Turn off MathJax
Article Contents
Yingxian Cui, Yifan Chen, Youbo Zhang, Liqin Zhang. Advances in aptamer technology for target-based drug discovery[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101369
Citation: Yingxian Cui, Yifan Chen, Youbo Zhang, Liqin Zhang. Advances in aptamer technology for target-based drug discovery[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101369

Advances in aptamer technology for target-based drug discovery

doi: 10.1016/j.jpha.2025.101369
Funds:

This work is financially supported by the National Key Research &

Development Program of China (Grant No. 2022YFA1304500), the National Natural Science Foundation of China (Grant No. 22227805, 22374004), Excellent Young Scientists Fund Program (Overseas), Clinical Medicine Plus X - Young Scholars Project of Peking University, the Fundamental Research Funds for the Central Universities (No. PKU2024LCXQ026).

  • Received Date: Mar. 22, 2025
  • Accepted Date: Jun. 16, 2025
  • Rev Recd Date: Jun. 09, 2025
  • Available Online: Jun. 21, 2025
  • Aptamer therapeutics represent a class of target-based therapies that leverage their high specificity and affinity for diverse molecular targets. As single-stranded DNA or RNA oligonucleotides, aptamers offer advantages in therapeutic applications. A critical aspect of aptamer drug development is the selection process, which has seen significant advancements through various in vitro selection methods, including Systematic Evolution of Ligands by Exponential Enrichment and its emerging variations. Recent progress has also introduced functional screening strategies that directly identify pharmacologically active aptamers, accelerating drug discovery. The applications of aptamers in disease treatment are expanding across oncology, neurodegenerative disorders, infectious diseases and other diseases. Aptamers exhibit versatile mechanisms of action, including blocking interactions, recruiting protein machinery, and inhibiting target functions. By addressing key limitations and presenting future directions, this review provides a comprehensive perspective on the recent evolving landscape of aptamer technology and its transformative potential in modern medicine.
  • loading
  • [1]
    A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346 (1990) 818-822.
    [2]
    C. Ji, J. Wei, L. Zhang, et al., Aptamer-protein interactions: From regulation to biomolecular detection, Chem. Rev. 123 (2023) 12471-12506.
    [3]
    O. Alkhamis, Y. Xiao, Systematic study of in vitro selection stringency reveals how to enrich high-affinity aptamers, J. Am. Chem. Soc. 145 (2023) 194-206.
    [4]
    M. Famulok, J.S. Hartig, G. Mayer, Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy, Chem. Rev. 107 (2007) 3715-3743.
    [5]
    S.D. Jayasena, Aptamers: An emerging class of molecules that rival antibodies in diagnostics, Clin. Chem. 45 (1999) 1628-1650.
    [6]
    C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 249 (1990) 505-510.
    [7]
    R.R. Breaker, Natural and engineered nucleic acids as tools to explore biology, Nature 432 (2004) 838-845.
    [8]
    L. Wu, Y. Wang, X. Xu, et al., Aptamer-based detection of circulating targets for precision medicine, Chem. Rev. 121 (2021) 12035-12105.
    [9]
    W. Song, Y. Song, Q. Li, et al., Advances in aptamer-based nuclear imaging, Eur. J. Nucl. Med. Mol. Imaging 49 (2022) 2544-2559.
    [10]
    D.L. Robertson, G.F. Joyce, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature 344 (1990) 467-468.
    [11]
    L.C. Bock, L.C. Griffin, J.A. Latham, et al., Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature 355 (1992) 564-566.
    [12]
    S.S. Sekhon, S.H. Lee, K.A. Lee, et al., Defining the copper binding aptamotif and aptamer integrated recovery platform (AIRP), Nanoscale 9 (2017) 2883-2894.
    [13]
    H. Yu, Y. Luo, O. Alkhamis, et al., Isolation of natural DNA aptamers for challenging small-molecule targets, cannabinoids, Anal. Chem. 93 (2021) 3172-3180.
    [14]
    P. Bertrand, Aptamers targeting the PD-1/PD-L1 axis: A perspective, J. Med. Chem. 66 (2023) 10878-10888.
    [15]
    C. Zhu, Z. Feng, H. Qin, et al., Recent progress of SELEX methods for screening nucleic acid aptamers, Talanta 266 (2024), 124998.
    [16]
    B.A.R. Williams, L. Lin, S.M. Lindsay, et al., Evolution of a histone H4-K16 acetyl-specific DNA aptamer, J. Am. Chem. Soc. 131 (2009) 6330-6331.
    [17]
    Z. Xi, R. Huang, Z. Li, et al., Selection of HBsAg-specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection, ACS Appl. Mater. Interfaces 7 (2015) 11215-11223.
    [18]
    R. Wang, Y. Li, Hydrogel based QCM aptasensor for detection of avian influenza virus, Biosens. Bioelectron. 42 (2013) 148-155.
    [19]
    L. Wang, R. Wang, F. Chen, et al., QCM-based aptamer selection and detection of Salmonella typhimurium, Food Chem. 221 (2017) 776-782.
    [20]
    D.A. Daniels, H. Chen, B.J. Hicke, et al., A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment, Proc. Natl. Acad. Sci. USA 100 (2003) 15416-15421.
    [21]
    H. Gu, K. Furukawa, Z. Weinberg, et al., Small, highly active DNAs that hydrolyze DNA, J. Am. Chem. Soc. 135 (2013) 9121-9129.
    [22]
    W. Tan, M.J. Donovan, J. Jiang, Aptamers from cell-based selection for bioanalytical applications, Chem. Rev. 113 (2013) 2842-2862.
    [23]
    S. Li, H. Xu, H. Ding, et al., Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX, J. Pathol. 218 (2009) 327-336.
    [24]
    J. Mi, Y. Liu, Z.N. Rabbani, et al., In vivo selection of tumor-targeting RNA motifs, Nat. Chem. Biol. 6 (2010) 22-24.
    [25]
    S. Kraemer, J.D. Vaught, C. Bock, et al., From SOMAmer-based biomarker discovery to diagnostic and clinical applications: A SOMAmer-based, streamlined multiplex proteomic assay, PLoS One 6 (2011), e26332.
    [26]
    L. Gold, D. Ayers, J. Bertino, et al., Aptamer-based multiplexed proteomic technology for biomarker discovery, PLoS One 5 (2010), e15004.
    [27]
    K.I. Matsunaga, M. Kimoto, V.W. Lim, et al., High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification, Nucleic Acids Res. 49 (2021) 11407-11424.
    [28]
    M. Kimoto, R. Yamashige, K.I. Matsunaga, et al., Generation of high-affinity DNA aptamers using an expanded genetic alphabet, Nat. Biotechnol. 31 (2013) 453-457.
    [29]
    L. Zhang, Z. Yang, K. Sefah, et al., Evolution of functional six-nucleotide DNA, J. Am. Chem. Soc. 137 (2015) 6734-6737.
    [30]
    L. Zhang, Z. Yang, T. Le Trinh, et al., Aptamers against cells overexpressing glypican 3 from expanded genetic systems combined with cell engineering and laboratory evolution, Angew. Chem. Int. Ed. 55 (2016) 12372-12375.
    [31]
    F. Tolle, G.M. Brandle, D. Matzner, et al., A versatile approach towards nucleobase-modified aptamers, Angew. Chem. Int. Ed. 54 (2015) 10971-10974.
    [32]
    S.D. Mendonsa, M.T. Bowser, In vitro evolution of functional DNA using capillary electrophoresis, J. Am. Chem. Soc. 126 (2004) 20-21.
    [33]
    R. Nutiu, Y. Li, In vitro selection of structure-switching signaling aptamers, Angew. Chem. Int. Ed. 44 (2005) 1061-1065.
    [34]
    C. Lyu, I.M. Khan, Z. Wang, Capture-SELEX for aptamer selection: A short review, Talanta 229 (2021), 122274.
    [35]
    J. Wang, Q. Gong, N. Maheshwari, et al., Particle display: A quantitative screening method for generating high-affinity aptamers, Angew. Chem. Int. Ed. 53 (2014) 4796-4801.
    [36]
    J.A. Francisco, R. Campbell, B.L. Iverson, et al., Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface, Proc. Natl. Acad. Sci. USA 90 (1993) 10444-10448.
    [37]
    E.T. Boder, K.D. Wittrup, Yeast surface display for screening combinatorial polypeptide libraries, Nat. Biotechnol. 15 (1997) 553-557.
    [38]
    J. Wang, J. Yu, Q. Yang, et al., Multiparameter particle display (MPPD): A quantitative screening method for the discovery of highly specific aptamers, Angew. Chem. Int. Ed. 56 (2017) 744-747.
    [39]
    C.K.L. Gordon, D. Wu, A. Pusuluri, et al., Click-particle display for base-modified aptamer discovery, ACS Chem. Biol. 14 (2019) 2652-2662.
    [40]
    M. Djordjevic, SELEX experiments: New prospects, applications and data analysis in inferring regulatory pathways, Biomol. Eng. 24 (2007) 179-189.
    [41]
    J. Kang, M.S. Lee, D.G. Gorenstein, The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: Application to in vitro combinatorial selection of aptamers, J. Biochem. Biophys. Methods 64 (2005) 147-151.
    [42]
    Y. Ma, W. Li, R. Xing, et al., Epitope-imprinted magnetic nanoparticles as a general platform for efficient in vitro evolution of protein-binding aptamers, ACS Sens. 5 (2020) 2537-2544.
    [43]
    W Li, S Xu, Y Li, et al., High mannose-specific aptamers for broad-spectrum virus inhibition and cancer targeting, CCS Chem. 5 (2023) 497-509.
    [44]
    J. Ashley, A.L. Schaap-Johansen, M. Mohammadniaei, et al., Terminal deoxynucleotidyl transferase-mediated formation of protein binding polynucleotides, Nucleic Acids Res. 49 (2021) 1065-1074.
    [45]
    D. Zhang, Y. Liu, H. Huang, et al., Streamlining RNA aptamer selection via unique molecular identifiers and high-throughput sequencing, Anal. Chem. 96 (2024) 16686-16694.
    [46]
    X. Wu, Y. Liu, D. Zhang, et al., Efficient strategy to discover DNA aptamers against low abundance cell surface proteins in scarce samples, J. Am. Chem. Soc. 146 (2024) 26667-26675.
    [47]
    A. Lozoya-Colinas, Y. Yu, J.C. Chaput, Functionally enhanced XNA aptamers discovered by parallelized library screening, J. Am. Chem. Soc. 145 (2023) 25789-25796.
    [48]
    O. Alkhamis, J. Canoura, L. Wang, et al., Nuclease-assisted selection of slow-off rate aptamers, Sci. Adv. 10 (2024), eadl3426.
    [49]
    M. Zheng, J. Ye, H. Liu, et al., FAM tag size separation-based capture-systematic evolution of ligands by exponential enrichment for sterigmatocystin-binding aptamers with high specificity, Anal. Chem. 96 (2024) 710-720.
    [50]
    A.C. Pan, D.W. Borhani, R.O. Dror, et al., Molecular determinants of drug-receptor binding kinetics, Drug Discov. Today 18 (2013) 667-673.
    [51]
    R.A. Copeland, The drug-target residence time model: A 10-year retrospective, Nat. Rev. Drug Discov. 15 (2016) 87-95.
    [52]
    L. Wang, O. Alkhamis, J. Canoura, et al., Rapid nuclease-assisted selection of high-affinity small-molecule aptamers, J. Am. Chem. Soc. 146 (2024) 21296-21307.
    [53]
    S. Guo, J. Lin, L. Lin, et al., Selecting small molecule DNA aptamers with significant conformational changes for constructing transcriptional switches and biosensors, Sci. China Chem. 66 (2023) 1529-1536.
    [54]
    Y. Ao, A. Duan, B. Chen, et al., Integration of an expression platform in the SELEX cycle to select DNA aptamer binding to a disease biomarker, ACS Omega 7 (2022) 10804-10811.
    [55]
    Y. Mao, J. Gu, D. Chang, et al., Evolution of a highly functional circular DNA aptamer in serum, Nucleic Acids Res. 48 (2020) 10680-10690.
    [56]
    J.W. Choi, M. Seo, K. Kim, et al., Aptamer nanoconstructs crossing human blood-brain barrier discovered via microphysiological system-based SELEX technology, ACS Nano 17 (2023) 8153-8166.
    [57]
    Y. Liu, B. Hu, X. Pei, et al., A non-G-quadruplex DNA aptamer targeting NCL for diagnosis and therapy in bladder cancer, Adv. Healthc. Mater. 12 (2023), e2300791.
    [58]
    Y. Lan, Y. Zhou, M. Wu, et al., Microfluidic based single cell or droplet manipulation: Methods and applications, Talanta 265 (2023), 124776.
    [59]
    X. Xu, J. Wang, L. Wu, et al., Microfluidic single-cell omics analysis, Small 16 (2020), e1903905.
    [60]
    H. Dong, Q. Xie, D. Pang, et al., Precise selection of aptamers targeting PD-L1 positive small extracellular vesicles on magnetic chips, Chem. Commun. (Camb) 57 (2021) 3555-3558.
    [61]
    X. Lou, J. Qian, Y. Xiao, et al., Micromagnetic selection of aptamers in microfluidic channels, Proc. Natl. Acad. Sci. USA 106 (2009) 2989-2994.
    [62]
    S. Chung, N.G. Gurudatt, J. Jeon, et al., Fast aptamer generation method based on the electrodynamic microfluidic channel and evaluation of aptamer sensor performance, Anal. Chem. 93 (2021) 1416-1422.
    [63]
    C. Lin, Y.C. Tsai, K.F. Hsu, et al., Optimization of aptamer selection on an automated microfluidic system with cancer tissues, Lab Chip 21 (2021) 725-734.
    [64]
    K. Yang, M. Wang, M. Gao, et al., Dynamic selection of high-affinity aptamers using a magnetically activated continuous deflection microfluidic chip, Chem. Commun. (Camb) 60 (2024) 2772-2775.
    [65]
    D. Chang, Z. Wang, C.D. Flynn, et al., A high-dimensional microfluidic approach for selection of aptamers with programmable binding affinities, Nat. Chem. 15 (2023) 773-780.
    [66]
    A.M. Yoshikawa, L. Wan, L. Zheng, et al., A system for multiplexed selection of aptamers with exquisite specificity without counterselection, Proc. Natl. Acad. Sci. USA 119 (2022), e2119945119.
    [67]
    D. Wu, T. Feagin, P. Mage, et al., Flow-cell-based technology for massively parallel characterization of base-modified DNA aptamers, Anal. Chem. 95 (2023) 2645-2652.
    [68]
    L. Wan, A. Yoshikawa, M. Eisenstein, et al., High-throughput strategy for enhancing aptamer performance across different environmental conditions, ACS Sens. 8 (2023) 2519-2524.
    [69]
    B. Wang, X. Pan, I.T. Teng, et al., Functional selection of tau oligomerization-inhibiting aptamers, Angew. Chem. Int. Ed. 63 (2024), e202402007.
    [70]
    J. Li, P. Yao, K. Tang, et al., Functional aptamers in vitro evolution for intranuclear blockage of RNA-protein interaction, J. Am. Chem. Soc. 146 (2024) 24654-24662.
    [71]
    T. Wei, Q. Liu, J. Li, et al., Functional aptamers in vitro evolution for protein-protein interaction blockage, Anal. Chem. 97 (2025) 4341-4349.
    [72]
    H. Su, Y. Chen, X. Zhao, et al., Systematic evolution of functional oligonucleotides for targeted protein degradation, Chem 11 (2025), 102408.
    [73]
    H. Xuan, S. Bian, Q. Liu, et al., Functional aptamer evolution-enabled elucidation of a melanoma migration-related bioactive epitope, Acta Pharm. Sin. B, ■ (2025): ■-■.
    [74]
    R.E. Hanna, J.G. Doench, Design and analysis of CRISPR-cas experiments, Nat. Biotechnol. 38 (2020) 813-823.
    [75]
    J. Zhang, A. Zhu, M. Mei, et al., Repurposing CRISPR/cas to discover SARS-CoV-2 detecting and neutralizing aptamers, Adv. Sci. (Weinh) 10 (2023), e2300656.
    [76]
    Q. Su-Tobon, J. Fan, M. Goldstein, et al., CRISPR-hybrid: A CRISPR-mediated intracellular directed evolution platform for RNA aptamers, Nat. Commun. 16 (2025), 595.
    [77]
    D.R. Bell, J.K. Weber, W. Yin, et al., In silico design and validation of high-affinity RNA aptamers targeting epithelial cellular adhesion molecule dimers, Proc. Natl. Acad. Sci. USA 117 (2020) 8486-8493.
    [78]
    J. Li, Y. Liu, D. Liu, et al., In silico selection and validation of high-affinity ssDNA aptamers targeting paromomycin, Anal. Chem. 95 (2023) 10405-10413.
    [79]
    T. Li, X. Liu, H. Qian, et al., Blocker-SELEX: A structure-guided strategy for developing inhibitory aptamers disrupting undruggable transcription factor interactions, Nat. Commun. 15 (2024), 6751.
    [80]
    J. Song, Y. Zheng, M. Huang, et al., A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning, Anal. Chem. 92 (2020) 3307-3314.
    [81]
    N. Iwano, T. Adachi, K. Aoki, et al., Generative aptamer discovery using RaptGen, Nat. Comput. Sci. 2 (2022) 378-386.
    [82]
    W. Wu, W. Wang, L. Qi, et al., Screening of xanthine oxidase inhibitors by liquid crystal-based assay assisted with enzyme catalysis-induced aptamer release, Anal. Chem. 93 (2021) 6151-6157.
    [83]
    M. Takahashi, R. Amano, M. Ozawa, et al., Nucleic acid ligands act as a PAM and agonist depending on the intrinsic ligand binding state of P2RY2, Proc. Natl. Acad. Sci. USA 118 (2021), e2019497118.
    [84]
    A.R. Paul, M. Falsaperna, H. Lavender, et al., Selection of optimised ligands by fluorescence-activated bead sorting, Chem. Sci. 14 (2023) 9517-9525.
    [85]
    J. Liu, Q. Duan, Z. Shao, et al., Formaldehyde cross-linking-assisted phase separation for protein aptamer selection, Anal. Chem. 95 (2023) 6700-6708.
    [86]
    M. Manceau, C. Farre, F. Lagarde, et al., Investigation of the affinity of aptamers for bacteria by surface plasmon resonance imaging using nanosomes, ACS Appl. Mater. Interfaces 16 (2024) 29645-29656.
    [87]
    N.K. Singh, Y. Wang, C. Wen, et al., High-affinity one-step aptamer selection using a non-fouling porous hydrogel, Nat. Biotechnol. 42 (2024) 1224-1231.
    [88]
    M. Biyani, K. Yasuda, Y. Isogai, et al., Novel DNA aptamer for CYP24A1 inhibition with enhanced antiproliferative activity in cancer cells, ACS Appl. Mater. Interfaces 14 (2022) 18064-18078.
    [89]
    X. Teng, Y. Wang, L. You, et al., Screening a DNA aptamer specifically targeting integrin β3 and partially inhibiting tumor cell migration, Anal. Chem. 95 (2023) 12406-12418.
    [90]
    Y. Wei, S. Long, M. Zhao, et al., Regulation of cellular signaling with an aptamer inhibitor to impede cancer metastasis, J. Am. Chem. Soc. 146 (2024) 319-329.
    [91]
    C.L. Esposito, I. Autiero, A. Sandomenico, et al., Targeted systematic evolution of an RNA platform neutralizing DNMT1 function and controlling DNA methylation, Nat. Commun. 14 (2023), 99.
    [92]
    K. Chen, J. Cai, S. Wang, et al., Aptamer inhibits tumor growth by leveraging cellular proteasomal degradation system to degrade c-met in mice, Angew. Chem. Int. Ed. 62 (2023), e202208451.
    [93]
    X. Wen, Z. Huang, X. Yang, et al., Development of an aptamer capable of multidrug resistance reversal for tumor combination chemotherapy, Proc. Natl. Acad. Sci. USA 121 (2024), e2321116121.
    [94]
    B. Powell Gray, L. Kelly, D.P. Ahrens, et al., Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer, Proc. Natl. Acad. Sci. USA 115 (2018) 4761-4766.
    [95]
    Q. Han, Q.R. Xie, F. Li, et al., Targeted inhibition of SIRT6 via engineered exosomes impairs tumorigenesis and metastasis in prostate cancer, Theranostics 11 (2021) 6526-6541.
    [96]
    H. Zhang, C. Jin, L. Zhang, et al., CD71-specific aptamer conjugated with monomethyl auristatin E for the treatment of uveal melanoma, ACS Appl. Mater. Interfaces 14 (2022) 32-40.
    [97]
    X. Li, Z. Li, H. Yu, Selection of threose nucleic acid aptamers to block PD-1/PD-L1 interaction for cancer immunotherapy, Chem. Commun. (Camb) 56 (2020) 14653-14656.
    [98]
    Y. Yang, J. Xu, Y. Sun, et al., Aptamer-based logic computing reaction on living cells to enable non-antibody immune checkpoint blockade therapy, J. Am. Chem. Soc. 143 (2021) 8391-8401.
    [99]
    Y. Sun, L. Mo, X. Hu, et al., Bispecific aptamer-based recognition-then-conjugation strategy for PD1/PDL1 axis blockade and enhanced immunotherapy, ACS Nano 16 (2022) 21129-21138.
    [100]
    D. Wang, J. Liu, J. Duan, et al., Photocontrolled spatiotemporal delivery of DNA immunomodulators for enhancing membrane-targeted tumor photodynamic immunotherapy, ACS Appl. Mater. Interfaces 14 (2022) 44183-44198.
    [101]
    J. Wang, J. Sun, L. Liu, et al., Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy, Nat. Med. 25 (2019) 656-666.
    [102]
    Q. Wu, X. Wei, F. Chen, et al., Aptamer-assisted blockade of the immune suppressor sialic acid-binding immunoglobulin-like lectin-15 for cancer immunotherapy, Angew. Chem. Int. Ed. 62 (2023), e202312609.
    [103]
    D. Zhang, Y. Zheng, Z. Lin, et al., Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors, Angew. Chem. Int. Ed. 59 (2020) 12022-12028.
    [104]
    L. Chen, X. Ma, W. Liu, et al., Targeting pyroptosis through lipopolysaccharide-triggered noncanonical pathway for safe and efficient cancer immunotherapy, Nano Lett. 23 (2023) 8725-8733.
    [105]
    Y. Chen, P. Gao, W. Pan, et al., Polyvalent spherical aptamer engineered macrophages: X-ray-actuated phenotypic transformation for tumor immunotherapy, Chem. Sci. 12 (2021) 13817-13824.
    [106]
    J. Valero, L. Civit, D.M. Dupont, et al., A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry, Proc. Natl. Acad. Sci. USA 118 (2021), e2112942118.
    [107]
    M. Sun, S. Liu, X. Wei, et al., Aptamer blocking strategy inhibits SARS-CoV-2 virus infection, Angew. Chem. Int. Ed. 60 (2021) 10266-10272.
    [108]
    A.P. Silwal, R. Jahan, S.K.S. Thennakoon, et al., A universal DNA aptamer as an efficient inhibitor against spike-protein/hACE2 interactions, Chem. Commun. 58 (2022) 8049-8052.
    [109]
    M. Sun, S. Liu, T. Song, et al., Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape, J. Am. Chem. Soc. 143 (2021) 21541-21548.
    [110]
    A.P. Silwal, S.K.S. Thennakoon, S.P. Arya, et al., DNA aptamers inhibit SARS-CoV-2 spike-protein binding to hACE2 by an RBD- independent or dependent approach, Theranostics 12 (2022) 5522-5536.
    [111]
    A. Schmitz, A. Weber, M. Bayin, et al., A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism, Angew. Chem. Weinheim Bergstr. Ger. 133 (2021) 10367-10373.
    [112]
    J Chen, S Xu, Q Ye, et al., A topology-matching spike protein-capping tetrahedral DNA nanocrown for SARS-CoV-2 neutralization, CCS Chem. 5 (2023) 1372-1385.
    [113]
    X. Li, Y. Yang, H. Zhao, et al., Enhanced in vivo blood-brain barrier penetration by circular tau-transferrin receptor bifunctional aptamer for tauopathy therapy, J. Am. Chem. Soc. 142 (2020) 3862-3872.
    [114]
    S. Liu, S. Li, J. Lin, et al., Aptamer-induced-dimerization strategy attenuates AβO toxicity through modulating the trophic activity of PrPC signaling, J. Am. Chem. Soc. 144 (2022) 9264-9270.
    [115]
    X. Fang, M. Yuan, F. Zhao, et al., In situ continuous Dopa supply by responsive artificial enzyme for the treatment of Parkinson’s disease, Nat. Commun. 14 (2023), 2661.
    [116]
    R. Ueki, S. Uchida, N. Kanda, et al., A chemically unmodified agonistic DNA with growth factor functionality for in vivo therapeutic application, Sci. Adv. 6 (2020), eaay2801.
    [117]
    Y. Pu, J. Xiang, X. Zhang, et al., CD36 as a molecular target of functional DNA aptamer NAFLD01 selected against NAFLD cells, Anal. Chem. 93 (2021) 3951-3958.
    [118]
    H. Liang, Z. Yan, Y. Tong, et al., Circular bivalent aptamers enhance the activation of the regenerative signaling pathway for repairing liver injury in vivo, Chem. Commun. (Camb) 59 (2023) 1621-1624.
    [119]
    T. Kimura, M. Bosakova, Y. Nonaka, et al., An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice, Sci. Transl. Med. 13 (2021), eaba4226.
    [120]
    L. Wang, Y. Yu, S. Ni, et al., Therapeutic aptamer targeting sclerostin loop3 for promoting bone formation without increasing cardiovascular risk in osteogenesis imperfecta mice, Theranostics 12 (2022) 5645-5674.
    [121]
    Y. Miao, X. Liu, J. Luo, et al., Double-network DNA macroporous hydrogel enables aptamer-directed cell recruitment to accelerate bone healing, Adv. Sci. (Weinh) 11 (2024), e2303637.
    [122]
    J. Kim, H. Park, G. Saravanakumar, et al., Polymer/aptamer-integrated gold nanoconstruct suppresses the inflammatory process by scavenging ROS and capturing pro-inflammatory cytokine TNF-α, ACS Appl. Mater. Interfaces 13 (2021) 9390-9401.
    [123]
    Y. Zhao, J. Zhang, X. Cheng, et al., Targeting L-selectin lymphocytes to deliver immunosuppressive drug in lymph nodes for durable multiple sclerosis treatment, Adv. Sci. (Weinh) 10 (2023), e2300738.
    [124]
    C. Wen, Y. Zhang, L. Lai, et al., Photothermally enhanced cascaded nanozyme-functionalized black phosphorus nanosheets for targeted treatment of infected diabetic wounds, Adv. Healthc. Mater. 14 (2025), 2302955.
    [125]
    X. Chen, Y. Chang, M. Ye, et al., Rational design of a robust G-quadruplex aptamer as an inhibitor to alleviate Listeria monocytogenes infection, ACS Appl. Mater. Interfaces 16 (2024) 15946-15958.
    [126]
    E.E. Soule, H. Yu, L. Olson, et al., Generation of an anticoagulant aptamer that targets factor V/Va and disrupts the FVa-membrane interaction in normal and COVID-19 patient samples, Cell Chem. Biol. 29 (2022) 215-225.e5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (33) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return