Citation: | Ravi Maharjan, Ki Hyun Kim, Kyeong Lee, Hyo-Kyung Han, Seong Hoon Jeong. Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches[J]. Journal of Pharmaceutical Analysis, 2024, 14(11): 100996. doi: 10.1016/j.jpha.2024.100996 |
[1] |
J. Pang, M.X. Wang, I.Y.H. Ang, et al., Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): A systematic review, J. Clin. Med. 9 (2020), 623.
|
[2] |
S.C. Semple, R. Leone, C.J. Barbosa, et al., Lipid nanoparticle delivery systems to enable mRNA-based therapeutics, Pharmaceutics 14 (2022), 398.
|
[3] |
L. Miao, Y. Zhang, L. Huang, mRNA vaccine for cancer immunotherapy, Mol. Cancer 20 (2021), 41.
|
[4] |
Q. Xiong, G.Y. Lee, J. Ding, et al., Biomedical applications of mRNA nanomedicine, Nano Res. 11 (2018) 5281-5309.
|
[5] |
G. Prakash, A. Shokr, N. Willemen, et al., Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids, Adv. Drug Deliv. Rev. 184 (2022), 114197.
|
[6] |
K. Osouli-Bostanabad, S. Puliga, D.R. Serrano, et al., Microfluidic manufacture of lipid-based nanomedicines, Pharmaceutics 14 (2022), 1940.
|
[7] |
A. Algarni, E.H. Pilkington, E.J.A. Suys, et al., In vivo delivery of plasmid DNA by lipid nanoparticles: The influence of ionizable cationic lipids on organ-selective gene expression, Biomater. Sci. 10 (2022) 2940-2952.
|
[8] |
M. Kawaguchi, M. Noda, A. Ono, et al., Effect of cholesterol content of lipid composition in mRNA-LNPs on the protein expression in the injected site and liver after local administration in mice, J. Pharm. Sci. 112 (2023) 1401-1410.
|
[9] |
E. Oude Blenke, E. Ornskov, C. Schoneich, et al., The storage and In-use stability of mRNA vaccines and therapeutics: Not A cold case, J. Pharm. Sci. 112 (2023) 386-403.
|
[10] |
H. Helgers, A. Schmidt, L.J. Lohmann, et al., Towards autonomous operation by advanced process control-Process analytical technology for continuous biologics antibody manufacturing, Processes 9 (2021), 172.
|
[11] |
S. Daniel, Z. Kis, C. Kontoravdi, et al., Quality by Design for enabling RNA platform production processes, Trends Biotechnol. 40 (2022) 1213-1228.
|
[12] |
H.H. Ly, S. Daniel, S.K.V. Soriano, et al., Optimization of lipid nanoparticles for saRNA expression and cellular activation using a design-of-experiment approach, Mol. Pharm. 19 (2022) 1892-1905.
|
[13] |
K. Nag, M.E.H. Sarker, S. Kumar, et al., DoE-derived continuous and robust process for manufacturing of pharmaceutical-grade wide-range LNPs for RNA-vaccine/drug delivery, Sci. Rep. 12 (2022), 9394.
|
[14] |
Y. Suzuki, T. Miyazaki, H. Muto, et al., Design and lyophilization of lipid nanoparticles for mRNA vaccine and its robust immune response in mice and nonhuman Primates, Mol. Ther. Nucleic Acids 30 (2022) 226-240.
|
[15] |
S. Chen, X. Huang, Y. Xue, et al., Nanotechnology-based mRNA vaccines, Nat. Rev. Methods Primers 3 (2023), 63.
|
[16] |
Z. Ghaemmaghamian, R. Zarghami, G. Walker, et al., Stabilizing vaccines via drying: Quality by design considerations, Adv. Drug Deliv. Rev. 187 (2022), 114313.
|
[17] |
A. Ortiz-Perez, D. van Tilborg, R. van der Meel, et al., Machine learning-guided high throughput nanoparticle design, Digit. Discov. 3 (2024) 1280-1291.
|
[18] |
A.W. Freyn, C. Atyeo, P.L. Earl, et al., A monkeypox mRNA-lipid nanoparticle vaccine targeting virus binding, entry, and transmission drives protection against lethal orthopoxviral challenge, bioRxiv. 2022. DOI: 10.1101/2022.12.17.520886.
|
[19] |
A.T. Karl, S. Essex, J. Wisnowski, et al., A workflow for lipid nanoparticle (LNP) formulation optimization using designed mixture-process experiments and self-validated ensemble models (SVEM), J. Vis. Exp. 198 (2023).
|
[20] |
A. Schmidt, H. Helgers, F.L. Vetter, et al., Process automation and control strategy by quality-by-design in total continuous mRNA manufacturing platforms, Processes 10 (2022), 1783.
|
[21] |
K.J. Kauffman, J.R. Dorkin, J.H. Yang, et al., Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs, Nano Lett. 15 (2015) 7300-7306.
|
[22] |
T. Lemkus, P. Ramsey, C. Gotwalt, et al., Self-validated ensemble models for design of experiments, arXiv. https://doi.org/10.48550/arXiv.2103.09303.
|
[23] |
M. Zhao, R. Wang, K. Yang, et al., Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis, Acta Pharm. Sin. B 13 (2023) 916-941.
|
[24] |
E. Yeung, P. Ramsey, Optimization of a conventional glycosylation analytical method using machine learning and experimental design, BioProcessing Journal 20 (2021).
|
[25] |
W. Wang, S. Feng, Z. Ye, et al., Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm, Acta Pharm. Sin. B 12 (2022) 2950-2962.
|
[26] |
R. Maharjan, S. Hada, J.E. Lee, et al., Comparative study of lipid nanoparticle-based mRNA vaccine bioprocess with machine learning and combinatorial artificial neural network-design of experiment approach, Int. J. Pharm. 640 (2023), 123012.
|
[27] |
Y. Xu, S. Ma, H. Cui, et al., AGILE platform: A deep learning-powered approach to accelerate LNP development for mRNA delivery, bioRxiv. 2023. https://doi.org/10.1101/2023.06.01.543345.
|
[28] |
Y. Qin, A.A. Walters, N. Rouatbi, et al., Evaluation of a DoE based approach for comprehensive modelling of the effect of lipid nanoparticle composition on nucleic acid delivery, Biomaterials 299 (2023), 122158.
|
[29] |
A. Ouranidis, C. Davidopoulou, R.K. Tashi, et al., Pharma 4.0 continuous mRNA drug products manufacturing, Pharmaceutics 13 (2021), 1371.
|
[30] |
R. Maharjan, S.H. Jeong, Application of different models to evaluate the key factors of fluidized bed layering granulation and their influence on granule characteristics, Powder Technol. 408 (2022), 117737.
|
[31] |
L. Schoenmaker, D. Witzigmann, J.A. Kulkarni, et al., mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability, Int. J. Pharm. 601 (2021), 120586.
|
[32] |
M.M. Tosi, A.P. Ramos, B.S. Esposto, et al., Chapter Six Dynamic light scattering (DLS) of nanoencapsulated food ingredients. S.M. Jafari, Characterization of Nanoencapsulated Food Ingredients, Vol. 4, Academic Press, 2020, New York, pp. 191-211.
|
[33] |
M.J. Carrasco, S. Alishetty, M.G. Alameh, et al., Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration, Commun. Biol. 4 (2021), 956.
|
[34] |
M.I. Henderson, Y. Eygeris, A. Jozic, et al., Leveraging biological buffers for efficient messenger RNA delivery via lipid nanoparticles, Mol. Pharm. 19 (2022) 4275-4285.
|
[35] |
Y. Fan, C.W. Yen, H.C. Lin, et al., Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles, Int. J. Pharm. 599 (2021), 120392.
|
[36] |
A. Hasanzadeh, M.R. Hamblin, J. Kiani, et al., Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? Nano Today 47 (2022), 101665.
|
[37] |
D.Y. Ding, Y. Zhang, Y. Jia, et al., Machine learning-guided lipid nanoparticle design for mRNA delivery, arXiv. 2023. https://doi.org/10.48550/arXiv.2308.01402.
|
[38] |
S.A. Damiati, D. Rossi, H.N. Joensson, et al., Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics, Sci. Rep. 10 (2020), 19517.
|
[39] |
P. Hersh, SVEM in JMP 17. https://community.jmp.com/t5/Elevated-Thinking/SVEM-in-JMP-17/ba-p/538553. (Accessed 3 May 2024).
|
[40] |
P. Kay, P. Hersh, Re-Thinking the Design and Analysis of Experiments? (2021-EU-30MP-776). https://community.jmp.com/t5/Discovery-Summit-Europe-2021/Re-Thinking-the-Design-and-Analysis-of-Experiments-2021-EU-30MP/ta-p/349240. (Accessed 25 December 2023).
|
[41] |
P. Ramsey, W. Levin, T. Lemkus, et al., SVEM: A Paradigm Shift in Design and Analysis of Experiments (2021-EU-45MP-779). https://community.jmp.com/t5/Discovery-Summit-Europe-2021/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ta-p/349244. (Accessed 30 November 2023).
|
[42] |
K. Okuda, Y. Sato, K. Iwakawa, et al., On the size-regulation of RNA-loaded lipid nanoparticles synthesized by microfluidic device, J. Control. Release 348 (2022) 648-659.
|
[43] |
X. Hou, T. Zaks, R. Langer, et al., Lipid nanoparticles for mRNA delivery, Nat. Rev. Mater. 6 (2021) 1078-1094.
|
[44] |
A. Lamoot, J. Lammens, E. De Lombaerde, et al., Successful batch and continuous lyophilization of mRNA LNP formulations depend on cryoprotectants and ionizable lipids, Biomater. Sci. 11 (2023) 4327-4334.
|
[45] |
C. Malburet, L. Leclercq, J.F. Cotte, et al., Size and charge characterization of lipid nanoparticles for mRNA vaccines, Anal. Chem. 94 (2022) 4677-4685.
|
[46] |
A. Ji, M. Xu, Y. Pan, et al., Lipid microparticles show similar efficacy with lipid nanoparticles in delivering mRNA and preventing cancer, Pharm. Res. 40 (2023) 265-279.
|
[47] |
R.A. Meyer, S.Y. Neshat, J. Green, et al., Targeting strategies for mRNA delivery, Mater. Today Adv., 14 (2022), 100240.
|
[48] |
Y. Fan, Z. Shi, S. Ma, et al., Spectroscopy-based local modeling method for high-throughput quantification of nucleic acid loading in lipid nanoparticles, Anal. Chem. 94 (2022) 9081-9090.
|
[49] |
X.G. Chen, M. Grauzinyte, A.W. van der Vaart, et al., Applying pattern recognition as a robust approach for silicone oil droplet identification in flow-microscopy images of protein formulations, J. Pharm. Sci. 110 (2021) 1643-1651.
|
[50] |
J. Yang, F. Meng, S. Huang, et al., Process capability analysis for manufacturing processes based on the truncated data from supplier products, Int. J. Prod. Res. 58 (2020) 6235-6251.
|
[51] |
D. Gong, E. Ben-Akiva, A. Singh, et al., Machine learning guided structure function predictions enable in silico nanoparticle screening for polymeric gene delivery, Acta Biomater. 154 (2022) 349-358.
|
[52] |
Y. Lin, Y. Wang, J. Ding, et al., Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models, Sci. Transl. Med. 13 (2021), eaba9772.
|
[53] |
M.A. Islam, J. Rice, E. Reesor, et al., Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice, Biomaterials 266 (2021), 120431.
|
[54] |
B. Yarahmadi, S.M. Hashemianzadeh, S.M. Milani Hosseini, Machine-learning-based predictions of imprinting quality using ensemble and non-linear regression algorithms, Sci. Rep. 13 (2023), 12111.
|