Citation: | Ding Luo, Zhou Sha, Junli Mao, Jialing Liu, Yue Zhou, Haibo Wu, Weiwei Xue. Repurposing drugs for the human dopamine transporter through WHALES descriptors-based virtual screening and bioactivity evaluation[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101368 |
[1] |
A.S. Kristensen, J. Andersen, T.N. Joergensen, et al., SLC6 neurotransmitter transporters: Structure, function, and regulation, Pharmacol. Rev. 63 (2011) 585-640.
|
[2] |
J.E. Kilty, D. Lorang, S.G. Amara, Cloning and expression of a cocaine-sensitive rat dopamine transporter, Science 254 (1991) 578-579.
|
[3] |
A. Penmatsa, K.H. Wang, E. Gouaux, X-ray structure of dopamine transporter elucidates antidepressant mechanism, Nature 503 (2013) 85-90.
|
[4] |
D. Luo, Y. Zhang, Y. Li, et al., Structural models of human norepinephrine transporter ensemble reveal the allosteric sites and ligand-binding mechanism, J. Phys. Chem. B 128 (2024) 8651-8661.
|
[5] |
K.H. Wang, A. Penmatsa, E. Gouaux, Neurotransmitter and psychostimulant recognition by the dopamine transporter, Nature 521 (2015) 322-327.
|
[6] |
O. Jardetzky, Simple allosteric model for membrane pumps, Nature 211 (1966) 969-970.
|
[7] |
S. Deng, H. Zhang, R. Gou, et al., Structure-based discovery of a novel allosteric inhibitor against human dopamine transporter, J. Chem. Inf. Model. 63 (2023) 4458-4467.
|
[8] |
Y. Li, X. Wang, Y. Meng, et al., Dopamine reuptake and inhibitory mechanisms in human dopamine transporter, Nature 632 (2024) 686-694.
|
[9] |
D.K. Srivastava, V. Navratna, D.K. Tosh, et al., Structure of the human dopamine transporter and mechanisms of inhibition, Nature 632 (2024) 672-677.
|
[10] |
W. Xue, T. Fu, G. Zheng, et al., Recent advances and challenges of the drugs acting on monoamine transporters, Curr. Med. Chem. 27 (2020) 3830-3876.
|
[11] |
G. Tu, T. Fu, G. Zheng, et al., Computational chemistry in structure-based solute carrier transporter drug design: Recent advances and future perspectives, J. Chem. Inf. Model. 64 (2024) 1433-1455.
|
[12] |
J. Yin, Z. Chen, N. You, et al., VARIDT 3.0: The phenotypic and regulatory variability of drug transporter, Nucleic Acids Res. 52 (2024) D1490-D1502.
|
[13] |
G. Tu, B. Xu, D. Luo, et al., Multi-state model-based identification of cryptic allosteric sites on human serotonin transporter, ACS Chem. Neurosci. 14 (2023) 1686-1694.
|
[14] |
W. Xue, T. Fu, S. Deng, et al., Molecular mechanism for the allosteric inhibition of the human serotonin transporter by antidepressant escitalopram, ACS Chem. Neurosci. 13 (2022) 340-351.
|
[15] |
K.C. Schmitt, R.B. Rothman, M.E.A. Reith, Nonclassical pharmacology of the dopamine transporter: Atypical inhibitors, allosteric modulators, and partial substrates, J. Pharmacol. Exp. Ther. 346 (2013) 2-10.
|
[16] |
M.E. Reith, J.L. Berfield, L.C. Wang, et al., The uptake inhibitors cocaine and benztropine differentially alter the conformation of the human dopamine transporter, J. Biol. Chem. 276 (2001) 29012-29018.
|
[17] |
C.J. Loland, R.I. Desai, M.F. Zou, et al., Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors, Mol. Pharmacol. 73 (2008) 813-823.
|
[18] |
K.C. Schmitt, M.E.A. Reith, The atypical stimulant and nootropic modafinil interacts with the dopamine transporter in a different manner than classical cocaine-like inhibitors, PLoS One 6 (2011), e25790.
|
[19] |
J.D. Urban, W.P. Clarke, M. von Zastrow, et al., Functional selectivity and classical concepts of quantitative pharmacology, J. Pharmacol. Exp. Ther. 320 (2007) 1-13.
|
[20] |
A.J. Avelar, J. Cao, A.H. Newman, et al., Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons, Neuropharmacology 123 (2017) 410-419.
|
[21] |
J. Kniazeff, L. Shi, C.J. Loland, et al., An intracellular interaction network regulates conformational transitions in the dopamine transporter, J. Biol. Chem. 283 (2008) 17691-17701.
|
[22] |
C.J. Loland, M. Mereu, O.M. Okunola, et al., R-modafinil (armodafinil): A unique dopamine uptake inhibitor and potential medication for psychostimulant abuse, Biol. Psychiatry 72 (2012) 405-413.
|
[23] |
H. Bisgaard, M.A.B. Larsen, S. Mazier, et al., The binding sites for benztropines and dopamine in the dopamine transporter overlap, Neuropharmacology 60 (2011) 182-190.
|
[24] |
M.T. Jacobs, Y. Zhang, S.D. Campbell, et al., Ibogaine, a noncompetitive inhibitor of serotonin transport, acts by stabilizing the cytoplasm-facing state of the transporter, J. Biol. Chem. 282 (2007) 29441-29447.
|
[25] |
T. Chen, G. Xu, R. Mou, et al., Global translational induction during NLR-mediated immunity in plants is dynamically regulated by CDC123, an ATP-sensitive protein, Cell Host Microbe 31 (2023) 334-342.e5.
|
[26] |
H. Zhang, Y. Wang, Z. Pan, et al., ncRNAInter: A novel strategy based on graph neural network to discover interactions between lncRNA and miRNA, Brief. Bioinform. 23 (2022), bbac411.
|
[27] |
N. Pillai, A. Dasgupta, S. Sudsakorn, et al., Machine Learning guided early drug discovery of small molecules, Drug Discov. Today 27 (2022) 2209-2215.
|
[28] |
D. Reker, T. Rodrigues, P. Schneider, et al., Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus, Proc. Natl. Acad. Sci. USA 111 (2014) 4067-4072.
|
[29] |
R. Gou, J. Yang, M. Guo, et al., CNSMolGen: A bidirectional recurrent neural network-based generative model for de novo central nervous system drug design, J. Chem. Inf. Model. 64 (2024) 4059-4070.
|
[30] |
L. Xue, J. Bajorath, Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening, Comb. Chem. High Throughput Screen. 3 (2000) 363-372.
|
[31] |
A. Pozzan, Molecular descriptors and methods for ligand based virtual high throughput screening in drug discovery, Curr. Pharm. Des. 12 (2006) 2099-2110.
|
[32] |
A.M. Helguera, R.D. Combes, M.P. Gonzalez, et al., Applications of 2D descriptors in drug design: A DRAGON tale, Curr. Top. Med. Chem. 8 (2008) 1628-1655.
|
[33] |
D. Rogers, M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model. 50 (2010) 742-754.
|
[34] |
Y. Li, F. Li, Z. Duan, et al., SYNBIP 2.0: Epitopes mapping, sequence expansion and scaffolds discovery for synthetic binding protein innovation, Nucleic Acids Res. 53 (2025) D595-D603.
|
[35] |
J. Yang, B. Fu, R. Gou, et al., Molecular mechanism-driven discovery of novel small molecule inhibitors against drug-resistant SARS-CoV-2 mpro variants, J. Chem. Inf. Model. 64 (2024) 7998-8009.
|
[36] |
F. Grisoni, D. Merk, V. Consonni, et al., Scaffold hopping from natural products to synthetic mimetics by holistic molecular similarity, Commun. Chem. 1 (2018), 44.
|
[37] |
D. Merk, F. Grisoni, L. Friedrich, et al., Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators, Commun. Chem. 1 (2018), 68.
|
[38] |
F. Grisoni, D. Reker, P. Schneider, et al., Matrix-based molecular descriptors for prospective virtual compound screening, Mol. Inform. 36 (2017). 1-2.
|
[39] |
X. Wang, Y. Zhang, Z. Li, et al., PROSCA: An online platform for humanized scaffold mining facilitating rational protein engineering, Nucleic Acids Res. 52 (2024) W272-W279.
|
[40] |
L. Tang, L. Bai, W. Wang, et al., Crystal structure of the carnitine transporter and insights into the antiport mechanism, Nat. Struct. Mol. Biol. 17 (2010) 492-496.
|
[41] |
T.A. Kopajtic, Y. Liu, C.K. Surratt, et al., Dopamine transporter-dependent and-independent striatal binding of the benztropine analog JHW 007, a cocaine antagonist with low abuse liability, J. Pharmacol. Exp. Ther. 335 (2010) 703-714.
|
[42] |
L. Fu, S. Shi, J. Yi, et al., ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support, Nucleic Acids Res. 52 (2024) W422-W431.
|
[43] |
Y. Zhou, M. Song, D. Xie, et al., Structural dynamics-driven discovery of anticancer and antimetastatic effects of diltiazem and glibenclamide targeting urokinase receptor, J. Med. Chem. 66 (2023) 5415-5426.
|
[44] |
P. Willett, Similarity-based virtual screening using 2D fingerprints, Drug Discov. Today 11 (2006) 1046-1053.
|
[45] |
S.M. Arif, J.D. Holliday, P. Willett, Analysis and use of fragment-occurrence data in similarity-based virtual screening, J. Comput. Aided Mol. Des. 23 (2009) 655-668.
|
[46] |
Y.C. Martin, J.L. Kofron, L.M. Traphagen, Do structurally similar molecules have similar biological activity J. Med. Chem. 45 (2002) 4350-4358.
|
[47] |
T.A. Halgren, MMFF VI. MMFF94s option for energy minimization studies, J. Comput. Chem. 20 (1999) 720-729.
|
[48] |
T.A. Halgren, MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries, J. Comput. Chem. 20 (1999) 730-748.
|
[49] |
J. Gasteiger, M. Marsili, Iterative partial equalization of orbital electronegativity: A rapid access to atomic charges, Tetrahedron 36 (1980) 3219-3228.
|
[50] |
G. Xiong, Z. Wu, J. Yi, et al., ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res. 49 (2021) W5-W14.
|
[51] |
E. Heid, K.P. Greenman, Y. Chung, et al., Chemprop: A machine learning package for chemical property prediction, J. Chem. Inf. Model. 64 (2024) 9-17.
|
[52] |
H. Cai, H. Zhang, D. Zhao, et al., FP-GNN: A versatile deep learning architecture for enhanced molecular property prediction, Brief. Bioinform. 23 (2022), bbac408.
|
[53] |
S. Kim, J Chen, T Cheng, et al., PubChem 2023 update, Nucleic Acids Res. 51 (2023) D1373-D1380.
|
[54] |
I.J. Chen, N. Foloppe, Drug-like bioactive structures and conformational coverage with the LigPrep/ConfGen suite: Comparison to programs MOE and catalyst, J. Chem. Inf. Model. 50 (2010) 822-839.
|
[55] |
L. Pinzi, G. Rastelli, Molecular docking: Shifting paradigms in drug discovery, Int. J. Mol. Sci. 20 (2019), 4331.
|
[56] |
J Wang, P.R. Arantes, A. Bhattarai, et al., Gaussian accelerated molecular dynamics: Principles and applications, Wires Comput. Mol. Sci. 11 (2021), e1521.
|
[57] |
C. Lu, C. Wu, D. Ghoreishi, et al., OPLS4: Improving force field accuracy on challenging regimes of chemical space, J. Chem. Theory Comput. 17 (2021) 4291-4300.
|
[58] |
R.C. Johnston, K. Yao, Z. Kaplan, et al., Epik: P Ka and protonation state prediction through machine learning, J. Chem. Theory Comput. 19 (2023) 2380-2388.
|
[59] |
M.P. Jacobson, D.L. Pincus, C.S. Rapp, et al., A hierarchical approach to all-atom protein loop prediction, Proteins 55 (2004) 351-367.
|
[60] |
R.A. Friesner, R.B. Murphy, M.P. Repasky, et al., Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, J. Med. Chem. 49 (2006) 6177-6196.
|
[61] |
J.A. Harris, R. Liu, V. Martins de Oliveira, et al., GPU-accelerated all-atom particle-mesh Ewald continuous constant pH molecular dynamics in amber, J. Chem. Theory Comput. 18 (2022) 7510-7527.
|
[62] |
M. Springborg, B. Kirtman, Efficient vector potential method for calculating electronic and nuclear response of infinite periodic systems to finite electric fields, J. Chem. Phys. 126 (2007), 104107.
|
[63] |
C. Bouysset, S. Fiorucci, ProLIF: A library to encode molecular interactions as fingerprints, J. Cheminform. 13 (2021), 72.
|
[64] |
S.K. Vosburg, C.L. Hart, M. Haney, et al., Modafinil does not serve as a reinforcer in cocaine abusers, Drug Alcohol Depend. 106 (2010) 233-236.
|
[65] |
A. Casati, R. Santorsola, E. Cerchierini, et al., Ropivacaine, Minerva Anestesiol. 67 (2001) 15-19.
|
[66] |
V. Tagariello, A. Caporuscio, O. De Tommaso, Mepivacaine: Update on an evergreen local anaesthetic, Minerva Anestesiol. 67 (2001) 5-8.
|
[67] |
W.G. Brockmann, Mepivacaine: A closer look at its properties and current utility, Gen. Dent. 62 (2014) 70-75;quiz76.
|
[68] |
E. Kalso, P.H. Rosenberg, Bupivacaine and intravenous regional anaesthesia: A matter of controversy, Ann. Chir. Gynaecol. 73 (1984) 190-196.
|
[69] |
B. Otremba, H.C. Dinges, A.K. Schubert, et al., Liposomal bupivacaine-No breakthrough in postoperative pain management, Anaesthesiologie 71 (2022) 556-564.
|
[70] |
A. Casati, M. Putzu, Bupivacaine, levobupivacaine and ropivacaine: Are they clinically different Best Pract. Res. Clin. Anaesthesiol. 19 (2005) 247-268.
|
[71] |
S. Joergensen, E.OE. Nielsen, D. Peters, et al., Validation of a fluorescence-based high-throughput assay for the measurement of neurotransmitter transporter uptake activity, J. Neurosci. Methods 169 (2008) 168-176.
|
[72] |
M. Tatsumi, K. Groshan, R.D. Blakely, et al., Pharmacological profile of antidepressants and related compounds at human monoamine transporters, Eur. J. Pharmacol. 340 (1997) 249-258.
|
[73] |
G. Tu, T. Fu, F. Yang, et al., Understanding the polypharmacological profiles of triple reuptake inhibitors by molecular simulation, ACS Chem. Neurosci. 12 (2021) 2013-2026.
|
[74] |
L. Zheng, S. Shi, X. Sun, et al., MoDAFold: A strategy for predicting the structure of missense mutant protein based on AlphaFold2 and molecular dynamics, Brief. Bioinform. 25 (2024), bbae006.
|
[75] |
W. Xue, F. Yang, P. Wang, et al., What contributes to serotonin-norepinephrine reuptake inhibitors' dual-targeting mechanism the key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation, ACS Chem. Neurosci. 9 (2018) 1128-1140.
|
[76] |
P.C. Meltzer, A.Y. Liang, B.K. Madras, 2-Carbomethoxy-3-(diarylmethoxy)-1 alpha H, 5 alpha H-tropane analogs: Synthesis and inhibition of binding at the dopamine transporter and comparison with piperazines of the GBR series, J. Med. Chem. 39 (1996) 371-379.
|
[77] |
G.E. Agoston, J.H. Wu, S. Izenwasser, et al., Novel N-substituted 3 alpha-[bis(4'-fluorophenyl)methoxy] tropane analogues: Selective ligands for the dopamine transporter, J. Med. Chem. 40 (1997) 4329-4339.
|
[78] |
P. Kalaba, M. Ilic, N.Y. Aher, et al., Structure-activity relationships of novel thiazole-based modafinil analogues acting at monoamine transporters, J. Med. Chem. 63 (2020) 391-417.
|