| Citation: | Liangping Fan, Wenna Liu, Qian Li, Jixue Lu, Fengchi Jiang, Qi Yan, Xiaoyan Liu, Jie Wang. A Nanotechnology-Enhanced SERS Platform Integrated with Isothermal Amplification for Ultrasensitive Detection of Urinary miR-21 in Early Acute Kidney Injury Diagnosis[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101585 |
| [1] |
C. Ronco, R. Bellomo, J.A. Kellum, et al., Acute kidney injury, Lancet 394 (2019) 1949-1964.
|
| [2] |
S.J. Allison, Propagation of acute kidney injury, Nat. Rev. Nephrol. 19 (2023) 622.
|
| [3] |
M. Joannidis, M. Meersch-Dini, L.G. Forni, et al., Acute kidney injury, Intensive Care Med. 49 (2023) 665-668.
|
| [4] |
E.A. Hoste, S.M. Bagshaw, R. Bellomo, et al., Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study, Intensive Care Med. 41 (2015) 1411-1423.
|
| [5] |
M.R. Bacci, C.V.B. Minczuk, F.L.A. Fonseca, et al., A systematic review of artificial intelligence algorithms for predicting acute kidney injury, Eur. Rev. Med. Pharmacol. Sci. 27 (2023) 9872-9879.
|
| [6] |
S.M. Bagshaw, R. Wald, N.K.J. Adhikari, et al., Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury, N. Engl. J. Med. 383 (2020) 240-251.
|
| [7] |
T. Pan, P. Jia, N. Chen, et al., Delayed Remote Ischemic Preconditioning ConfersRenoprotection against Septic Acute Kidney Injury via Exosomal miR-21, Theranostics 9 (2019) 405-423.
|
| [8] |
M. Pavkovic, C. Robinson-Cohen, A.S. Chua, et al., Detection of Drug-Induced Acute Kidney Injury in Humans Using Urinary KIM-1, miR-21, -200c, and -423, Toxicol. Sci. 152 (2016) 205-213.
|
| [9] |
C. Hu, L. Zhang, Z. Yang, et al., Graphene oxide-based qRT-PCR assay enables the sensitive and specific detection of miRNAs for the screening of ovarian cancer, Anal. Chim. Acta 1174 (2021) 338715.
|
| [10] |
E. Ban, E.J. Song, Considerations and Suggestions for the Reliable Analysis of miRNA in Plasma Using qRT-PCR, Genes 13 (2022) 328.
|
| [11] |
S. Roy, J.H. Soh, Z. Gao, et al., A microfluidic-assisted microarray for ultrasensitive detection of miRNA under an optical microscope, Lab Chip 11 (2011) 1886-1894.
|
| [12] |
H. Shi, F. Yang, W. Li, et al., A review: fabrications, detections and applications of peptide nucleic acids (PNAs) microarray, Biosens. Bioelectron. 66 (2015) 481-489.
|
| [13] |
L. Koperski, M. Kotlarek, M. Swierniak, et al., Next-generation sequencing reveals microRNA markers of adrenocortical tumors malignancy, Oncotarget 8 (2017) 49191-49200.
|
| [14] |
Y. Veeranagouda, J.F. Leonard, J.C. Gautier, et al., Next-Generation Sequencing to Investigate Urinary microRNAs from Macaca fascicularis (Cynomolgus Monkey), Methods Mol. Biol. 1641 (2017) 349-378.
|
| [15] |
K.H. Wang, Y.Y. Chen, C.H. Wang, et al., Ultrasensitive amplification-free detection of circulating miRNA via droplet-based processing of SERS tag-miRNA-magnetic nanoparticle sandwich nanocomplexes on a paper-based electrowetting-on-dielectric platform, Analyst 149 (2024) 1981-1987.
|
| [16] |
Y. Fu, J. An, M. Zhang, et al., Nanomaterial-based electrochemical biosensors as tools for detecting the tumor biomarker miR-21, Talanta 283 (2025) 127183.
|
| [17] |
C. He, J. Zhao, Y. Long, et al., An ultrasensitive electrochemical biosensor for microRNA-21 detection via AuNPs/GAs and Y-shaped DNA dual-signal amplification strategy, Chem. Commun. 59 (2023) 350-353.
|
| [18] |
A. Sabahi, R. Salahandish, A. Ghaffarinejad, et al., Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer, Talanta 209 (2020) 120595.
|
| [19] |
H. Yan, Y. Wen, Z. Tian, et al., A one-pot isothermal Cas12-based assay for the sensitive detection of microRNAs, Nat. Biomed. Eng. 7 (2023) 1583-1601.
|
| [20] |
Y. You, Y. Ren, Y. Li, et al., Interface-constrained catalytic hairpin assembly permits highly sensitive SERS signaling of miRNA, Mikrochim. Acta 191 (2024) 321.
|
| [21] |
Z. Song, Y. Fan, S. Zeng, et al., Target and acidic tumor microenvironment-induced in situ HCR for bispecific tumor cell imaging and therapy, Sensors and Actuators B: Chemical 413 (2024) 135867.
|
| [22] |
W.E.M. Noteborn, J.A.J. Wondergem, A. Iurchenko, et al., Grafting from a Hybrid DNA-Covalent Polymer by the Hybridization Chain Reaction, Macromolecules 51 (2018) 5157-5164.
|
| [23] |
J. Peng, L. Chen, B. Lin, et al., DNA Scaffold-Enhanced Hybrid Chain Reaction for Molecular Diagnosis of miRNAs, J. Anal. Test. 9 (2025) 290-295.
|
| [24] |
Y. Xu, Q. Zhang, R. Chen, et al., NIR-II Photoacoustic-Active DNA Origami Nanoantenna for Early Diagnosis and Smart Therapy of Acute Kidney Injury, J. Am. Chem. Soc. 144 (2022) 23522-23533.
|
| [25] |
X. Geng, N. Song, S. Zhao, et al., LncRNA GAS5 promotes apoptosis as a competing endogenous RNA for miR-21 via thrombospondin 1 in ischemic AKI, Cell Death Discov. 6 (2020) 19.
|
| [26] |
Y. Zhang, Y. Yan, W. Chen, et al., A simple electrochemical biosensor for highly sensitive and specific detection of microRNA based on mismatched catalytic hairpin assembly, Biosens. Bioelectron. 68 (2015) 343-349.
|
| [27] |
W. Wang, Y. Li, A. Nie, et al., A portable SERS reader coupled with catalytic hairpin assembly for sensitive microRNA-21 lateral flow sensing, Analyst 146 (2021) 848-854.
|
| [28] |
G. Wang, L. Li, Y. Li, et al., Surface plasmon resonance-enhanced cascaded sensitization effect of CuInSe2/Cu3(BTC)2/Y:ZnO photosensitive structures enabled lab-on-paper photoelectrochemical bioassay, Chem. Eng. J. 476 (2023) 146661.
|
| [29] |
Z. Wang, Z. Xue, X. Hao, et al., Ratiometric fluorescence sensor based on carbon dots as internal reference signal and T7 exonuclease-assisted signal amplification strategy for microRNA-21 detection, Anal. Chim. Acta 1103 (2020) 212-219.
|
| [30] |
Y. Si, L. Xu, N. Wang, et al., Target MicroRNA-Responsive DNA Hydrogel-Based Surface-Enhanced Raman Scattering Sensor Arrays for MicroRNA-Marked Cancer Screening, Anal. Chem. 92 (2020) 2649-2655.
|
| [31] |
X. Luo, Q. Dai, X. Qiu, et al., SERS and electrochemical dual-mode detection of miRNA-141 by using single Au@Ag nanowire as a new platform, Anal. Bioanal. Chem. 416 (2024) 4717-4726.
|
| [32] |
Y. Si, L. Xu, T. Deng, et al., Catalytic Hairpin Self-Assembly-Based SERS Sensor Array for the Simultaneous Measurement of Multiple Cancer-Associated miRNAs, ACS Sens. 5 (2020) 4009-4016.
|
| [33] |
Y. Su, Q. Zhang, X. Miao, et al., Spatially Engineered Janus Hybrid Nanozyme toward SERS Liquid Biopsy at Nano/Microscales, ACS Appl. Mater. Interfaces 11 (2019) 41979-41987.
|
| [34] |
H. Li, H. Zhang, W. Luo, et al., Microcontact printing of gold nanoparticle at three-phase interface as flexible substrate for SERS detection of MicroRNA, Anal. Chim. Acta 1229 (2022).
|
| [35] |
Y.-F.T. Wen Zhou, Bin-Cheng Yin, Bang-Ce Ye, et al., Simultaneous SERS Detection of Multiplexed MicroRNA Biomarkers, Anal. Chem. 89 (2017) 6120-6128.
|
| [36] |
J.A. Weber, D.H. Baxter, S. Zhang, et al., The microRNA spectrum in 12 body fluids, Clin. Chem. 56 (2010) 1733-1741.
|
| [37] |
T. Yasui, P. Paisrisarn, T. Yanagida, et al., Molecular profiling of extracellular vesicles via charge-based capture using oxide nanowire microfluidics, Biosens. Bioelectron. 194 (2021) 113589.
|
| [38] |
Y. Wang, Z. Li, Q. Lin, et al., Highly Sensitive Detection of Bladder Cancer-Related miRNA in Urine Using Time-Gated Luminescent Biochip, ACS Sens. 4 (2019) 2124-2130.
|
| [39] |
P. Zhou, F. Lu, J. Wang, et al., A portable point-of-care testing system to diagnose lung cancer through the detection of exosomal miRNA in urine and saliva, Chem. Commun. 56 (2020) 8968-8971.
|