Volume 13 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Shuwen Ma, Jiaqi Li, Lixia Pei, Nianping Feng, Yongtai Zhang. Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 111-126. doi: 10.1016/j.jpha.2022.12.004
Citation: Shuwen Ma, Jiaqi Li, Lixia Pei, Nianping Feng, Yongtai Zhang. Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 111-126. doi: 10.1016/j.jpha.2022.12.004

Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects

doi: 10.1016/j.jpha.2022.12.004
Funds:

This work was financially supported by the National Natural Science Foundation of China (Grant No.: 82074031), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant No.: TP2020054), China, and Program for Shanghai High-level Local University Innovation Team (Grant No.: SZY20220315), China.

  • Received Date: Oct. 09, 2022
  • Accepted Date: Dec. 31, 2022
  • Rev Recd Date: Dec. 28, 2022
  • Publish Date: Mar. 07, 2023
  • Similar to blood, interstitial fluid (ISF) contains exogenous drugs and biomarkers and may therefore substitute blood in drug analysis. However, current ISF extraction techniques require bulky instruments and are both time-consuming and complicated, which has inspired the development of viable alternatives such as those relying on skin or tissue puncturing with microneedles. Currently, microneedles are widely employed for transdermal drug delivery and have been successfully used for ISF extraction by different mechanisms to facilitate subsequent analysis. The integration of microneedles with sensors enables in situ ISF analysis and specific compound monitoring, while the integration of monitoring and delivery functions in wearable devices allows real-time dose modification. Herein, we review the progress in drug analysis based on microneedle-assisted ISF extraction and discuss the related future opportunities and challenges.
  • loading
  • A.H. Gershlick, Y.D. Syndercombe Court, A.J. Murday, et al., Adverse effects of high dose aspirin on platelet adhesion to experimental autogenous vein grafts, Cardiovasc. Res. 19 (1985) 770-776
    H. Carlsson, K. Hjorton, S. Abujrais, et al., Measurement of hydroxychloroquine in blood from SLE patients using LC-HRMS-evaluation of whole blood, plasma, and serum as sample matrices, Arthritis Res. Ther. 22 (2020), 125
    A. Siddiqi, D.A. Khan, F.A. Khan, et al., Therapeutic drug monitoring of amikacin in preterm and term infants, Singapore Med. J. 50 (2009) 486-489
    C. Domes, R. Domes, J. Popp, et al., Ultrasensitive Detection of Antiseptic Antibiotics in Aqueous Media and Human Urine Using Deep UV Resonance Raman Spectroscopy, Anal. Chem. 89 (2017) 9997-10003
    V. Franco, G. Gatti, I. Mazzucchelli, et al., Relationship between saliva and plasma rufinamide concentrations in patients with epilepsy, Epilepsia. 61 (2020) e79-e84
    M. Nakajima, S. Sato, S. Yamato, et al., Assessment of tear concentrations on therapeutic drug monitoring. III. Determination of theophylline in tears by gas chromatography/mass spectrometry with electron ionization mode, Drug Metab. Pharmacokinet. 18 (2003) 139-145
    Rebrin K, Steil GM, Can interstitial glucose assessment replace blood glucose measurements, Diabetes Technol. Ther. 2 (2000) 461-472
    T. Altendorfer-Kroath, D. Schimek, A. Eberl, et al., Comparison of cerebral Open Flow Microperfusion and Microdialysis when sampling small lipophilic and small hydrophilic substances, J. Neurosci. Methods. 311 (2019) 394-401
    J.D. Ulrich, J.M. Burchett, J.L. Restivo, et al., In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis, Mol. Neurodegener. 8 (2013), 13
    J. Wen, X. Chen, Y. Yang, et al., Acupuncture Medical Therapy and its Underlying Mechanisms: A Systematic Review, Am. J. Chin. Med. 49 (2021) 1-23
    X. Wang, Y. Han, J. Jin, et al., Plum-blossom needle assisted photodynamic therapy for the treatment of oral potentially malignant disorder in the elderly, Photodiagnosis Photodyn. Ther. 25 (2019) 296-299
    K. Cheung, D.B. Das, Microneedles for drug delivery: trends and progress, Drug Deliv. 23 (2016) 2338-2354
    S. Henry, D.V. McAllister, M.G. Allen, et al., Microfabricated microneedles: a novel approach to transdermal drug delivery, J. Pharm. Sci. 87 (1998) 922-925
    S.A.N. Gowers, D.M.E. Freeman, T.M. Rawson, et al., Development of a Minimally Invasive Microneedle-Based Sensor for Continuous Monitoring of β-Lactam Antibiotic Concentrations in Vivo, ACS Sens. 4 (2019) 1072-1080
    S. Samavat, J. Lloyd, L. O'Dea, et al., Uniform sensing layer of immiscible enzyme-mediator compounds developed via a spray aerosol mixing technique towards low cost minimally invasive microneedle continuous glucose monitoring devices, Biosens. Bioelectron. 118 (2018) 224-230
    J. Gupta, S.S. Park, B. Bondy, et al., Infusion pressure and pain during microneedle injection into skin of human subjects, Biomaterials. 32 (2011) 6823-6831
    M. Li, L.K. Vora, K. Peng, et al., Trilayer microneedle array assisted transdermal and intradermal delivery of dexamethasone, Int. J. Pharm. 612 (2022),121295
    Z. Wang, J. Luan, A. Seth, et al., Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid, Nat. Biomed. Eng. 5 (2021) 64-76
    P.M. Wang, M. Cornwell, M.R. Prausnitz, Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles, Diabetes Technol. Ther. 7 (2005) 131-141
    L. Bao, J. Park, B. Qin, et al., Anti-SARS-CoV-2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper-based immunoassay, Sci. Rep. 12 (2022), 10693
    Y. Zheng, R. Omar, R. Zhang, et al., A Wearable Microneedle-Based Extended Gate Transistor for Real-Time Detection of Sodium in Interstitial Fluids, Adv. Mater. 34 (2022), e2108607
    H. Teymourian, C. Moonla, F. Tehrani, et al., Microneedle-Based Detection of Ketone Bodies along with Glucose and Lactate: Toward Real-Time Continuous Interstitial Fluid Monitoring of Diabetic Ketosis and Ketoacidosis, Anal. Chem. 92 (2020) 2291-2300
    P. Joshi, P.R. Riley, R. Mishra, et al., Transdermal Polymeric Microneedle Sensing Platform for Fentanyl Detection in Biofluid, Biosensors (Basel). 12 (2022), 198
    D.D. Zhu, L.W. Zheng, P.K. Duong, et al., Colorimetric microneedle patches for multiplexed transdermal detection of metabolites, Biosens. Bioelectron. 212 (2022), 114412
    T. Wu, X. You, Z. Chen, Hollow Microneedles on a Paper Fabricated by Standard Photolithography for the Screening Test of Prediabetes, Sensors (Basel). 22 (2022), 4253
    Y.J. Chen, Y.P. Hsu, Y.L. Tain, et al., Microneedle patches integrated with lateral flow cassettes for blood-free chronic kidney disease point-of-care testing during a pandemic, Biosens. Bioelectron. 208 (2022), 114234
    X. Hu, J. Yu, C. Qian, et al., H2O2-Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery, ACS Nano. 11 (2017) 613-620
    H. Teymourian, M. Parrilla, J.R. Sempionatto, et al., Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs, ACS Sens. 5 (2020) 2679-2700
    R. Paul, A.C. Saville, J.C. Hansel, et al., Extraction of Plant DNA by Microneedle Patch for Rapid Detection of Plant Diseases, ACS Nano. 13 (2019) 6540-6549
    R. Paul, E. Ostermann, Y. Chen, et al., Integrated microneedle-smartphone nucleic acid amplification platform for in-field diagnosis of plant diseases, Biosens. Bioelectron. 187 (2021), 113312
    H. Bae, M. Paludan, J. Knoblauch, et al., Neural networks and robotic microneedles enable autonomous extraction of plant metabolites, Plant Physiol. 186 (2021) 1435-1441
    M. Guo, Y. Wang, B. Gao, et al., Shark Tooth-Inspired Microneedle Dressing for Intelligent Wound Management, ACS Nano. 15 (2021) 15316-15327
    B. Szeto, A. Aksit, C. Valentini, et al., Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs, Hearing Res. 400 (2021), 108141
    U. Detamornrat, E. McAlister, A.R.J. Hutton, et al., The Role of 3D Printing Technology in Microengineering of Microneedles, Small. 18 (2022), e2106392
    S. Choo, S. Jin, J. Jung, Fabricating High-Resolution and High-Dimensional Microneedle Mold through the Resolution Improvement of Stereolithography 3D Printing, Pharmaceutics. 14 (2022), 766
    C.J.W. Bolton, O. Howells, G.J. Blayney, et al., Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery, Lab Chip. 20 (2020) 2788-2795
    E.M. Cahill, S. Keaveney, V. Stuettgen, et al., Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery, Acta Biomater. 80 (2018) 401-411
    G. Du, P. He, J. Zhao, et al., Polymeric microneedle-mediated transdermal delivery of melittin for rheumatoid arthritis treatment, J. Control. Release. 336 (2021) 537-548
    P. Liu, H. Du, Z. Wu, et al., Hydrophilic and anti-adhesive modification of porous polymer microneedles for rapid dermal interstitial fluid extraction, J. Mater. Chem. B. 9 (2021) 5476-5483
    J. Wang, Y. Ye, J. Yu, et al., Core-Shell Microneedle Gel for Self-Regulated Insulin Delivery, ACS Nano. 12 (2018) 2466-2473
    T. Sato, S. Okada, K. Hagino, et al., Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling, Diabetes Technol. Ther. 13 (2011) 1194-1200
    P.R. Miller, R.M. Taylor, B.Q. Tran, et al., Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles, Commun. Biol. 1 (2018), 173
    Y. Chen, B.Z. Chen, Q.L. Wang, et al., Fabrication of coated polymer microneedles for transdermal drug delivery, J. Control. Release. 265 (2017) 14-21
    E. Caffarel-Salvador, A.J. Brady, E. Eltayib, et al., Hydrogel-Forming Microneedle Arrays Allow Detection of Drugs and Glucose In Vivo: Potential for Use in Diagnosis and Therapeutic Drug Monitoring, PLoS One. 10 (2015), e0145644
    Z. Li, Y. He, L. Deng, et al., A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice, J. Mater. Chem. B. 8 (2020) 216-225
    W. Zhu, S. Li, C. Wang, et al., Enhanced Immune Responses Conferring Cross-Protection by Skin Vaccination With a Tri-Component Influenza Vaccine Using a Microneedle Patch, Front. Immunol. 9 (2018), 1705
    C. Caudill, J.L. Perry, K. Iliadis, et al., Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity, Proc. Natl. Acad. Sci. U. S. A. 118 (2021), e2102595118
    J. Yu, C. Kuwentrai, H.R. Gong, et al., Intradermal delivery of mRNA using cryomicroneedles, Acta Biomater. 148 (2022) 133-141
    Y. Hu, Y. Mo, J. Wei, et al., Programmable and monitorable intradermal vaccine delivery using ultrasound perforation array, Int. J. Pharm. 617 (2022), 121595
    Y. Lee, T. Kang, H.R. Cho, et al., Localized Delivery of Theranostic Nanoparticles and High-Energy Photons using Microneedles-on-Bioelectronics, Adv. Mater. 33 (2021), e2100425
    H. Chang, S.W.T. Chew, M. Zheng, et al., Cryomicroneedles for transdermal cell delivery, Nat. Biomed. Eng. 5 (2021) 1008-1018
    A. Abramson, E. Caffarel-Salvador, V. Soares, et al., A luminal unfolding microneedle injector for oral delivery of macromolecules, Nat. Med. 25 (2019) 1512-1518
    J. Tang, J. Wang, K. Huang, et al., Cardiac cell-integrated microneedle patch for treating myocardial infarction, Sci. Adv. 4 (2018), eaat9365
    E. Caffarel-Salvador, S. Kim, V. Soares, et al., A microneedle platform for buccal macromolecule delivery, Sci. Adv. 7 (2021), eabe2620
    M. Cui, M. Zheng, C. Wiraja, et al., Ocular Delivery of Predatory Bacteria with Cryomicroneedles Against Eye Infection, Adv. Sci (Weinh). 8 (2021), e2102327
    J.J. Chae, J.H. Jung, W. Zhu, et al., Drug-Free, Nonsurgical Reduction of Intraocular Pressure for Four Months after Suprachoroidal Injection of Hyaluronic Acid Hydrogel, Adv. Sci (Weinh). 8 (2021), 2001908
    H. Shi, J. Zhou, Y. Wang, et al., A Rapid Corneal Healing Microneedle for Efficient Ocular Drug Delivery, Small. 18 (2022), e2104657
    G. Roy, P. Garg, V.V.K. Venuganti, Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye, Int. J. Pharm. 612 (2022), 121305
    J. Lee, D.-H. Kim, K.J. Lee, et al., Transfer-molded wrappable microneedle meshes for perivascular drug delivery, J. Control. Release. 268 (2017) 237-246
    Y. Liu, L. Long, F. Zhang, et al., Microneedle-mediated vascular endothelial growth factor delivery promotes angiogenesis and functional recovery after stroke, J. Control. Release. 338 (2021) 610-622
    Z. Wang, Z. Yang, J. Jiang, et al., Silk Microneedle Patch Capable of On-Demand Multidrug Delivery to the Brain for Glioblastoma Treatment, Adv. Mater. 34 (2022), e2106606
    D. Jakka, A.V. Matadh, H.N. Shivakumar, et al., Polymer Coated Polymeric (PCP) microneedles for sampling of drugs and biomarkers from tissues, Eur. J. Pharm. Sci. 175 (2022), 106203
    F. Liu, Z. Lin, Q. Jin, et al., Protection of Nanostructures-Integrated Microneedle Biosensor Using Dissolvable Polymer Coating, ACS Appl. Mater. Interfaces. 11 (2019) 4809-4819
    Y. Ito, M. Taniguchi, A. Hayashi, et al., Application of dissolving microneedles to glucose monitoring through dermal interstitial fluid, Biol. Pharm. Bull. 37 (2014) 1776-1781
    Y. Ito, Y. Inagaki, S. Kobuchi, et al., Therapeutic Drug Monitoring of Vancomycin in Dermal Interstitial Fluid Using Dissolving Microneedles, Int. J. Med. Sci. 13 (2016) 271-276
    R. He, Y. Niu, Z. Li, et al., A Hydrogel Microneedle Patch for Point-of-Care Testing Based on Skin Interstitial Fluid, Adv. Healthc. Mater. 9 (2020), e1901201
    A.M. Tsimberidou, E. Fountzilas, M. Nikanjam, et al., Review of precision cancer medicine: Evolution of the treatment paradigm, Cancer Treat. Rev. 86 (2020), 102019
    S. Dhaese, S. Van Vooren, J. Boelens, et al., Therapeutic drug monitoring of β-lactam antibiotics in the ICU, Expert Rev. Anti. Infect. Ther. 18 (2020) 1155-1164
    I. Aicua-Rapun, P. Andre, A.O. Rossetti, et al., Therapeutic Drug Monitoring of Newer Antiepileptic Drugs: A Randomized Trial for Dosage Adjustment, Ann. Neurol. 87 (2020) 22-29
    S.W. Syversen, K.K. Joergensen, G.L. Goll, et al., Effect of Therapeutic Drug Monitoring vs Standard Therapy During Maintenance Infliximab Therapy on Disease Control in Patients With Immune-Mediated Inflammatory Diseases: A Randomized Clinical Trial, JAMA. 326 (2021) 2375-2384
    K. Papamichael, A.S. Cheifetz, G.Y. Melmed, et al., Appropriate Therapeutic Drug Monitoring of Biologic Agents for Patients With Inflammatory Bowel Diseases, Clin. Gastroenterol. Hepatol. 17 (2019) 1655-1668.e3
    R. Simeoli, T.P.C. Dorlo, L.M. Hanff, et al., Editorial: Therapeutic Drug Monitoring (TDM): A Useful Tool for Pediatric Pharmacology Applied to Routine Clinical Practice, Front. Pharmacol. 13 (2022), 931843
    G. Ozalp Gerceker, D. Ayar, E.Z. Ozdemir, et al., Effects of virtual reality on pain, fear and anxiety during blood draw in children aged 5-12 years old: A randomised controlled study, J. Clin. Nursing. 29 (2020) 1151-1161
    M. Hoelscher, G. Riedner, Y. Hemed, et al., Estimating the number of HIV transmissions through reused syringes and needles in the Mbeya Region, Tanzania, AIDS. 8 (1994) 1609-1615
    J. Hauser, G. Lenk, J. Hansson, et al., High-Yield Passive Plasma Filtration from Human Finger Prick Blood, Anal. Chem. 90 (2018) 13393-13399
    BLOOD-CLOTTING, Lancet. 1 (1953) 834-836
    H. Hjelmgren, A. Nilsson, I.H. Myrberg, et al., Capillary blood sampling increases the risk of preanalytical errors in pediatric hospital care: Observational clinical study, J. Spec. Pediatr. Nurs. 26 (2021), e12337
    Y. Kim, M.R. Prausnitz, Sensitive sensing of biomarkers in interstitial fluid, Nat. Biomed. Eng. 5 (2021) 3-5
    Y. Nisimaru, The basis of angiology. A concept of body fluid circulation, Hiroshima. J. Med Sci, 24 (1975) 1-58
    K.L. Skorecki, B.M. Brenner, Body fluid homeostasis in man. A contemporary overview, Am. J. Med, 70 (1981) 77-88
    L.L. Hill, Body composition, normal electrolyte concentrations, and the maintenance of normal volume, tonicity, and acid-base metabolism, Pediatr. Clin. North Am. 37 (1990) 241-256
    M.M. Niedzwiecki, P. Samant, D.I. Walker, et al., Human Suction Blister Fluid Composition Determined Using High-Resolution Metabolomics, Anal. Chem. 90 (2018) 3786-3792
    N.K. Gibbs, M. Norval, Urocanic acid in the skin: a mixed blessing? J. Invest. Dermatol. 131 (2011) 14-17
    N. Minois, Molecular basis of the 'anti-aging' effect of spermidine and other natural polyamines - a mini-review, Gerontology, 60 (2014) 319-326
    S. Pajares, A. Arias, J. Garcia-Villoria, et al., Role of creatine as biomarker of mitochondrial diseases, Mol. Genet. Metab. 108 (2013) 119-124
    G. Kugler, Myocardial release of lactate, inosine and hypoxanthine during atrial pacing and exercise-induced angina, Circulation, 59 (1979) 43-49
    M.T. Grinde, N. Skrbo, S.A. Moestue, et al., Interplay of choline metabolites and genes in patient-derived breast cancer xenografts, Breast Cancer Res. 16 (2014), R5
    T. Shibata, F. Nakashima, K. Honda, et al., Toll-like receptors as a target of food-derived anti-inflammatory compounds, J. Biol. Chem. 289 (2014) 32757-32772
    T.K.L. Kiang, V. Schmitt, M.H.H. Ensom, et al., Therapeutic drug monitoring in interstitial fluid: a feasibility study using a comprehensive panel of drugs, J. Pharm. Sci. 101 (2012) 4642-4652
    S. Ullah, F. Hamade, U. Bubniene, et al., In-vitro model for assessing glucose diffusion through skin, Biosens. Bioelectron. 110 (2018) 175-179
    A.K. Nilsson, U. Sjobom, K. Christenson, et al., Lipid profiling of suction blister fluid: comparison of lipids in interstitial fluid and plasma, Lipids Health Dis. 18 (2019), 164
    E. Fryk, J.P. Sundelin, L. Strindberg, et al., Microdialysis and proteomics of subcutaneous interstitial fluid reveals increased galectin-1 in type 2 diabetes patients, Metabolism. 65 (2016) 998-1006
    S. Schroepf, D. Burau, H.-G. Muench, et al., Microdialysis sampling to monitor target-site vancomycin concentrations in septic infants: a feasible way to close the knowledge gap, Int. J. Antimicrob. Agents. 58 (2021), 106405
    T.S. Anbar, N.H. Moftah, M.A.M. El-Khayyat, et al., Syringes versus Chinese cups in harvesting suction-induced blister graft: a randomized split-body study, Int. J. Dermatol. 57 (2018) 1249-1252
    T.B. Rojahn, V. Vorstandlechner, T. Krausgruber, et al., Single-cell transcriptomics combined with interstitial fluid proteomics defines cell type-specific immune regulation in atopic dermatitis, J. Allergy Clin. Immunol. 146 (2020) 1056-1069
    J. Kool, L. Reubsaet, F. Wesseldijk, et al., Suction blister fluid as potential body fluid for biomarker proteins, Proteomics. 7 (2007) 3638-3650
    E. Larraneta, M.T.C. McCrudden, A.J. Courtenay, et al., Microneedles: A New Frontier in Nanomedicine Delivery, Pharm. Res. 33 (2016) 1055-1073
    T. Lange, A. Thomas, K. Walpurgis, et al., Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS, Anal. Bioanal. Chem. 412 (2020) 3765-3777
    L.M. Strambini, A. Longo, S. Scarano, et al., Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid, Biosens. Bioelectron. 66 (2015) 162-168
    M. Zheng, Z. Wang, H. Chang, et al., Osmosis-Powered Hydrogel Microneedles for Microliters of Skin Interstitial Fluid Extraction within Minutes, Adv. Healthc. Mater. 9 (2020), e1901683
    A.H.B. Sabri, Q.K. Anjani, R.F. Donnelly, Synthesis and characterization of sorbitol laced hydrogel-forming microneedles for therapeutic drug monitoring, Int. J. Pharm. 607 (2021), 121049
    P.P. Samant, M.M. Niedzwiecki, N. Raviele, et al., Sampling interstitial fluid from human skin using a microneedle patch, Sci. Transl. Med. 12 (2020), eaaw0285
    H. Chang, M. Zheng, X. Yu, et al., A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis, Adv. Mater. 29 (2017), 37
    J. Zhu, X. Zhou, H.J. Kim, et al., Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid, Small. 16 (2020), e1905910
    J. Chen, M. Wang, Y. Ye, et al., Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis, Biomed. Microdevices. 21 (2019), 63
    D.F.S. Fonseca, P.C. Costa, I.F. Almeida, et al., Swellable Gelatin Methacryloyl Microneedles for Extraction of Interstitial Skin Fluid toward Minimally Invasive Monitoring of Urea, Macromol. Biosci. 20 (2020), e2000195
    Y. Qiao, J. Du, R. Ge, et al., A Sample and Detection Microneedle Patch for Psoriasis MicroRNA Biomarker Analysis in Interstitial Fluid, Anal. Chem. 94 (2022) 5538-5545
    Y. Cai, S. Huang, Z. Zhang, et al., Bioinspired Rotation Microneedles for Accurate Transdermal Positioning and Ultraminimal-Invasive Biomarker Detection with Mechanical Robustness, Research (Wash D C). 2022 (2022), 9869734
    C. Kolluru, M. Williams, J.S. Yeh, et al., Monitoring drug pharmacokinetics and immunologic biomarkers in dermal interstitial fluid using a microneedle patch, Biomed. Microdevices. 21 (2019), 14
    C. Kolluru, M. Williams, J. Chae, et al., Recruitment and Collection of Dermal Interstitial Fluid Using a Microneedle Patch, Adv. Healthc. Mater. 8 (2019), e1801262
    B.Q. Tran, P.R. Miller, R.M. Taylor, et al., Proteomic Characterization of Dermal Interstitial Fluid Extracted Using a Novel Microneedle-Assisted Technique, J. Proteome Res. 17 (2018) 479-485
    T.M. Rawson, S.A.N. Gowers, D.M.E. Freeman, et al., Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers, Lancet Digit. Health. 1 (2019) e335-e343
    C. Tortolini, A.E.G. Cass, R. Pofi, et al., Microneedle-based nanoporous gold electrochemical sensor for real-time catecholamine detection, Mikrochim. Acta. 189 (2022), 180
    L. Fang, H. Ren, X. Mao, et al., Differential Amperometric Microneedle Biosensor for Wearable Levodopa Monitoring of Parkinson's Disease, Biosensors (Basel). 12 (2022), 102
    R.K. Mishra, K.Y. Goud, Z. Li, et al., Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array, J. Am. Chem. Soc. 142 (2020) 5991-5995
    J. Ju, C.M. Hsieh, Y. Tian, et al., Surface Enhanced Raman Spectroscopy Based Biosensor with a Microneedle Array for Minimally Invasive In Vivo Glucose Measurements, ACS Sens. 5 (2020) 1777-1785
    M. Parrilla, U. Detamornrat, J. Dominguez-Robles, et al., Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose, Talanta. 249 (2022), 123695
    H.J. Kil, S.R. Kim, J.W. Park, A Self-Charging Supercapacitor for a Patch-Type Glucose Sensor, ACS Appl. Mater. Interfaces. 14 (2022) 3838-3848
    P. Bollella, S. Sharma, A.E.G. Cass, et al., Microneedle-based biosensor for minimally-invasive lactate detection, Biosens. Bioelectron. 123 (2019) 152-159
    A.M.V. Mohan, J.R. Windmiller, R.K. Mishra, et al., Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays, Biosens. Bioelectron. 91 (2017) 574-579
    B. Yang, J. Kong, X. Fang, Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA, Nat. Commun. 13 (2022), 3999
    M. Parrilla, M. Cuartero, S. Padrell Sanchez, et al., Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection, Anal. Chem. 91 (2019) 1578-1586
    Q. Li, R. Xu, H. Fan, et al., Smart Mushroom-Inspired Imprintable and Lightly Detachable (MILD) Microneedle Patterns for Effective COVID-19 Vaccination and Decentralized Information Storage, ACS Nano. 16 (2022) 7512-7524
    D. Poirier, F. Renaud, V. Dewar, et al., Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable, Biomaterials. 145 (2017) 256-265
    Y. Cheng, X. Gong, J. Yang, et al., A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring, Biosens. Bioelectron. 203 (2022), 114026
    P. Zhang, X. Wu, H. Xue, et al., Wearable transdermal colorimetric microneedle patch for Uric acid monitoring based on peroxidase-like polypyrrole nanoparticles, Anal. Chim. Acta. 1212 (2022), 339911
    J. Wang, J. Yu, Y. Zhang, et al., Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs, Sci. Adv. 5 (2019), eaaw4357
    J. Yu, J. Wang, Y. Zhang, et al., Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs, Nat. Biomed. Eng. 4 (2020) 499-506
    J. Li, H. Hu, J. Mao, et al., Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone, New Phytol. 223 (2019) 1607-1620
    S. Xu, X. Zeng, H. Wu, et al., Characterizing volatile metabolites in raw Pu'er tea stored in wet-hot or dry-cold environments by performing metabolomic analysis and using the molecular sensory science approach, Food Chem. 350 (2021), 129186
    G. Porras, F. Chassagne, J.T. Lyles, et al., Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery, Chem Rev. 121 (2021) 3495-3560
    T. Xin, Y. Zhang, X. Pu, et al., Trends in herbgenomics, Sci. China Life Sci. 62 (2019) 288-308
    D. Li, E. Gaquerel, Next-Generation Mass Spectrometry Metabolomics Revives the Functional Analysis of Plant Metabolic Diversity, Annu. Rev. Plant Biol. 72 (2021) 867-891
    M.E. Hergueta-Castillo, E. Lopez-Rodriguez, R. Lopez-Ruiz, et al., Targeted and untargeted analysis of triazole fungicides and their metabolites in fruits and vegetables by UHPLC-orbitrap-MS, Food Chem. 368 (2022), 130860
    A. Viswan, A. Yamagishi, M. Hoshi, et al., Microneedle Array-Assisted, Direct Delivery of Genome-Editing Proteins Into Plant Tissue, Front. Plant Sci. 13 (2022), 878059
    S. Ramos-Gomez, M.D. Busto, M. Perez-Mateos, et al., Development of a method to recovery and amplification DNA by real-time PCR from commercial vegetable oils, Food Chem. 158 (2014) 374-383
    L. Chen, Z. Han, X. Fan, et al., An impedance-coupled microfluidic device for single-cell analysis of primary cell wall regeneration, Biosens. Bioelectron. 165 (2020), 112374
    A. Bukhamsin, K. Moussi, R. Tao, et al., Robust, Long-Term, and Exceptionally Sensitive Microneedle-Based Bioimpedance Sensor for Precision Farming, Adv. Sci (Weinh). 8 (2021), e2101261
    A. Bukhamsin, A. Ait Lahcen, J.O. Filho, et al., Minimally-invasive, real-time, non-destructive, species-independent phytohormone biosensor for precision farming, Biosens. Bioelectron. 214 (2022), 114515
    C. Bai, J. Yang, B. Cao, et al., Growth years and post-harvest processing methods have critical roles on the contents of medicinal active ingredients of medicinal active ingredients of Scutellaria baicalensis. Ind. Crops Prod. 158 (2020), 112985
    D.Q. Xu, S.Y. Cheng, J.Q. Zhang, et al., L. Leaves - Integration of Their Transcriptome and Metabolomics Dataset: Investigating Potential Genes Involved in Flavonoid Biosynthesis at Different Harvest Times, Front. Plant Sci. 12 (2021), 736332
    Q. Yang, J. Pan, G. Shen, et al., Yellow ligaht promotes the growth and accumulation of bioactive flavonoids in Epimedium pseudowushanense, J. Photochem. Photobiol. B. 197 (2019), 111550
    J. Geng, L. Xiao, C. Chen, et al., An integrated analytical approach based on enhanced fragment ions interrogation and modified Kendrick mass defect filter data mining for in-depth chemical profiling of glucosinolates by ultra-high-pressure liquid chromatography coupled with Orbitrap high resolution mass spectrometry, J. Chromatogr. A. 1639 (2021), 461903
    X. He, S. Huang, M. Wu, et al., Simultaneous quantitative analysis of ten bioactive flavonoids in Citri Reticulatae Pericarpium Viride (Qing Pi) by ultrahigh-performance liquid chromatography and high-resolution mass spectrometry combined with chemometric methods, Phytochem. Anal. 32 (2021) 1152-1161
    H. Roh, Y.J. Yoon, J.S. Park, et al., Fabrication of High-Density Out-of-Plane Microneedle Arrays with Various Heights and Diverse Cross-Sectional Shapes, Nanomicro. Lett. 14 (2021), 24
    B. Creelman, C. Frivold, S. Jessup, et al., Manufacturing readiness assessment for evaluation of the microneedle array patch industry: an exploration of barriers to full-scale manufacturing, Drug Deliv. Transl. Res.12 (2022) 368-375
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (797) PDF downloads(329) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return