancreatic cancer progression. Nat Commun. 2024;15:4642 https://doi.org/10.1038/s41467-024-49105-3.
|
[32] |
N. Liu, X. Jiang, G. Zhang, et al. LncRNA CARMN m6A demethylation by ALKBH5 inhibits mutant p53-driven tumour progression through miR-5683/FGF2. Clin Transl Med. 2024;14:e1777 https://doi.org/10.1002/ctm2.1777.
|
[33] |
S. Zaccara, S.R. Jaffrey. A Unified Model for the Function of YTHDF Proteins in Regulating m(6)A-Modified mRNA. Cell. 2020;181:1582-1595 e1518 https://doi.org/10.1016/j.cell.2020.05.012.
|
[34] |
D. Jang, C. Hwa, S. Kim, et al. RNA N(6)-Methyladenosine-Binding Protein YTHDFs Redundantly Attenuate Cancer Immunity by Downregulating IFN-gamma Signaling in Gastric Cancer. Adv Sci (Weinh). 2025;12:e2410806 https://doi.org/10.1002/advs.202410806.
|
[35] |
Y.G. Hong, Z. Yang, Y. Chen, et al. The RNA m6A Reader YTHDF1 Is Required for Acute Myeloid Leukemia Progression. Cancer Res. 2023;83:845-860 https://doi.org/10.1158/0008-5472.CAN-21-4249.
|
[36] |
S. Wang, L. Xu, D. Wang, et al. YTHDF1 promotes the osteolytic bone metastasis of breast cancer via inducing EZH2 and CDH11 translation. Cancer Lett. 2024;597:217047 https://doi.org/10.1016/j.canlet.2024.217047.
|
[37] |
L. Zhang, X. Luo, S. Qiao. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br J Cancer. 2022;127:30-42 https://doi.org/10.1038/s41416-022-01757-y.
|
[38] |
J. Xiong, L. He, X. Chai, et al. YTHDF1 boosts the lactate accumulation to potentiate cervical cancer cells immune escape. Cell Death Dis. 2024;15:843 https://doi.org/10.1038/s41419-024-07128-0.
|
[39] |
N. Liu, J. Zhang, W. Chen, et al. The RNA methyltransferase METTL16 enhances cholangiocarcinoma growth through PRDM15-mediated FGFR4 expression. J Exp Clin Cancer Res. 2023;42:263 https://doi.org/10.1186/s13046-023-02844-5.
|
[40] |
Y. Bao, J. Zhai, H. Chen, et al. Targeting m(6)A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 2023;72:1497-1509 https://doi.org/10.1136/gutjnl-2022-328845.
|
[41] |
P. Ruan, S. Wang, C. Yang, et al. m(6)A mRNA methylation regulates the ERK/NF-kappaB/AKT signaling pathway through the PAPPA/IGFBP4 axis to promote proliferation and tumor formation in endometrial cancer. Cell Biol Toxicol. 2023;39:1611-1626 https://doi.org/10.1007/s10565-022-09751-z.
|
[42] |
S. Guo, F. Chen, L. Li, et al. Intracellular Fusobacterium nucleatum infection increases METTL3-mediated m6A methylation to promote the metastasis of esophageal squamous cell carcinoma. J Adv Res. 2024;61:165-178 https://doi.org/10.1016/j.jare.2023.08.014.
|
[43] |
J. Pi, W. Wang, M. Ji, et al. YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of FZD7. Cancer Res. 2021;81:2651-2665 https://doi.org/10.1158/0008-5472.CAN-20-0066.
|
[44] |
V. Tassinari, V. Cesarini, S. Tomaselli, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol. 2021;22:51 https://doi.org/10.1186/s13059-021-02271-9.
|
[45] |
Q. Li, Y. Ni, L. Zhang, et al. HIF-1alpha-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther. 2021;6:76 https://doi.org/10.1038/s41392-020-00453-8.
|
[46] |
H. Guo, Q. Han, X. Guan, et al. M6A reader YTHDF1 promotes malignant progression of laryngeal squamous carcinoma through activating the EMT pathway by EIF4A3. Cell Signal. 2024;114:111002 https://doi.org/10.1016/j.cellsig.2023.111002.
|
[47] |
X. Liu, W. Yu, W. Song, et al. METTL3/YTHDF1 stabilizes CORO6 expression promoting osteosarcoma progression through glycolysis. Exp Cell Res. 2024;443:114328 https://doi.org/10.1016/j.yexcr.2024.114328.
|
[48] |
T. Liu, Q. Wei, J. Jin, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48:3816-3831 https://doi.org/10.1093/nar/gkaa048.
|
[49] |
K. Chen, Y. Wang, X. Dai, et al. FBXO31 is upregulated by METTL3 to promote pancreatic cancer progression via regulating SIRT2 ubiquitination and degradation. Cell Death Dis. 2024;15:37 https://doi.org/10.1038/s41419-024-06425-y.
|
[50] |
J. Paris, M. Morgan, J. Campos, et al. Targeting the RNA m(6)A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell. 2019;25:137-148 e136 https://doi.org/10.1016/j.stem.2019.03.021.
|
[51] |
X. Bai, J. Liu, S. Zhou, et al. METTL14 suppresses the expression of YAP1 and the stemness of triple-negative breast cancer. J Exp Clin Cancer Res. 2024;43:307 https://doi.org/10.1186/s13046-024-03225-2.
|
[52] |
D. Shen, J. Lin, Y. Xie, et al. RNA demethylase ALKBH5 promotes colorectal cancer progression by posttranscriptional activation of RAB5A in an m6A-YTHDF2-dependent manner. Clin Transl Med. 2023;13:e1279 https://doi.org/10.1002/ctm2.1279.
|
[53] |
Y. Zhu, X. Peng, Q. Zhou, et al. METTL3-mediated m6A modification of STEAP2 mRNA inhibits papillary thyroid cancer progress by blocking the Hedgehog signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis. 2022;13:358 https://doi.org/10.1038/s41419-022-04817-6.
|
[54] |
Z. Xu, S. Chen, R. Liu, et al. Circular RNA circPOLR2A promotes clear cell renal cell carcinoma progression by facilitating the UBE3C-induced ubiquitination of PEBP1 and, thereby, activating the ERK signaling pathway. Mol Cancer. 2022;21:146 https://doi.org/10.1186/s12943-022-01607-8.
|
[55] |
L. Liang, Y. Zhu, J. Li, et al. ALKBH5-mediated m6A modification of circCCDC134 facilitates cervical cancer metastasis by enhancing HIF1A transcription. J Exp Clin Cancer Res. 2022;41:261 https://doi.org/10.1186/s13046-022-02462-7.
|
[56] |
K. Du, Y. Luo, L. Zhang, et al. m(6)A modification of lipoyltransferase 1 inhibits bladder cancer progression by activating cuproptosis. Oncogene. 2024;43:2971-2985 https://doi.org/10.1038/s41388-024-03139-5.
|
[57] |
C.S. Huang, Y.Q. Zhu, Q.C. Xu, et al. YTHDF2 promotes intrahepatic cholangiocarcinoma progression and desensitises cisplatin treatment by increasing CDKN1B mRNA degradation. Clin Transl Med. 2022;12:e848 https://doi.org/10.1002/ctm2.848.
|
[58] |
Y. Wang, C. Wang, X. Guan, et al. PRMT3-Mediated Arginine Methylation of METTL14 Promotes Malignant Progression and Treatment Resistance in Endometrial Carcinoma. Adv Sci (Weinh). 2023;10:e2303812 https://doi.org/10.1002/advs.202303812.
|
[59] |
X. Bai, J. Chen, W. Zhang, et al. YTHDF2 promotes gallbladder cancer progression and gemcitabine resistance via m6A-dependent DAPK3 degradation. Cancer Sci. 2023;114:4299-4313 https://doi.org/10.1111/cas.15953.
|
[60] |
Y. Fang, X. Wu, Y. Gu, et al. LINC00659 cooperated with ALKBH5 to accelerate gastric cancer progression by stabilising JAK1 mRNA in an m(6) A-YTHDF2-dependent manner. Clin Transl Med. 2023;13:e1205 https://doi.org/10.1002/ctm2.1205.
|
[61] |
C. Zhang, Q. Sun, X. Zhang, et al. Gene amplification-driven RNA methyltransferase KIAA1429 promotes tumorigenesis by regulating BTG2 via m6A-YTHDF2-dependent in lung adenocarcinoma. Cancer Commun (Lond). 2022;42:609-626 https://doi.org/10.1002/cac2.12325.
|
[62] |
X. Chen, T. Lu, M. Ding, et al. Targeting YTHDF2 inhibits tumorigenesis of diffuse large B-cell lymphoma through ACER2-mediated ceramide catabolism. J Adv Res. 2024;63:17-33 https://doi.org/10.1016/j.jare.2023.10.010.
|
[63] |
J. Yu, P. Chai, M. Xie, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22:85 https://doi.org/10.1186/s13059-021-02308-z.
|
[64] |
Z. Yang, Z. Cai, C. Yang, et al. ALKBH5 regulates STAT3 activity to affect the proliferation and tumorigenicity of osteosarcoma via an m6A-YTHDF2-dependent manner. EBioMedicine. 2022;80:104019 https://doi.org/10.1016/j.ebiom.2022.104019.
|
[65] |
Z. Tan, S. Shi, J. Xu, et al. RNA N6-methyladenosine demethylase FTO promotes pancreatic cancer progression by inducing the autocrine activity of PDGFC in an m(6)A-YTHDF2-dependent manner. Oncogene. 2022;41:2860-2872 https://doi.org/10.1038/s41388-022-02306-w.
|
[66] |
J. Ning, X. Hou, J. Hao, et al. METTL3 inhibition induced by M2 macrophage-derived extracellular vesicles drives anti-PD-1 therapy resistance via M6A-CD70-mediated immune suppression in thyroid cancer. Cell Death Differ. 2023;30:2265-2279 https://doi.org/10.1038/s41418-023-01217-x.
|
[67] |
S. Zhong, Q. Guo, X. Chen, et al. The inhibition of YTHDF3/m(6)A/LRP6 reprograms fatty acid metabolism and suppresses lymph node metastasis in cervical cancer. Int J Biol Sci. 2024;20:916-936 https://doi.org/10.7150/ijbs.87203.
|
[68] |
L. Liao, Y. He, S.J. Li, et al. Anti-HIV Drug Elvitegravir Suppresses Cancer Metastasis via Increased Proteasomal Degradation of m6A Methyltransferase METTL3. Cancer Res. 2022;82:2444-2457 https://doi.org/10.1158/0008-5472.CAN-21-4124.
|
[69] |
H.Z. Shi, J.S. Xiong, L. Gan, et al. N6-methyladenosine reader YTHDF3 regulates melanoma metastasis via its 'executor'LOXL3. Clin Transl Med. 2022;12:e1075 https://doi.org/10.1002/ctm2.1075.
|
[70] |
P. Yu, T. Xu, W. Ma, et al. PRMT6-mediated transcriptional activation of ythdf2 promotes glioblastoma migration, invasion, and emt via the wnt-beta-catenin pathway. J Exp Clin Cancer Res. 2024;43:116 https://doi.org/10.1186/s13046-024-03038-3.
|
[71] |
G. Chang, L. Shi, Y. Ye, et al. YTHDF3 Induces the Translation of m(6)A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell. 2020;38:857-871 e857 https://doi.org/10.1016/j.ccell.2020.10.004.
|
[72] |
F. Xu, J. Li, M. Ni, et al. FBW7 suppresses ovarian cancer development by targeting the N(6)-methyladenosine binding protein YTHDF2. Mol Cancer. 2021;20:45 https://doi.org/10.1186/s12943-021-01340-8.
|
[73] |
C. Dai, J. Cao, Y. Tang, et al. YTHDF3 phase separation regulates HSPA13-dependent clear cell renal cell carcinoma development and immune evasion. Cancer Sci. 2024;115:2588-2601 https://doi.org/10.1111/cas.16228.
|
[74] |
Y. Luo, C. Zeng, Z. Ouyang, et al. YTH domain family protein 3 accelerates non-small cell lung cancer immune evasion through targeting CD8(+) T lymphocytes. Cell Death Discov. 2024;10:320 https://doi.org/10.1038/s41420-024-02084-2.
|
[75] |
D. Jang, C. Hwa, S. Kim, et al. RNA N(6)-Methyladenosine-Binding Protein YTHDFs Redundantly Attenuate Cancer Immunity by Downregulating IFN-gamma Signaling in Gastric Cancer. Adv Sci (Weinh). 2024;e2410806 https://doi.org/10.1002/advs.202410806.
|
[76] |
R. Zhou, W. Ni, C. Qin, et al. A functional loop between YTH domain family protein YTHDF3 mediated m(6)A modification and phosphofructokinase PFKL in glycolysis of hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41:334 https://doi.org/10.1186/s13046-022-02538-4.
|
[77] |
M. Chen, L. Wei, C.T. Law, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254-2270 https://doi.org/10.1002/hep.29683.
|
[78] |
L. Zhong, D. Liao, M. Zhang, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 2019;442:252-261 https://doi.org/10.1016/j.canlet.2018.11.006.
|
[79] |
Z. Sun, Z. Su, Z. Zhou, et al. RNA demethylase ALKBH5 inhibits TGF-beta-induced EMT by regulating TGF-beta/SMAD signaling in non-small cell lung cancer. FASEB J. 2022;36:e22283 https://doi.org/10.1096/fj.202200005RR.
|
[80] |
J. Li, G. Xie, Y. Tian, et al. RNA m(6)A methylation regulates dissemination of cancer cells by modulating expression and membrane localization of beta-catenin. Mol Ther. 2022;30:1578-1596 https://doi.org/10.1016/j.ymthe.2022.01.019.
|
[81] |
L. Hao, J.M. Wang, B.Q. Liu, et al. m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. Biochim Biophys Acta Mol Cell Res. 2021;1868:118878 https://doi.org/10.1016/j.bbamcr.2020.118878.
|
[82] |
B. Han, S. Yan, S. Wei, et al. YTHDF1-mediated translation amplifies Wnt-driven intestinal stemness. EMBO Rep. 2020;21:e49229 https://doi.org/10.15252/embr.201949229.
|
[83] |
B. Li, Y. Xia, J. Lv, et al. miR-151a-3p-rich small extracellular vesicles derived from gastric cancer accelerate liver metastasis via initiating a hepatic stemness-enhancing niche. Oncogene. 2021;40:6180-6194 https://doi.org/10.1038/s41388-021-02011-0.
|
[84] |
Y. Li, X. Guo, X. Liang, et al. YTHDF1 Promotes Proliferation and Inhibits Apoptosis of Gastric Cancer Cells via Upregulating TCF7 mRNA Translation. Front Biosci (Landmark Ed). 2024;29:117 https://doi.org/10.31083/j.fbl2903117.
|
[85] |
J. Ye, Y. Wu, Y. Chen, et al. ALKBH5 promotes hypopharyngeal squamous cell carcinoma apoptosis by targeting TLR2 in a YTHDF1/IGF2BP2-mediated manner. Cell Death Discov. 2023;9:308 https://doi.org/10.1038/s41420-023-01589-6.
|
[86] |
J.M. Einstein, M. Perelis, I.A. Chaim, et al. Inhibition of YTHDF2 triggers proteotoxic cell death in MYC-driven breast cancer. Mol Cell. 2021;81:3048-3064 e3049 https://doi.org/10.1016/j.molcel.2021.06.014.
|
[87] |
K. Wang, G. Wang, G. Li, et al. m6A writer WTAP targets NRF2 to accelerate bladder cancer malignancy via m6A-dependent ferroptosis regulation. Apoptosis. 2023;28:627-638 https://doi.org/10.1007/s10495-023-01817-5.
|
[88] |
Y. Qiao, M. Su, H. Zhao, et al. Targeting FTO induces colorectal cancer ferroptotic cell death by decreasing SLC7A11/GPX4 expression. J Exp Clin Cancer Res. 2024;43:108 https://doi.org/10.1186/s13046-024-03032-9.
|
[89] |
F. Wang, Y. Liao, M. Zhang, et al. N6-methyladenosine demethyltransferase FTO-mediated autophagy in malignant development of oral squamous cell carcinoma. Oncogene. 2021;40:3885-3898 https://doi.org/10.1038/s41388-021-01820-7.
|
[90] |
Z. Li, Y. Peng, J. Li, et al. N(6)-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun. 2020;11:2578 https://doi.org/10.1038/s41467-020-16306-5.
|
[91] |
X. Yao, W. Li, L. Li, et al. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis. Cell Death Dis. 2022;13:258 https://doi.org/10.1038/s41419-022-04711-1.
|
[92] |
F. Wang, Y. Hu, H. Wang, et al. LncRNA FTO-IT1 promotes glycolysis and progression of hepatocellular carcinoma through modulating FTO-mediated N6-methyladenosine modification on GLUT1 and PKM2. J Exp Clin Cancer Res. 2023;42:267 https://doi.org/10.1186/s13046-023-02847-2.
|
[93] |
D. Liu, Z. Li, K. Zhang, et al. N(6)-methyladenosine reader YTHDF3 contributes to the aerobic glycolysis of osteosarcoma through stabilizing PGK1 stability. J Cancer Res Clin Oncol. 2023;149:4601-4610 https://doi.org/10.1007/s00432-022-04337-y.
|
[94] |
H. Wang, W. Cui, S. Yue, et al. Malic enzymes in cancer: Regulatory mechanisms, functions, and therapeutic implications. Redox Biol. 2024;75:103273 https://doi.org/10.1016/j.redox.2024.103273.
|
[95] |
Y. Han, Y. Pu, X. Liu, et al. YTHDF1 regulates GID8-mediated glutamine metabolism to promote colorectal cancer progression in m6A-dependent manner. Cancer Lett. 2024;601:217186 https://doi.org/10.1016/j.canlet.2024.217186.
|
[96] |
Y. Chen, Z. Ling, X. Cai, et al. Activation of YAP1 by N6-Methyladenosine-Modified circCPSF6 Drives Malignancy in Hepatocellular Carcinoma. Cancer Res. 2022;82:599-614 https://doi.org/10.1158/0008-5472.CAN-21-1628.
|
[97] |
Y. Chen, C. Pan, X. Wang, et al. Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics. 2021;11:7640-7657 https://doi.org/10.7150/thno.61178.
|
[98] |
J. Li, H. Xie, Y. Ying, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 2020;19:152 https://doi.org/10.1186/s12943-020-01267-6.
|
[99] |
X. Zhang, Z. Li, Q. Peng, et al. Epstein-Barr virus suppresses N(6)-methyladenosine modification of TLR9 to promote immune evasion. J Biol Chem. 2024;300:107226 https://doi.org/10.1016/j.jbc.2024.107226.
|
[100] |
D. Han, J. Liu, C. Chen, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566:270-274 https://doi.org/10.1038/s41586-019-0916-x.
|
[101] |
S. Xiao, S. Ma, B. Sun, et al. The tumor-intrinsic role of the m(6)A reader YTHDF2 in regulating immune evasion. Sci Immunol. 2024;9:eadl2171 https://doi.org/10.1126/sciimmunol.adl2171.
|
[102] |
W. Lin, L. Chen, H. Zhang, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat Commun. 2023;14:265 https://doi.org/10.1038/s41467-022-35710-7.
|
[103] |
L. Zhan, J. Zhang, J.H. Zhang, et al. METTL3 facilitates immunosurveillance by inhibiting YTHDF2-mediated NLRC5 mRNA degradation in endometrial cancer. Biomark Res. 2023;11:43 https://doi.org/10.1186/s40364-023-00479-4.
|
[104] |
T. Li, Y.T. Tan, Y.X. Chen, et al. Methionine deficiency facilitates antitumour immunity by altering m(6)A methylation of immune checkpoint transcripts. Gut. 2023;72:501-511 https://doi.org/10.1136/gutjnl-2022-326928.
|
[105] |
X. Qiu, S. Yang, S. Wang, et al. M(6)A Demethylase ALKBH5 Regulates PD-L1 Expression and Tumor Immunoenvironment in Intrahepatic Cholangiocarcinoma. Cancer Res. 2021;81:4778-4793 https://doi.org/10.1158/0008-5472.CAN-21-0468.
|
[106] |
L. Wang, L. Zhu, C. Liang, et al. Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis. J Hepatol. 2023;79:1185-1200 https://doi.org/10.1016/j.jhep.2023.06.021.
|
[107] |
L. Zhang, Y. Li, L. Zhou, et al. The m6A Reader YTHDF2 Promotes Bladder Cancer Progression by Suppressing RIG-I-Mediated Immune Response. Cancer Res. 2023;83:1834-1850 https://doi.org/10.1158/0008-5472.CAN-22-2485.
|
[108] |
Z. Yang, X. Wang, Y. Fu, et al. YTHDF2 in peritumoral hepatocytes mediates chemotherapy-induced antitumor immune responses through CX3CL1-mediated CD8(+) T cell recruitment. Mol Cancer. 2024;23:186 https://doi.org/10.1186/s12943-024-02097-6.
|
[109] |
J. Cai, Z. Chen, Y. Zhang, et al. CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m(6)A modification in hepatocellular carcinoma. Mol Ther Oncolytics. 2022;24:755-771 https://doi.org/10.1016/j.omto.2022.02.021.
|
[110] |
L. Yang, Y. Chen, N. Liu, et al. CircMET promotes tumor proliferation by enhancing CDKN2A mRNA decay and upregulating SMAD3. Mol Cancer. 2022;21:23 https://doi.org/10.1186/s12943-022-01497-w.
|
[111] |
L. Zhou, J. Jiang, Z. Huang, et al. Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/beta-catenin signaling to promote colorectal cancer progression by preventing m(6)A-mediated degradation of STEAP3 mRNA. Mol Cancer. 2022;21:168 https://doi.org/10.1186/s12943-022-01638-1.
|
[112] |
M. Wei, L. Lu, J. Ma, et al. LINC00707 impairs the Natural Killer cell antitumour activity in hepatocellular carcinoma through decreasing YTHDF2 stability. J Cell Mol Med. 2024;28:e18106 https://doi.org/10.1111/jcmm.18106.
|
[113] |
D. Luo, H. Tang, L. Tan, et al. lncRNA JPX Promotes Tumor Progression by Interacting with and Destabilizing YTHDF2 in Cutaneous Melanoma. Mol Cancer Res. 2024;22:524-537 https://doi.org/10.1158/1541-7786.MCR-23-0701.
|
[114] |
W. Filipowicz, S.N. Bhattacharyya, N. Sonenberg. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102-114 https://doi.org/10.1038/nrg2290.
|
[115] |
C. Du, C. Lv, Y. Feng, et al. Activation of the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate cancer progression. J Exp Clin Cancer Res. 2020;39:223 https://doi.org/10.1186/s13046-020-01735-3.
|
[116] |
H. Li, N. Zhang, X. Jiao, et al. Downregulation of microRNA-6125 promotes colorectal cancer growth through YTHDF2-dependent recognition of N6-methyladenosine-modified GSK3beta. Clin Transl Med. 2021;11:e602 https://doi.org/10.1002/ctm2.602.
|
[117] |
J. Guo, J. Zhang, Y. Xiang, et al. Long noncoding RNA SNHG3 interacts with microRNA-502-3p to mediate ITGA6 expression in liver hepatocellular carcinoma. Cancer Sci. 2024;115:2286-2300 https://doi.org/10.1111/cas.16190.
|
[118] |
Y. Hu, J. Tang, F. Xu, et al. A reciprocal feedback between N6-methyladenosine reader YTHDF3 and lncRNA DICER1-AS1 promotes glycolysis of pancreatic cancer through inhibiting maturation of miR-5586-5p. J Exp Clin Cancer Res. 2022;41:69 https://doi.org/10.1186/s13046-022-02285-6.
|
[119] |
Y. Luo, M. He, J. Yang, et al. A novel MYCN-YTHDF1 cascade contributes to retinoblastoma tumor growth by eliciting m(6)A -dependent activation of multiple oncogenes. Sci China Life Sci. 2023;66:2138-2151 https://doi.org/10.1007/s11427-022-2288-4.
|
[120] |
W. Ni, S. Yao, Y. Zhou, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer. 2019;18:143 https://doi.org/10.1186/s12943-019-1079-y.
|
[121] |
S. Ma, Y. Sun, G. Gao, et al. The ubiquitin ligase STUB1 suppresses tumorigenesis of renal cell carcinomas through regulating YTHDF1 stability. Carcinogenesis. 2024; https://doi.org/10.1093/carcin/bgae033.
|
[122] |
Y. Liao, Y. Liu, C. Yu, et al. HSP90beta Impedes STUB1-Induced Ubiquitination of YTHDF2 to Drive Sorafenib Resistance in Hepatocellular Carcinoma. Adv Sci (Weinh). 2023;10:e2302025 https://doi.org/10.1002/advs.202302025.
|
[123] |
Y. Chen, R. Wan, Z. Zou, et al. O-GlcNAcylation determines the translational regulation and phase separation of YTHDF proteins. Nat Cell Biol. 2023;25:1676-1690 https://doi.org/10.1038/s41556-023-01258-x.
|
[124] |
Y. Yang, Y. Yan, J. Yin, et al. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an N(6)-methyladenosine-dependent manner. Signal Transduct Target Ther. 2023;8:63 https://doi.org/10.1038/s41392-023-01316-8.
|
[125] |
P. Shrestha, G. Kim, H. Kang, et al. The PIN1-YTHDF1 axis promotes breast tumorigenesis via the m(6)A-dependent stabilization of AURKA mRNA. Arch Pharm Res. 2024;47:66-81 https://doi.org/10.1007/s12272-023-01480-z.
|
[126] |
R. Fang, X. Chen, S. Zhang, et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun. 2021;12:177 https://doi.org/10.1038/s41467-020-20379-7.
|
[127] |
G. Hou, X. Zhao, L. Li, et al. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Res. 2021;49:2859-2877 https://doi.org/10.1093/nar/gkab065.
|
[128] |
X. Yuan, Q. Wang, J. Zhao, et al. The m6A methyltransferase METTL3 modifies Kcnk6 promoting on inflammation associated carcinogenesis is essential for colon homeostasis and defense system through histone lactylation dependent YTHDF2 binding. Int Rev Immunol. 2024;1-16 https://doi.org/10.1080/08830185.2024.2401358.
|
[129] |
Y. Sun, D. Chen, S. Sun, et al. RBMS1 Coordinates with the m(6)A Reader YTHDF1 to Promote NSCLC Metastasis through Stimulating S100P Translation. Adv Sci (Weinh). 2024;11:e2307122 https://doi.org/10.1002/advs.202307122.
|
[130] |
C. Zhang, S. Wang, X. Lu, et al. POP1 Facilitates Proliferation in Triple-Negative Breast Cancer via m6A-Dependent Degradation of CDKN1A mRNA. Research (Wash D C). 2024;7:0472 https://doi.org/10.34133/research.0472.
|
[131] |
S. Liu, C. Lin, X. Lin, et al. NAT10 Phase Separation Regulates YTHDF1 Splicing to Promote Gastric Cancer Progression. Cancer Res. 2024;84:3207-3222 https://doi.org/10.1158/0008-5472.CAN-23-4062.
|
[132] |
R. Zhang, P. Chen, Y. Wang, et al. Targeting METTL3 enhances the chemosensitivity of non-small cell lung cancer cells by decreasing ABCC2 expression in an m(6)A-YTHDF1-dependent manner. Int J Biol Sci. 2024;20:4750-4766 https://doi.org/10.7150/ijbs.97425.
|
[133] |
Y. Zhao, H. Zhao, D. Zhang, et al. YTHDF3 Facilitates eIF2AK2 and eIF3A Recruitment on mRNAs to Regulate Translational Processes in Oxaliplatin-Resistant Colorectal Cancer. ACS Chem Biol. 2022;17:1778-1788 https://doi.org/10.1021/acschembio.2c00131.
|
[134] |
X. Ou, Y. Tan, J. Xie, et al. Methylation of GPRC5A promotes liver metastasis and docetaxel resistance through activating mTOR signaling pathway in triple negative breast cancer. Drug Resist Updat. 2024;73:101063 https://doi.org/10.1016/j.drup.2024.101063.
|
[135] |
F. Luo, M. Zhang, B. Sun, et al. LINC00115 promotes chemoresistant breast cancer stem-like cell stemness and metastasis through SETDB1/PLK3/HIF1alpha signaling. Mol Cancer. 2024;23:60 https://doi.org/10.1186/s12943-024-01975-3.
|
[136] |
Z. Lin, A.H. Wan, L. Sun, et al. N6-methyladenosine demethylase FTO enhances chemo-resistance in colorectal cancer through SIVA1-mediated apoptosis. Mol Ther. 2023;31:517-534 https://doi.org/10.1016/j.ymthe.2022.10.012.
|
[137] |
C. Lin, T. Li, Y. Wang, et al. METTL3 enhances pancreatic ductal adenocarcinoma progression and gemcitabine resistance through modifying DDX23 mRNA N6 adenosine methylation. Cell Death Dis. 2023;14:221 https://doi.org/10.1038/s41419-023-05715-1.
|
[138] |
K. Lin, E. Zhou, T. Shi, et al. m6A eraser FTO impairs gemcitabine resistance in pancreatic cancer through influencing NEDD4 mRNA stability by regulating the PTEN/PI3K/AKT pathway. J Exp Clin Cancer Res. 2023;42:217 https://doi.org/10.1186/s13046-023-02792-0.
|
[139] |
L. Wang, W. Si, X. Yu, et al. Epitranscriptional regulation of TGF-beta pseudoreceptor BAMBI by m6A/YTHDF2 drives extrinsic radioresistance. J Clin Invest. 2023;133: https://doi.org/10.1172/JCI172919.
|
[140] |
J. Yin, F. Ding, Z. Cheng, et al. METTL3-mediated m6A modification of LINC00839 maintains glioma stem cells and radiation resistance by activating Wnt/beta-catenin signaling. Cell Death Dis. 2023;14:417 https://doi.org/10.1038/s41419-023-05933-7.
|
[141] |
H. Du, N.Y. Zou, H.L. Zuo, et al. YTHDF3 mediates HNF1alpha regulation of cervical cancer radio-resistance by promoting RAD51D translation in an m6A-dependent manner. FEBS J. 2023;290:1920-1935 https://doi.org/10.1111/febs.16681.
|
[142] |
Z. Lin, Y. Niu, A. Wan, et al. RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J. 2020;39:e103181 https://doi.org/10.15252/embj.2019103181.
|
[143] |
H. Liu, H. Lyu, G. Jiang, et al. ALKBH5-Mediated m6A Demethylation of GLUT4 mRNA Promotes Glycolysis and Resistance to HER2-Targeted Therapy in Breast Cancer. Cancer Res. 2022;82:3974-3986 https://doi.org/10.1158/0008-5472.CAN-22-0800.
|
[144] |
A. Benavides-Serrato, J.T. Saunders, S. Kumar, et al. m(6)A-modification of cyclin D1 and c-myc IRESs in glioblastoma controls ITAF activity and resistance to mTOR inhibition. Cancer Lett. 2023;562:216178 https://doi.org/10.1016/j.canlet.2023.216178.
|
[145] |
S. Yang, J. Wei, Y.H. Cui, et al. m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 2019;10:2782 https://doi.org/10.1038/s41467-019-10669-0.
|
[146] |
M. Micaelli, A. Dalle Vedove, L. Cerofolini, et al. Small-Molecule Ebselen Binds to YTHDF Proteins Interfering with the Recognition of N (6)-Methyladenosine-Modified RNAs. ACS Pharmacol Transl Sci. 2022;5:872-891 https://doi.org/10.1021/acsptsci.2c00008.
|
[147] |
Z. Zou, J. Wei, Y. Chen, et al. FMRP phosphorylation modulates neuronal translation through YTHDF1. Mol Cell. 2023;83:4304-4317 e4308 https://doi.org/10.1016/j.molcel.2023.10.028.
|
[148] |
L. Wang, X. Dou, S. Chen, et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell. 2023;41:1294-1308 e1298 https://doi.org/10.1016/j.ccell.2023.04.019.
|
[149] |
X. Lin, L. Xu, M. Gu, et al. Gegen Qinlian Decoction reverses oxaliplatin resistance in colorectal cancer by inhibiting YTHDF1-regulated m6A modification of GLS1. Phytomedicine. 2024;133:155906 https://doi.org/10.1016/j.phymed.2024.155906.
|
[150] |
C. Wen, L. Wang, A. Piffko, et al. YTHDF1 loss in dendritic cells potentiates radiation-induced antitumor immunity via STING-dependent type I IFN production. J Clin Invest. 2024; https://doi.org/10.1172/JCI181612.
|