a School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China;
b Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
Funds:
This work was financially supported by the National Key Research and Development Program of China (Grant No.: 2022YFC2403200), the National Natural Science Foundation of China (Grant No.: 52173289), and the National Science Fund for Distinguished Young Scholars, China (Grant No.: 52125305).
Reactive oxygen species (ROS)-mediated anticancer modalities, which disturb the redox balance of cancer cells through multi-pathway simulations, hold great promise for effective cancer management. Among these, cooperative physical and biochemical activation strategies have attracted increasing attention because of their spatiotemporal controllability, low toxicity, and high therapeutic efficacy. Herein, we demonstrate a nanogel complex as a multilevel ROS-producing system by integrating chloroperoxidase (CPO) into gold nanorod-based nanogels (ANGs) for cascadeamplifying photothermal-enzymatic synergistic tumor therapy. Benefiting from photothermal-induced hyperthermia upon near-infrared laser exposure, the exogenous ROS (including H2O2) were boosted by the AuNR nanogel owing to the intercellular stress response. This ultimately promoted the efficient enzyme-catalyzed reaction of loaded CPO combined with the rich endogenous H2O2 in tumor cells to significantly elevate intracellular ROS levels above the threshold for improved therapeutic outcomes. Both in vitro and in vivo studies have verified the cascade-amplifying ROSmediated antitumor effects, providing feasible multimodal synergistic tactics for tumor treatment.