Turn off MathJax
Article Contents
Wen-Wen Li, Zi-Li Yu, Jun Jia. Urease-powered micro/nanomotors: Current progress and challenges[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.101095
Citation: Wen-Wen Li, Zi-Li Yu, Jun Jia. Urease-powered micro/nanomotors: Current progress and challenges[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.101095

Urease-powered micro/nanomotors: Current progress and challenges

doi: 10.1016/j.jpha.2024.101095
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No.: 82372102).

  • Received Date: Apr. 26, 2024
  • Accepted Date: Sep. 02, 2024
  • Rev Recd Date: Jun. 26, 2024
  • Available Online: Sep. 06, 2024
  • Enzyme-powered micro/nanomotors (EMNMs) use natural enzymes to facilitate the decomposition of fuels, including hydrogen peroxide (H2O2), glucose, triglycerides, and urea to provide power. EMNMs can achieve self-propulsion through the in situ utilization of biofuels without additional fuels, exhibiting excellent biocompatibility and significant potential for application in the biomedical field. Compared with H2O2, which may cause oxidative damage to the body, urea exhibits superior biosafety characteristics. Presently, urease-powered MNMs (UMNMs) have made notable progress in their applications in the biomedical field and have garnered considerable attention from researchers. In this review, we present the latest advancements in the biomedical field of UMNMs, primarily focusing on: 1) diverse materials used for constructing the fundamental framework of motors; 2) control of motor movement through the regulation of enzymatic reaction rates; and 3) research directions for the clinical application of motors including in vivo imaging, biomarker detection, cancer treatment, optical therapy, overcoming biological barriers, antibacterial interventions, antithrombotic strategies, and gastric disease management. Despite showing immense potential in biomedical applications, there are still several challenges impeding its practical implementation, such as maintaining activity in the in vivo environment while accurately targeting specific sites to achieve the desired clinical therapeutic effects.
  • loading
  • [1]
    R.D. Vale, R.A. Milligan, The way things move: Looking under the hood of molecular motor proteins, Science 288 (2000) 88-95.
    [2]
    A.C. Hortelao, C. Simo, M. Guix, et al., Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder, Sci. Robot. 6 (2021), eabd2823.
    [3]
    T. Patino, N. Feiner-Gracia, X. Arque, et al., Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors, J. Am. Chem. Soc. 140 (2018) 7896-7903.
    [4]
    X. Ma, A. Jannasch, U.-R. Albrecht, et al., Enzyme-powered hollow mesoporous Janus nanomotors, Nano Lett. 15 (2015) 7043-7050.
    [5]
    L. Xu, F. Mou, H. Gong, et al., Light-driven micro/nanomotors: From fundamentals to applications, Chem. Soc. Rev. 46 (2017) 6905-6926.
    [6]
    X. Zeng, M. Yang, H. Liu, et al., Light-driven micro/nanomotors in biomedical applications, Nanoscale 15 (2023) 18550-18570.
    [7]
    P. Calvo-Marzal, S. Sattayasamitsathit, S. Balasubramanian, et al., Propulsion of nanowire diodes, Chem. Commun. 46 (2010) 1623-1624.
    [8]
    S.T. Chang, E. Beaumont, D.N. Petsev, et al., Remotely powered distributed microfluidic pumps and mixers based on miniature diodes, Lab Chip 8 (2008) 117-124.
    [9]
    S. Tottori, L. Zhang, F. Qiu, et al., Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport, Adv. Mater. 24 (2012) 811-816.
    [10]
    A. Ghosh, P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett. 9 (2009) 2243-2245.
    [11]
    M. Uygun, B. Jurado-Sanchez, D.A. Uygun, et al., Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells, Nanoscale 9 (2017) 18423-18429.
    [12]
    T. Xu, L.-P. Xu, X. Zhang, Ultrasound propulsion of micro-/nanomotors, Appl. Mater. Today 9 (2017) 493-503.
    [13]
    H. Zhao, Y. Zheng, Y. Cai, et al., Intelligent metallic micro/nanomotors: From propulsion to application, Nano Today 52 (2023) 101939.
    [14]
    S. Palagi, P. Fischer, Bioinspired microrobots, Nat. Rev. Mater. 3 (2018) 113-124.
    [15]
    J. Li, B. E.-F. De Avila, W. Gao, et al., Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification, Sci. Robot. 2 (2017) eaam6431.
    [16]
    F. Soto, J. Wang, R. Ahmed, et al., Medical micro/nanorobots in precision medicine, Adv. Sci. 7 (2020) 2002203.
    [17]
    J. Ou, K. Liu, J. Jiang, et al., Micro-/nanomotors toward biomedical applications: The recent progress in biocompatibility, Small 16 (2020), e1906184.
    [18]
    M. Mathesh, J. Sun, D.A. Wilson, Enzyme catalysis powered micro/nanomotors for biomedical applications, J. Mater. Chem. B 8 (2020) 7319-7334.
    [19]
    H. Fang, J. Chen, L. Lin, et al., A strategy of killing three birds with one stone for cancer therapy through regulating the tumor microenvironment by H2O2-responsive gene delivery system, ACS Appl. Mater. Interfaces 11 (2019) 47785-47797.
    [20]
    S. Keller, S.P. Teora, G.X. Hu, et al., High-throughput design of biocompatible enzyme-based hydrogel microparticles with autonomous movement, Angew. Chem. Int. Ed Engl. 57 (2018) 9814-9817.
    [21]
    B.V.V.S.P. Kumar, A.J. Patil, S. Mann, Enzyme-powered motility in buoyant organoclay/DNA protocells, Nat. Chem. 10 (2018) 1154-1163.
    [22]
    S. Parvez, M.J.C. Long, J.R. Poganik, et al., Redox signaling by reactive electrophiles and oxidants, Chem. Rev. 118 (2018) 8798-8888.
    [23]
    H.J. Forman, A. Bernardo, K.J. Davies, What is the concentration of hydrogen peroxide in blood and plasma? Arch. Biochem. Biophys. 603 (2016) 48-53.
    [24]
    B. Halliwell, M.V. Clement, L.H. Long, Hydrogen peroxide in the human body, FEBS Lett. 486 (2000) 10-13.
    [25]
    G. Pizzino, N. Irrera, M. Cucinotta, et al., Oxidative stress: harms and benefits for human health, Oxid. Med. Cell. Longev. 2017 (2017), 8416763.
    [26]
    H. Li, Z. Sun, S. Jiang, et al., Tadpole-like unimolecular nanomotor with sub-100 nm size swims in a tumor microenvironment model, Nano Lett. 19 (2019) 8749-8757.
    [27]
    B.J. Toebes, L.K.E.A. Abdelmohsen, D.A. Wilson, Enzyme-driven biodegradable nanomotor based on tubular-shaped polymeric vesicles, Polym. Chem. 9 (2018) 3190-3194.
    [28]
    Y. Xie, S. Fu, J. Wu, et al., Motor-based microprobe powered by bio-assembled catalase for motion detection of DNA, Biosens. Bioelectron. 87 (2017) 31-37.
    [29]
    L. Liu, H. Mo, S. Wei, et al., Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance, Analyst 137 (2012) 595-600.
    [30]
    L. Schwarz, M. Medina-Sanchez, O.G. Schmidt, Hybrid BioMicromotors, Appl. Phys. Rev. 4 (2017) 031301.
    [31]
    S. Anu Mary Ealia, M.P. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application, IOP Conf. Ser.: Mater. Sci. Eng. 263 (2017), 032019.
    [32]
    V.J. Mohanraj, Y. Chen, Nanoparticles - A review, Trop. J. Pharm. Res. 5 (2007) 561-573.
    [33]
    L.-F. Chen, C.-C. Hou, L. Zou, et al., Uniformly bimetal-decorated holey carbon nanorods derived from metal−organic framework for efficient hydrogen evolution, Sci. Bull. 66 (2021) 170-178.
    [34]
    Y. Bai, G. Zhang, S. Zheng, et al., Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution, Sci. China Mater. 64 (2021) 137-148.
    [35]
    X. Yao, D. Chen, B. Zhao, et al., Acid-degradable hydrogen-generating metal-organic framework for overcoming cancer resistance/metastasis and off-target side effects, Adv. Sci. 9 (2022), e2101965.
    [36]
    S. Mallakpour, E. Nikkhoo, C.M. Hussain, Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment, Coord. Chem. Rev. 451 (2022) 214262.
    [37]
    S. Huang, X. Kou, J. Shen, et al., “Armor-plating” enzymes with metal-organic frameworks (MOFs), Angew. Chem. Int. Ed Engl. 59 (2020) 8786-8798.
    [38]
    S. Yuan, L. Feng, K. Wang, et al., Stable metal-organic frameworks: Design, synthesis, and applications, Adv. Mater. 30 (2018), 1704303.
    [39]
    K.S. Park, Z. Ni, A.P. Cote, et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. USA 103 (2006) 10186-10191.
    [40]
    H. Yang, L. Wang, X. Huang, MOF-based micro/nanomotors (MOFtors): Recent progress and challenges, Coord. Chem. Rev. 495 (2023), 215372.
    [41]
    A. Terzopoulou, X. Wang, X. Chen, et al., Biodegradable metal-organic framework-based microrobots (MOFBOTs), Adv. Healthc. Mater. 9 (2020), 2001031.
    [42]
    X. Wang, X. Chen, C.C.J. Alcantara, et al., MOFBOTS: Metal-organic-framework-based biomedical microrobots, Adv. Mater. 31 (2019), 1901592.
    [43]
    B. Wu, J. Fu, Y. Zhou, et al., Tailored core-shell dual metal-organic frameworks as a versatile nanomotor for effective synergistic antitumor therapy, Acta Pharm. Sin. B 10 (2020) 2198-2211.
    [44]
    Y. You, D. Xu, X. Pan, et al., Self-propelled enzymatic nanomotors for enhancing synergetic photodynamic and starvation therapy by self-accelerated cascade reactions, Appl. Mater. Today 16 (2019) 508-517.
    [45]
    K. Liang, R. Ricco, C.M. Doherty, et al., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules, Nat. Commun. 6 (2015), 7240.
    [46]
    B.K. Kaang, L. Ha, J.-U. Joo, et al., Laminar flow-assisted synthesis of amorphous ZIF-8-based nano-motor with enhanced transmigration for photothermal cancer therapy, Nanoscale 14 (2022) 10835-10843.
    [47]
    S.-H. Wu, C.-Y. Mou, H.-P. Lin, Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev. 42 (2013) 3862-3875.
    [48]
    C. Argyo, V. Weiss, C. Brauchle, et al., Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery, Chem. Mater. 26 (2014) 435-451.
    [49]
    Z. Chen, T. Xia, Z. Zhang, et al., Enzyme-powered Janus nanomotors launched from intratumoral depots to address drug delivery barriers, Chem. Eng. J. 375 (2019), 122109.
    [50]
    X. Arque, A. Romero-Rivera, F. Feixas, et al., Intrinsic enzymatic properties modulate the self-propulsion of micromotors, Nat. Commun. 10 (2019), 2826.
    [51]
    T. Patino, A. Porchetta, A. Jannasch, et al., Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches, Nano Lett. 19 (2019) 3440-3447.
    [52]
    A.C. Hortelao, T. Patino, A. Perez-Jimenez, et al., Enzyme-powered nanobots enhance anticancer drug delivery, Adv. Funct. Mater. 28 (2018) 1705086.
    [53]
    A.C. Hortelao, R. Carrascosa, N. Murillo-Cremaes, et al., Targeting 3D bladder cancer spheroids with urease-powered nanomotors, ACS Nano 13 (2019) 429-439.
    [54]
    X. Arque, M.D.T. Torres, T. Patino, et al., Autonomous treatment of bacterial infections in vivo using antimicrobial micro- and nanomotors, ACS Nano 16 (2022) 7547-7558.
    [55]
    X. Ma, X. Wang, K. Hahn, et al., Motion control of urea-powered biocompatible hollow microcapsules, ACS Nano 10 (2016) 3597-3605.
    [56]
    A. Llopis-Lorente, A. Garcia-Fernandez, N. Murillo-Cremaes, et al., Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery, ACS Nano 13 (2019) 12171-12183.
    [57]
    R.K. Kankala, Y.-H. Han, J. Na, et al., Nanoarchitectured structure andsurface biofunctionality of mesoporous silica nanoparticles, Adv. Mater. 32 (2020), e1907035.
    [58]
    T. Priemel, G. Palia, F. Forste, et al., Microfluidic-like fabrication of metal ion-cured bioadhesives by mussels, Science 374 (2021) 206-211.
    [59]
    Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev. 114 (2014) 5057-5115.
    [60]
    H. Li, D. Yin, W. Li, et al., Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy, Colloids Surf. B Biointerfaces 199 (2021), 111502.
    [61]
    M. Wu, S. Liu, Z. Liu, et al., Photothermal interference urease-powered polydopamine nanomotor for enhanced propulsion and synergistic therapy, Colloids Surf. B Biointerfaces 212 (2022), 112353.
    [62]
    H. Choi, S.H. Jeong, T.Y. Kim, et al., Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach, Bioact. Mater. 9 (2021) 54-62.
    [63]
    A.D. Bangham, R.W. Horne, Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope, J. Mol. Biol. 8 (1964) 660-668.
    [64]
    N. Düzgüneş, G. Gregoriadis, Introduction: The origins of liposomes: Alec Bangham at Babraham, in Enzymology. Amsterdam: Elsevier, (2005) 1–3.
    [65]
    A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, et al., Liposome: Classification, preparation, and applications, Nanoscale Res. Lett. 8 (2013), 102.
    [66]
    R. Tenchov, R. Bird, A.E. Curtze, et al., Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement, ACS Nano 15 (2021) 16982-17015.
    [67]
    A.C. Hortelao, S. Garcia-Jimeno, M. Cano-Sarabia, et al., LipoBots: Using liposomal vesicles as protective shell of urease-based nanomotors, Adv. Funct. Mater. 30 (2020), 2002767.
    [68]
    V.D. Nguyen, H.-K. Min, C.-S. Kim, et al., Folate receptor-targeted liposomal nano complex for effective synergistic photothermal-chemotherapy of breast cancer in vivo, Colloids Surf. B Biointerfaces 173 (2019) 539-548.
    [69]
    S. Fu, Y. Zhao, J. Sun, et al., Integrin αvβ3-targeted liposomal drug delivery system for enhanced lung cancer therapy, Colloids Surf. B Biointerfaces. 201 (2021), 111623.
    [70]
    Z. Deng, Y. Xiao, M. Pan, et al., Hyperthermia-triggered drug delivery from iRGD-modified temperature-sensitive liposomes enhances the anti-tumor efficacy using high intensity focused ultrasound, J. Control. Release 243 (2016) 333-341.
    [71]
    F. Pierige, S. Serafini, L. Rossi, et al., Cell-based drug delivery, Adv. Drug Deliv. Rev. 60 (2008) 286-295.
    [72]
    R.H. Fang, W. Gao, L. Zhang, Targeting drugs to tumours using cell membrane-coated nanoparticles, Nat. Rev. Clin. Oncol. 20 (2023) 33-48.
    [73]
    Q. Xia, Y. Zhang, Z. Li, et al., Red blood cell membrane-camouflaged nanoparticles: A novel drug delivery system for antitumor application, Acta Pharm. Sin. B 9 (2019) 675-689.
    [74]
    L. Gao, H. Wang, L. Nan, et al., Erythrocyte membrane-wrapped pH sensitive polymeric nanoparticles for non-small cell lung cancer therapy, Bioconjug. Chem. 28 (2017) 2591-2598.
    [75]
    S. Tang, F. Zhang, H. Gong, et al., Enzyme-powered Janus platelet cell robots for active and targeted drug delivery, Sci. Robot. 5 (2020), eaba6137.
    [76]
    E. Humphry, C.E. Armstrong, Physiology of red and white blood cells, Anaesth. Intensive Care Med. 23 (2022) 118-122.
    [77]
    D. Wang, S. Wang, Z. Zhou, et al., White blood cell membrane-coated nanoparticles: Recent development and medical applications, Adv. Healthc. Mater. 11 (2022), e2101349.
    [78]
    J. Zheng, R. Qi, C. Dai, et al., Enzyme catalysis biomotor engineering of neutrophils for nanodrug delivery and cell-based thrombolytic therapy, ACS Nano 16 (2022) 2330-2344.
    [79]
    J. Cortes, C. Saura, Nanoparticle albumin-bound (nabTM)-paclitaxel: Improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer, Eur. J. Cancer Suppl. 8 (2010) 1-10.
    [80]
    A. Spada, J. Emami, J.A. Tuszynski, et al., The uniqueness of albumin as a carrier in nanodrug delivery, Mol. Pharm. 18 (2021) 1862-1894.
    [81]
    S. Lamichhane, S. Lee, Albumin nanoscience: Homing nanotechnology enabling targeted drug delivery and therapy, Arch. Pharm. Res. 43 (2020) 118-133.
    [82]
    H. Tian, J. Ou, Y. Wang, et al., Bladder microenvironment actuated proteomotors with ammonia amplification for enhanced cancer treatment, Acta Pharm. Sin. B 13 (2023) 3862-3875.
    [83]
    Z. Liu, S. Liu, X. Zhao, et al., Photothermal-accelerated urease-powered human serum albumin nanomotor for rapid and efficient photothermal and photodynamic cancer combination therapy, Int. J. Biol. Macromol. 240 (2023), 124486.
    [84]
    X. Ma, A.C. Hortelao, A. Miguel-Lopez, et al., Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions, J. Am. Chem. Soc. 138 (2016) 13782-13785.
    [85]
    S. Sengupta, K.K. Dey, H.S. Muddana, et al., Enzyme molecules as nanomotors, J. Am. Chem. Soc. 135 (2013) 1406-1414.
    [86]
    K.K. Dey, X. Zhao, B.M. Tansi, et al., Micromotors powered by enzyme catalysis, Nano Lett. 15 (2015) 8311-8315.
    [87]
    A. Somasundar, S. Ghosh, F. Mohajerani, et al., Positive and negative chemotaxis of enzyme-coated liposome motors, Nat. Nanotechnol. 14 (2019) 1129-1134.
    [88]
    N. Du, M. Chen, Z. Liu, et al., Kinetics and mechanism of jack bean urease inhibition by Hg2+, Chem. Cent. J. 6 (2012), 154.
    [89]
    B. Krajewska, W. Zaborska, M. Chudy, Multi-step analysis of Hg2+ ion inhibition of jack bean urease, J. Inorg. Biochem. 98 (2004) 1160-1168.
    [90]
    M. Valles, S. Pujals, L. Albertazzi, et al., Enzyme purification improves the enzyme loading, self-propulsion, and endurance performance of micromotors, ACS Nano 16 (2022) 5615-5626.
    [91]
    M. Luo, S. Li, J. Wan, et al., Enhanced propulsion of urease-powered micromotors by multilayered assembly of ureases on Janus magnetic microparticles, Langmuir (2020), 9b03315.
    [92]
    Z. Yang, L. Wang, Z. Gao, et al., Ultrasmall enzyme-powered Janus nanomotor working in blood circulation system, ACS Nano 17 (2023) 6023-6035.
    [93]
    S. Cao, H. Wu, I.A.B. Pijpers, et al., Cucurbit-like polymersomes with aggregation-induced emission properties show enzyme-mediated motility, ACS Nano 15 (2021) 18270-18278.
    [94]
    W. Gao, S. Sattayasamitsathit, J. Orozco, et al., Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes, J. Am. Chem. Soc. 133 (2011) 11862-11864.
    [95]
    R.A. Pavlick, S. Sengupta, T. McFadden, et al., A polymerization-powered motor, Angew. Chem. Int. Ed Engl. 50 (2011) 9374-9377.
    [96]
    W.F. Paxton, P.T. Baker, T.R. Kline, et al., Catalytically induced electrokinetics for motors and micropumps, J. Am. Chem. Soc. 128 (2006) 14881-14888.
    [97]
    G. Zhao, M. Pumera, Macroscopic self-propelled objects, Chem. Asian J. 7 (2012) 1994-2002.
    [98]
    T. Toyota, N. Maru, M.M. Hanczyc, et al., Self-propelled oil droplets consuming “fuel” surfactant, J. Am. Chem. Soc. 131 (2009) 5012-5013.
    [99]
    L. Baraban, D. Makarov, R. Streubel, et al., Catalytic Janus motors on microfluidic chip: Deterministic motion for targeted cargo delivery, ACS Nano 6 (2012) 3383-3389.
    [100]
    D. Folio, A. Ferreira, Modeling and estimation of self-phoretic magnetic Janus microrobot with uncontrollable inputs, IEEE Trans. Contr. Syst. Technol. 30 (2022) 2681-2688.
    [101]
    J. Wu, D. Folio, J. Zhu, et al., Motion analysis and real-time trajectory prediction of magnetically steerable catalytic Janus micromotors, Adv. Intell. Syst. 4 (2022), 2200192.
    [102]
    D. Vilela, U. Cossio, J. Parmar, et al., Medical imaging for the tracking of micromotors, ACS Nano 12 (2018) 1220-1227.
    [103]
    T. Daeneke, K. Khoshmanesh, N. Mahmood, et al., Liquid metals: Fundamentals and applications in chemistry, Chem. Soc. Rev. 47 (2018) 4073-4111.
    [104]
    K. Kalantar-Zadeh, J. Tang, T. Daeneke, et al., Emergence of liquid metals in nanotechnology, ACS Nano 13 (2019) 7388-7395.
    [105]
    S. Kulkarni, A. Pandey, S. Mutalik, Liquid metal based theranostic nanoplatforms: Application in cancer therapy, imaging and biosensing, Nanomedicine 26 (2020), 102175.
    [106]
    H. Song, T. Kim, S. Kang, et al., Ga-based liquid metal micro/nanoparticles: Recent advances and application, Small 16 (2020), e1903391.
    [107]
    S.A. Chechetka, Y. Yu, X. Zhen, et al., Light-driven liquid metal nanotransformers for biomedical theranostics, Nat. Commun. 8 (2017), 15432.
    [108]
    Q. Wang, Y. Yu, K. Pan, et al., Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy, IEEE Trans. Biomed Eng. 61 (2014) 2161-2166.
    [109]
    D. Xu, J. Hu, X. Pan, et al., Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions, ACS Nano 15 (2021) 11543-11554.
    [110]
    A. Refaat, M.L. Yap, G. Pietersz, et al., In vivo fluorescence imaging: Success in preclinical imaging paves the way for clinical applications, J. Nanobiotechnology 20 (2022) 450.
    [111]
    H. Wang, Q. Li, P. Alam, et al., Aggregation-induced emission (AIE), life and health, ACS Nano 17 (2023) 14347-14405.
    [112]
    G. Raposo, W. Stoorvogel, Extracellular vesicles: Exosomes, microvesicles, and friends, J. Cell Biol. 200 (2013) 373-383.
    [113]
    E. Cocucci, J. Meldolesi, Ectosomes and exosomes: Shedding the confusion between extracellular vesicles, Trends Cell Biol. 25 (2015) 364-372.
    [114]
    R.J. Simpson, S.S. Jensen, J.W.E. Lim, Proteomic profiling of exosomes: Current perspectives, Proteomics 8 (2008) 4083-4099.
    [115]
    R. Wubbolts, R.S. Leckie, P.T.M. Veenhuizen, et al., Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation, J. Biol. Chem. 278 (2003) 10963-10972.
    [116]
    C. Subra, K. Laulagnier, B. Perret, et al., Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies, Biochimie 89 (2007) 205-212.
    [117]
    Q.-F. Han, W.-J. Li, K.-S. Hu, et al., Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer, Mol. Cancer 21 (2022) 207.
    [118]
    X. Liu, Y. Wang, Y. Peng, et al., Urease-powered micromotors with spatially selective distribution of enzymes for capturing and sensing exosomes, ACS Nano 17 (2023) 24343-24354.
    [119]
    W. Wang, C. Zhou, A journey of nanomotors for targeted cancer therapy: Principles, challenges, and a critical review of the state-of-the-art, Adv. Healthc. Mater. 10 (2021), e2001236.
    [120]
    S. Antoni, J. Ferlay, I. Soerjomataram, et al., Bladder cancer incidence and mortality: A global overview and recent trends, Eur. Urol. 71 (2017) 96-108.
    [121]
    P. Tyagi, P.-C. Wu, M. Chancellor, et al., Recent advances in intravesical drug/gene delivery, Mol. Pharm. 3 (2006) 369-379.
    [122]
    Z. Zhang, D. Zhang, B. Qiu, et al., Icebreaker-inspired Janus nanomotors to combat barriers in the delivery of chemotherapeutic agents, Nanoscale 13 (2021) 6545-6557.
    [123]
    J.C. Fraire, M. Guix, A.C. Hortelao, et al., Light-triggered mechanical disruption of extracellular barriers by swarms of enzyme-powered nanomotors for enhanced delivery, ACS Nano 17 (2023) 7180-7193.
    [124]
    X. Li, J.F. Lovell, J. Yoon, et al., Clinical development and potential of photothermal and photodynamic therapies for cancer, Nat. Rev. Clin. Oncol. 17 (2020) 657-674.
    [125]
    Y. Hou, X. Yang, R. Liu, et al., Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles, Int. J. Nanomedicine 15 (2020) 6827-6838.
    [126]
    C. Donohoe, M.O. Senge, L.G. Arnaut, et al., Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity, Biochim. Biophys. Acta Rev. Cancer 1872 (2019), 188308.
    [127]
    C.J.L. Murray, K.S. Ikuta, F. Sharara, et al., Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis, Lancet 399 (2022) 629-655.
    [128]
    D. Vilela, N. Blanco-Cabra, A. Eguskiza, et al., Drug-free enzyme-based bactericidal nanomotors against pathogenic bacteria, ACS Appl. Mater. Interfaces 13 (2021) 14964-14973.
    [129]
    H. Wei, L. Yang, C. Pang, et al., Bacteria-targeted photothermal therapy for combating drug-resistant bacterial infections, Biomater. Sci. 11 (2023) 5634-5640.
    [130]
    D.M. Wootton, D.N. Ku, Fluid mechanics of vascular systems, diseases, and thrombosis, Annu. Rev. Biomed. Eng. 1 (1999) 299-329.
    [131]
    B. Furie, B.C. Furie, Mechanisms of thrombus formation, N. Engl. J. Med. 359 (2008) 938-949.
    [132]
    S. Zhang, C. Zhu, W. Huang, et al., Recent progress of micro/nanomotors to overcome physiological barriers in the gastrointestinal tract, J. Control. Release 360 (2023) 514-527.
    [133]
    J.P. Celli, B.S. Turner, N.H. Afdhal, et al., Helicobacter pylori moves through mucus by reducing mucin viscoelasticity, Proc. Natl. Acad. Sci. USA 106 (2009) 14321-14326.
    [134]
    D. Walker, B.T. Kasdorf, H.-H. Jeong, et al., Enzymatically active biomimetic micropropellers for the penetration of mucin gels, Sci. Adv. 1 (2015), 1500501.
    [135]
    S. Tenzer, D. Docter, J. Kuharev, et al., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology, Nat. Nanotechnol. 8 (2013) 772-781.
    [136]
    S. Wilhelm, A.J. Tavares, Q. Dai, et al., Analysis of nanoparticle delivery to tumours, Nat. Rev. Mater. 1 (2016), 16014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (20) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return