Citation: | Yingxian Cui, Yifan Chen, Youbo Zhang, Liqin Zhang. Advances in aptamer technology for target-based drug discovery[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101369 |
[1] |
A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346 (1990) 818-822.
|
[2] |
C. Ji, J. Wei, L. Zhang, et al., Aptamer-protein interactions: From regulation to biomolecular detection, Chem. Rev. 123 (2023) 12471-12506.
|
[3] |
O. Alkhamis, Y. Xiao, Systematic study of in vitro selection stringency reveals how to enrich high-affinity aptamers, J. Am. Chem. Soc. 145 (2023) 194-206.
|
[4] |
M. Famulok, J.S. Hartig, G. Mayer, Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy, Chem. Rev. 107 (2007) 3715-3743.
|
[5] |
S.D. Jayasena, Aptamers: An emerging class of molecules that rival antibodies in diagnostics, Clin. Chem. 45 (1999) 1628-1650.
|
[6] |
C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 249 (1990) 505-510.
|
[7] |
R.R. Breaker, Natural and engineered nucleic acids as tools to explore biology, Nature 432 (2004) 838-845.
|
[8] |
L. Wu, Y. Wang, X. Xu, et al., Aptamer-based detection of circulating targets for precision medicine, Chem. Rev. 121 (2021) 12035-12105.
|
[9] |
W. Song, Y. Song, Q. Li, et al., Advances in aptamer-based nuclear imaging, Eur. J. Nucl. Med. Mol. Imaging 49 (2022) 2544-2559.
|
[10] |
D.L. Robertson, G.F. Joyce, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature 344 (1990) 467-468.
|
[11] |
L.C. Bock, L.C. Griffin, J.A. Latham, et al., Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature 355 (1992) 564-566.
|
[12] |
S.S. Sekhon, S.H. Lee, K.A. Lee, et al., Defining the copper binding aptamotif and aptamer integrated recovery platform (AIRP), Nanoscale 9 (2017) 2883-2894.
|
[13] |
H. Yu, Y. Luo, O. Alkhamis, et al., Isolation of natural DNA aptamers for challenging small-molecule targets, cannabinoids, Anal. Chem. 93 (2021) 3172-3180.
|
[14] |
P. Bertrand, Aptamers targeting the PD-1/PD-L1 axis: A perspective, J. Med. Chem. 66 (2023) 10878-10888.
|
[15] |
C. Zhu, Z. Feng, H. Qin, et al., Recent progress of SELEX methods for screening nucleic acid aptamers, Talanta 266 (2024), 124998.
|
[16] |
B.A.R. Williams, L. Lin, S.M. Lindsay, et al., Evolution of a histone H4-K16 acetyl-specific DNA aptamer, J. Am. Chem. Soc. 131 (2009) 6330-6331.
|
[17] |
Z. Xi, R. Huang, Z. Li, et al., Selection of HBsAg-specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection, ACS Appl. Mater. Interfaces 7 (2015) 11215-11223.
|
[18] |
R. Wang, Y. Li, Hydrogel based QCM aptasensor for detection of avian influenza virus, Biosens. Bioelectron. 42 (2013) 148-155.
|
[19] |
L. Wang, R. Wang, F. Chen, et al., QCM-based aptamer selection and detection of Salmonella typhimurium, Food Chem. 221 (2017) 776-782.
|
[20] |
D.A. Daniels, H. Chen, B.J. Hicke, et al., A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment, Proc. Natl. Acad. Sci. USA 100 (2003) 15416-15421.
|
[21] |
H. Gu, K. Furukawa, Z. Weinberg, et al., Small, highly active DNAs that hydrolyze DNA, J. Am. Chem. Soc. 135 (2013) 9121-9129.
|
[22] |
W. Tan, M.J. Donovan, J. Jiang, Aptamers from cell-based selection for bioanalytical applications, Chem. Rev. 113 (2013) 2842-2862.
|
[23] |
S. Li, H. Xu, H. Ding, et al., Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX, J. Pathol. 218 (2009) 327-336.
|
[24] |
J. Mi, Y. Liu, Z.N. Rabbani, et al., In vivo selection of tumor-targeting RNA motifs, Nat. Chem. Biol. 6 (2010) 22-24.
|
[25] |
S. Kraemer, J.D. Vaught, C. Bock, et al., From SOMAmer-based biomarker discovery to diagnostic and clinical applications: A SOMAmer-based, streamlined multiplex proteomic assay, PLoS One 6 (2011), e26332.
|
[26] |
L. Gold, D. Ayers, J. Bertino, et al., Aptamer-based multiplexed proteomic technology for biomarker discovery, PLoS One 5 (2010), e15004.
|
[27] |
K.I. Matsunaga, M. Kimoto, V.W. Lim, et al., High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification, Nucleic Acids Res. 49 (2021) 11407-11424.
|
[28] |
M. Kimoto, R. Yamashige, K.I. Matsunaga, et al., Generation of high-affinity DNA aptamers using an expanded genetic alphabet, Nat. Biotechnol. 31 (2013) 453-457.
|
[29] |
L. Zhang, Z. Yang, K. Sefah, et al., Evolution of functional six-nucleotide DNA, J. Am. Chem. Soc. 137 (2015) 6734-6737.
|
[30] |
L. Zhang, Z. Yang, T. Le Trinh, et al., Aptamers against cells overexpressing glypican 3 from expanded genetic systems combined with cell engineering and laboratory evolution, Angew. Chem. Int. Ed. 55 (2016) 12372-12375.
|
[31] |
F. Tolle, G.M. Brandle, D. Matzner, et al., A versatile approach towards nucleobase-modified aptamers, Angew. Chem. Int. Ed. 54 (2015) 10971-10974.
|
[32] |
S.D. Mendonsa, M.T. Bowser, In vitro evolution of functional DNA using capillary electrophoresis, J. Am. Chem. Soc. 126 (2004) 20-21.
|
[33] |
R. Nutiu, Y. Li, In vitro selection of structure-switching signaling aptamers, Angew. Chem. Int. Ed. 44 (2005) 1061-1065.
|
[34] |
C. Lyu, I.M. Khan, Z. Wang, Capture-SELEX for aptamer selection: A short review, Talanta 229 (2021), 122274.
|
[35] |
J. Wang, Q. Gong, N. Maheshwari, et al., Particle display: A quantitative screening method for generating high-affinity aptamers, Angew. Chem. Int. Ed. 53 (2014) 4796-4801.
|
[36] |
J.A. Francisco, R. Campbell, B.L. Iverson, et al., Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface, Proc. Natl. Acad. Sci. USA 90 (1993) 10444-10448.
|
[37] |
E.T. Boder, K.D. Wittrup, Yeast surface display for screening combinatorial polypeptide libraries, Nat. Biotechnol. 15 (1997) 553-557.
|
[38] |
J. Wang, J. Yu, Q. Yang, et al., Multiparameter particle display (MPPD): A quantitative screening method for the discovery of highly specific aptamers, Angew. Chem. Int. Ed. 56 (2017) 744-747.
|
[39] |
C.K.L. Gordon, D. Wu, A. Pusuluri, et al., Click-particle display for base-modified aptamer discovery, ACS Chem. Biol. 14 (2019) 2652-2662.
|
[40] |
M. Djordjevic, SELEX experiments: New prospects, applications and data analysis in inferring regulatory pathways, Biomol. Eng. 24 (2007) 179-189.
|
[41] |
J. Kang, M.S. Lee, D.G. Gorenstein, The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: Application to in vitro combinatorial selection of aptamers, J. Biochem. Biophys. Methods 64 (2005) 147-151.
|
[42] |
Y. Ma, W. Li, R. Xing, et al., Epitope-imprinted magnetic nanoparticles as a general platform for efficient in vitro evolution of protein-binding aptamers, ACS Sens. 5 (2020) 2537-2544.
|
[43] |
W Li, S Xu, Y Li, et al., High mannose-specific aptamers for broad-spectrum virus inhibition and cancer targeting, CCS Chem. 5 (2023) 497-509.
|
[44] |
J. Ashley, A.L. Schaap-Johansen, M. Mohammadniaei, et al., Terminal deoxynucleotidyl transferase-mediated formation of protein binding polynucleotides, Nucleic Acids Res. 49 (2021) 1065-1074.
|
[45] |
D. Zhang, Y. Liu, H. Huang, et al., Streamlining RNA aptamer selection via unique molecular identifiers and high-throughput sequencing, Anal. Chem. 96 (2024) 16686-16694.
|
[46] |
X. Wu, Y. Liu, D. Zhang, et al., Efficient strategy to discover DNA aptamers against low abundance cell surface proteins in scarce samples, J. Am. Chem. Soc. 146 (2024) 26667-26675.
|
[47] |
A. Lozoya-Colinas, Y. Yu, J.C. Chaput, Functionally enhanced XNA aptamers discovered by parallelized library screening, J. Am. Chem. Soc. 145 (2023) 25789-25796.
|
[48] |
O. Alkhamis, J. Canoura, L. Wang, et al., Nuclease-assisted selection of slow-off rate aptamers, Sci. Adv. 10 (2024), eadl3426.
|
[49] |
M. Zheng, J. Ye, H. Liu, et al., FAM tag size separation-based capture-systematic evolution of ligands by exponential enrichment for sterigmatocystin-binding aptamers with high specificity, Anal. Chem. 96 (2024) 710-720.
|
[50] |
A.C. Pan, D.W. Borhani, R.O. Dror, et al., Molecular determinants of drug-receptor binding kinetics, Drug Discov. Today 18 (2013) 667-673.
|
[51] |
R.A. Copeland, The drug-target residence time model: A 10-year retrospective, Nat. Rev. Drug Discov. 15 (2016) 87-95.
|
[52] |
L. Wang, O. Alkhamis, J. Canoura, et al., Rapid nuclease-assisted selection of high-affinity small-molecule aptamers, J. Am. Chem. Soc. 146 (2024) 21296-21307.
|
[53] |
S. Guo, J. Lin, L. Lin, et al., Selecting small molecule DNA aptamers with significant conformational changes for constructing transcriptional switches and biosensors, Sci. China Chem. 66 (2023) 1529-1536.
|
[54] |
Y. Ao, A. Duan, B. Chen, et al., Integration of an expression platform in the SELEX cycle to select DNA aptamer binding to a disease biomarker, ACS Omega 7 (2022) 10804-10811.
|
[55] |
Y. Mao, J. Gu, D. Chang, et al., Evolution of a highly functional circular DNA aptamer in serum, Nucleic Acids Res. 48 (2020) 10680-10690.
|
[56] |
J.W. Choi, M. Seo, K. Kim, et al., Aptamer nanoconstructs crossing human blood-brain barrier discovered via microphysiological system-based SELEX technology, ACS Nano 17 (2023) 8153-8166.
|
[57] |
Y. Liu, B. Hu, X. Pei, et al., A non-G-quadruplex DNA aptamer targeting NCL for diagnosis and therapy in bladder cancer, Adv. Healthc. Mater. 12 (2023), e2300791.
|
[58] |
Y. Lan, Y. Zhou, M. Wu, et al., Microfluidic based single cell or droplet manipulation: Methods and applications, Talanta 265 (2023), 124776.
|
[59] |
X. Xu, J. Wang, L. Wu, et al., Microfluidic single-cell omics analysis, Small 16 (2020), e1903905.
|
[60] |
H. Dong, Q. Xie, D. Pang, et al., Precise selection of aptamers targeting PD-L1 positive small extracellular vesicles on magnetic chips, Chem. Commun. (Camb) 57 (2021) 3555-3558.
|
[61] |
X. Lou, J. Qian, Y. Xiao, et al., Micromagnetic selection of aptamers in microfluidic channels, Proc. Natl. Acad. Sci. USA 106 (2009) 2989-2994.
|
[62] |
S. Chung, N.G. Gurudatt, J. Jeon, et al., Fast aptamer generation method based on the electrodynamic microfluidic channel and evaluation of aptamer sensor performance, Anal. Chem. 93 (2021) 1416-1422.
|
[63] |
C. Lin, Y.C. Tsai, K.F. Hsu, et al., Optimization of aptamer selection on an automated microfluidic system with cancer tissues, Lab Chip 21 (2021) 725-734.
|
[64] |
K. Yang, M. Wang, M. Gao, et al., Dynamic selection of high-affinity aptamers using a magnetically activated continuous deflection microfluidic chip, Chem. Commun. (Camb) 60 (2024) 2772-2775.
|
[65] |
D. Chang, Z. Wang, C.D. Flynn, et al., A high-dimensional microfluidic approach for selection of aptamers with programmable binding affinities, Nat. Chem. 15 (2023) 773-780.
|
[66] |
A.M. Yoshikawa, L. Wan, L. Zheng, et al., A system for multiplexed selection of aptamers with exquisite specificity without counterselection, Proc. Natl. Acad. Sci. USA 119 (2022), e2119945119.
|
[67] |
D. Wu, T. Feagin, P. Mage, et al., Flow-cell-based technology for massively parallel characterization of base-modified DNA aptamers, Anal. Chem. 95 (2023) 2645-2652.
|
[68] |
L. Wan, A. Yoshikawa, M. Eisenstein, et al., High-throughput strategy for enhancing aptamer performance across different environmental conditions, ACS Sens. 8 (2023) 2519-2524.
|
[69] |
B. Wang, X. Pan, I.T. Teng, et al., Functional selection of tau oligomerization-inhibiting aptamers, Angew. Chem. Int. Ed. 63 (2024), e202402007.
|
[70] |
J. Li, P. Yao, K. Tang, et al., Functional aptamers in vitro evolution for intranuclear blockage of RNA-protein interaction, J. Am. Chem. Soc. 146 (2024) 24654-24662.
|
[71] |
T. Wei, Q. Liu, J. Li, et al., Functional aptamers in vitro evolution for protein-protein interaction blockage, Anal. Chem. 97 (2025) 4341-4349.
|
[72] |
H. Su, Y. Chen, X. Zhao, et al., Systematic evolution of functional oligonucleotides for targeted protein degradation, Chem 11 (2025), 102408.
|
[73] |
H. Xuan, S. Bian, Q. Liu, et al., Functional aptamer evolution-enabled elucidation of a melanoma migration-related bioactive epitope, Acta Pharm. Sin. B, ■ (2025): ■-■.
|
[74] |
R.E. Hanna, J.G. Doench, Design and analysis of CRISPR-cas experiments, Nat. Biotechnol. 38 (2020) 813-823.
|
[75] |
J. Zhang, A. Zhu, M. Mei, et al., Repurposing CRISPR/cas to discover SARS-CoV-2 detecting and neutralizing aptamers, Adv. Sci. (Weinh) 10 (2023), e2300656.
|
[76] |
Q. Su-Tobon, J. Fan, M. Goldstein, et al., CRISPR-hybrid: A CRISPR-mediated intracellular directed evolution platform for RNA aptamers, Nat. Commun. 16 (2025), 595.
|
[77] |
D.R. Bell, J.K. Weber, W. Yin, et al., In silico design and validation of high-affinity RNA aptamers targeting epithelial cellular adhesion molecule dimers, Proc. Natl. Acad. Sci. USA 117 (2020) 8486-8493.
|
[78] |
J. Li, Y. Liu, D. Liu, et al., In silico selection and validation of high-affinity ssDNA aptamers targeting paromomycin, Anal. Chem. 95 (2023) 10405-10413.
|
[79] |
T. Li, X. Liu, H. Qian, et al., Blocker-SELEX: A structure-guided strategy for developing inhibitory aptamers disrupting undruggable transcription factor interactions, Nat. Commun. 15 (2024), 6751.
|
[80] |
J. Song, Y. Zheng, M. Huang, et al., A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning, Anal. Chem. 92 (2020) 3307-3314.
|
[81] |
N. Iwano, T. Adachi, K. Aoki, et al., Generative aptamer discovery using RaptGen, Nat. Comput. Sci. 2 (2022) 378-386.
|
[82] |
W. Wu, W. Wang, L. Qi, et al., Screening of xanthine oxidase inhibitors by liquid crystal-based assay assisted with enzyme catalysis-induced aptamer release, Anal. Chem. 93 (2021) 6151-6157.
|
[83] |
M. Takahashi, R. Amano, M. Ozawa, et al., Nucleic acid ligands act as a PAM and agonist depending on the intrinsic ligand binding state of P2RY2, Proc. Natl. Acad. Sci. USA 118 (2021), e2019497118.
|
[84] |
A.R. Paul, M. Falsaperna, H. Lavender, et al., Selection of optimised ligands by fluorescence-activated bead sorting, Chem. Sci. 14 (2023) 9517-9525.
|
[85] |
J. Liu, Q. Duan, Z. Shao, et al., Formaldehyde cross-linking-assisted phase separation for protein aptamer selection, Anal. Chem. 95 (2023) 6700-6708.
|
[86] |
M. Manceau, C. Farre, F. Lagarde, et al., Investigation of the affinity of aptamers for bacteria by surface plasmon resonance imaging using nanosomes, ACS Appl. Mater. Interfaces 16 (2024) 29645-29656.
|
[87] |
N.K. Singh, Y. Wang, C. Wen, et al., High-affinity one-step aptamer selection using a non-fouling porous hydrogel, Nat. Biotechnol. 42 (2024) 1224-1231.
|
[88] |
M. Biyani, K. Yasuda, Y. Isogai, et al., Novel DNA aptamer for CYP24A1 inhibition with enhanced antiproliferative activity in cancer cells, ACS Appl. Mater. Interfaces 14 (2022) 18064-18078.
|
[89] |
X. Teng, Y. Wang, L. You, et al., Screening a DNA aptamer specifically targeting integrin β3 and partially inhibiting tumor cell migration, Anal. Chem. 95 (2023) 12406-12418.
|
[90] |
Y. Wei, S. Long, M. Zhao, et al., Regulation of cellular signaling with an aptamer inhibitor to impede cancer metastasis, J. Am. Chem. Soc. 146 (2024) 319-329.
|
[91] |
C.L. Esposito, I. Autiero, A. Sandomenico, et al., Targeted systematic evolution of an RNA platform neutralizing DNMT1 function and controlling DNA methylation, Nat. Commun. 14 (2023), 99.
|
[92] |
K. Chen, J. Cai, S. Wang, et al., Aptamer inhibits tumor growth by leveraging cellular proteasomal degradation system to degrade c-met in mice, Angew. Chem. Int. Ed. 62 (2023), e202208451.
|
[93] |
X. Wen, Z. Huang, X. Yang, et al., Development of an aptamer capable of multidrug resistance reversal for tumor combination chemotherapy, Proc. Natl. Acad. Sci. USA 121 (2024), e2321116121.
|
[94] |
B. Powell Gray, L. Kelly, D.P. Ahrens, et al., Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer, Proc. Natl. Acad. Sci. USA 115 (2018) 4761-4766.
|
[95] |
Q. Han, Q.R. Xie, F. Li, et al., Targeted inhibition of SIRT6 via engineered exosomes impairs tumorigenesis and metastasis in prostate cancer, Theranostics 11 (2021) 6526-6541.
|
[96] |
H. Zhang, C. Jin, L. Zhang, et al., CD71-specific aptamer conjugated with monomethyl auristatin E for the treatment of uveal melanoma, ACS Appl. Mater. Interfaces 14 (2022) 32-40.
|
[97] |
X. Li, Z. Li, H. Yu, Selection of threose nucleic acid aptamers to block PD-1/PD-L1 interaction for cancer immunotherapy, Chem. Commun. (Camb) 56 (2020) 14653-14656.
|
[98] |
Y. Yang, J. Xu, Y. Sun, et al., Aptamer-based logic computing reaction on living cells to enable non-antibody immune checkpoint blockade therapy, J. Am. Chem. Soc. 143 (2021) 8391-8401.
|
[99] |
Y. Sun, L. Mo, X. Hu, et al., Bispecific aptamer-based recognition-then-conjugation strategy for PD1/PDL1 axis blockade and enhanced immunotherapy, ACS Nano 16 (2022) 21129-21138.
|
[100] |
D. Wang, J. Liu, J. Duan, et al., Photocontrolled spatiotemporal delivery of DNA immunomodulators for enhancing membrane-targeted tumor photodynamic immunotherapy, ACS Appl. Mater. Interfaces 14 (2022) 44183-44198.
|
[101] |
J. Wang, J. Sun, L. Liu, et al., Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy, Nat. Med. 25 (2019) 656-666.
|
[102] |
Q. Wu, X. Wei, F. Chen, et al., Aptamer-assisted blockade of the immune suppressor sialic acid-binding immunoglobulin-like lectin-15 for cancer immunotherapy, Angew. Chem. Int. Ed. 62 (2023), e202312609.
|
[103] |
D. Zhang, Y. Zheng, Z. Lin, et al., Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors, Angew. Chem. Int. Ed. 59 (2020) 12022-12028.
|
[104] |
L. Chen, X. Ma, W. Liu, et al., Targeting pyroptosis through lipopolysaccharide-triggered noncanonical pathway for safe and efficient cancer immunotherapy, Nano Lett. 23 (2023) 8725-8733.
|
[105] |
Y. Chen, P. Gao, W. Pan, et al., Polyvalent spherical aptamer engineered macrophages: X-ray-actuated phenotypic transformation for tumor immunotherapy, Chem. Sci. 12 (2021) 13817-13824.
|
[106] |
J. Valero, L. Civit, D.M. Dupont, et al., A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry, Proc. Natl. Acad. Sci. USA 118 (2021), e2112942118.
|
[107] |
M. Sun, S. Liu, X. Wei, et al., Aptamer blocking strategy inhibits SARS-CoV-2 virus infection, Angew. Chem. Int. Ed. 60 (2021) 10266-10272.
|
[108] |
A.P. Silwal, R. Jahan, S.K.S. Thennakoon, et al., A universal DNA aptamer as an efficient inhibitor against spike-protein/hACE2 interactions, Chem. Commun. 58 (2022) 8049-8052.
|
[109] |
M. Sun, S. Liu, T. Song, et al., Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape, J. Am. Chem. Soc. 143 (2021) 21541-21548.
|
[110] |
A.P. Silwal, S.K.S. Thennakoon, S.P. Arya, et al., DNA aptamers inhibit SARS-CoV-2 spike-protein binding to hACE2 by an RBD- independent or dependent approach, Theranostics 12 (2022) 5522-5536.
|
[111] |
A. Schmitz, A. Weber, M. Bayin, et al., A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism, Angew. Chem. Weinheim Bergstr. Ger. 133 (2021) 10367-10373.
|
[112] |
J Chen, S Xu, Q Ye, et al., A topology-matching spike protein-capping tetrahedral DNA nanocrown for SARS-CoV-2 neutralization, CCS Chem. 5 (2023) 1372-1385.
|
[113] |
X. Li, Y. Yang, H. Zhao, et al., Enhanced in vivo blood-brain barrier penetration by circular tau-transferrin receptor bifunctional aptamer for tauopathy therapy, J. Am. Chem. Soc. 142 (2020) 3862-3872.
|
[114] |
S. Liu, S. Li, J. Lin, et al., Aptamer-induced-dimerization strategy attenuates AβO toxicity through modulating the trophic activity of PrPC signaling, J. Am. Chem. Soc. 144 (2022) 9264-9270.
|
[115] |
X. Fang, M. Yuan, F. Zhao, et al., In situ continuous Dopa supply by responsive artificial enzyme for the treatment of Parkinson’s disease, Nat. Commun. 14 (2023), 2661.
|
[116] |
R. Ueki, S. Uchida, N. Kanda, et al., A chemically unmodified agonistic DNA with growth factor functionality for in vivo therapeutic application, Sci. Adv. 6 (2020), eaay2801.
|
[117] |
Y. Pu, J. Xiang, X. Zhang, et al., CD36 as a molecular target of functional DNA aptamer NAFLD01 selected against NAFLD cells, Anal. Chem. 93 (2021) 3951-3958.
|
[118] |
H. Liang, Z. Yan, Y. Tong, et al., Circular bivalent aptamers enhance the activation of the regenerative signaling pathway for repairing liver injury in vivo, Chem. Commun. (Camb) 59 (2023) 1621-1624.
|
[119] |
T. Kimura, M. Bosakova, Y. Nonaka, et al., An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice, Sci. Transl. Med. 13 (2021), eaba4226.
|
[120] |
L. Wang, Y. Yu, S. Ni, et al., Therapeutic aptamer targeting sclerostin loop3 for promoting bone formation without increasing cardiovascular risk in osteogenesis imperfecta mice, Theranostics 12 (2022) 5645-5674.
|
[121] |
Y. Miao, X. Liu, J. Luo, et al., Double-network DNA macroporous hydrogel enables aptamer-directed cell recruitment to accelerate bone healing, Adv. Sci. (Weinh) 11 (2024), e2303637.
|
[122] |
J. Kim, H. Park, G. Saravanakumar, et al., Polymer/aptamer-integrated gold nanoconstruct suppresses the inflammatory process by scavenging ROS and capturing pro-inflammatory cytokine TNF-α, ACS Appl. Mater. Interfaces 13 (2021) 9390-9401.
|
[123] |
Y. Zhao, J. Zhang, X. Cheng, et al., Targeting L-selectin lymphocytes to deliver immunosuppressive drug in lymph nodes for durable multiple sclerosis treatment, Adv. Sci. (Weinh) 10 (2023), e2300738.
|
[124] |
C. Wen, Y. Zhang, L. Lai, et al., Photothermally enhanced cascaded nanozyme-functionalized black phosphorus nanosheets for targeted treatment of infected diabetic wounds, Adv. Healthc. Mater. 14 (2025), 2302955.
|
[125] |
X. Chen, Y. Chang, M. Ye, et al., Rational design of a robust G-quadruplex aptamer as an inhibitor to alleviate Listeria monocytogenes infection, ACS Appl. Mater. Interfaces 16 (2024) 15946-15958.
|
[126] |
E.E. Soule, H. Yu, L. Olson, et al., Generation of an anticoagulant aptamer that targets factor V/Va and disrupts the FVa-membrane interaction in normal and COVID-19 patient samples, Cell Chem. Biol. 29 (2022) 215-225.e5.
|