Citation: | Bibhu Prasad Nanda, Priyanka Rani, Priyanka Paul, Aman, Subrahmanya S. Ganti, Rohit Bhatia. Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis[J]. Journal of Pharmaceutical Analysis, 2024, 14(11): 100959. doi: 10.1016/j.jpha.2024.02.013 |
[1] |
S. Kastner, A.K. Dietel, F. Seier, et al., LSPR-based biosensing enables the detection of antimicrobial resistance genes, Small 19 (2023), e2207953.
|
[2] |
R. Gu, Y. Duan, Y. Li, et al., Fiber-optic-based biosensor as an innovative technology for point-of-care testing detection of foodborne pathogenic bacteria to defend food and agricultural product safety, J. Agric. Food Chem. 71 (2023) 10982-10988.
|
[3] |
D.M. Kim, J.S. Park, S.W. Jung, et al., Biosensing applications using nanostructure-based localized surface plasmon resonance sensors, Sensors 21 (2021), 3191.
|
[4] |
F.S. Ligler, J.J. Gooding, Lighting up biosensors: Now and the decade to come, Anal. Chem. 91 (2019) 8732-8738.
|
[5] |
] U. Chadha, P. Bhardwaj, R. Agarwal et al., Recent progress and growth in biosensors technology. A critical review. J. Ind. Eng. Chem. 109 (2022) 21-51.
|
[6] |
E. MacHugh, G. Antony, A.K. Mallik, et al., Development and characterisation of a whole hybrid Sol-gel optofluidic platform for biosensing applications, Nanomaterials 12 (2022), 4192.
|
[7] |
Y. Yan, M. Ni, F. Wang, et al., Metal-organic framework-based biosensor for detecting hydrogen peroxide in plants through color-to-thermal signal conversion, ACS Nano 16 (2022) 15175-15187.
|
[8] |
R. Arreguin-Campos, M. Frigoli, M. Caldara, et al., Functionalized screen-printed electrodes for the thermal detection of Escherichia coli in dairy products, Food Chem. 404 (2023), 134653.
|
[9] |
X. Wan, H. Cong, G. Jiang, et al., A review on PVDF nanofibers in textiles for flexible piezoelectric sensors, ACS Appl. Nano Mater. 6 (2023) 1522-1540.
|
[10] |
S. Akgonullu, E. Ozgur, A. Denizli, Recent advances in quartz crystal microbalance biosensors based on the molecular imprinting technique for disease-related biomarkers, Chemosensors 10 (2022), 106.
|
[11] |
A. Mohammadpour-Haratbar, Y. Zare, K.Y. Rhee, Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects, Adv. Colloid Interface Sci. 309 (2022), 102795.
|
[12] |
L. Lei, B. Ma, C. Xu, et al., Emerging tumor-on-chips with electrochemical biosensors, Trac Trends Anal. Chem. 153 (2022), 116640.
|
[13] |
S. Kumar, R. Singh, Z. Wang, et al., (Invited) Advances in 2D nanomaterials-assisted plasmonics optical fiber sensors for biomolecules detection, Results Opt. 10 (2023), 100342.
|
[14] |
J. Divya, S. Selvendran, A.S. Raja, et al., Surface plasmon based plasmonic sensors: A review on their past, present and future, Biosens. Bioelectron. X 11 (2022), 100175.
|
[15] |
K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58 (2007) 267-297.
|
[16] |
M. Tavakkoli Yaraki, A. Tukova, Y. Wang, Emerging SERS biosensors for the analysis of cells and extracellular vesicles, Nanoscale 14 (2022) 15242-15268.
|
[17] |
J. Qu, A. Dillen, W. Saeys, et al., Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing, Anal. Chim. Acta 1104 (2020) 10-27.
|
[18] |
N. Ravindran, S. Kumar, M. Yashini, et al., Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: A review, Crit. Rev. Food Sci. Nutr. 63 (2023) 1055-1077.
|
[19] |
T. Itoh, M. Prochazka, Z. Dong, et al., Toward a new era of SERS and TERS at the nanometer scale: From fundamentals to innovative applications, Chem. Rev. 123 (2023) 1552-1634.
|
[20] |
H.C. Lin, Y. Lee, C.C. Lin, et al., Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process, Nanoscale 14 (2022) 10075-10081.
|
[21] |
P.A. Mosier-Boss, Review on SERS of bacteria, Biosensors 7 (2017), 51.
|
[22] |
X. Zhou, Z. Hu, D. Yang, et al., Bacteria detection: From powerful SERS to its advanced compatible techniques, Adv. Sci. 7 (2020), 2001739.
|
[23] |
T. Teranishi, M. Eguchi, M. Kanehara, et al., Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region, J. Mater. Chem. 21 (2011) 10238-10242.
|
[24] |
L. Yang, J. Wang, J. Altreuter, et al., Tutorial: Integrative computational analysis of bulk RNA-sequencing data to characterize tumor immunity using RIMA, Nat. Protoc. 18 (2023) 2404-2414.
|
[25] |
D. Song, X. Han, W. Xu, et al., Target nucleic acid amplification-free detection of Escherichia coli O157: H7 by CRISPR/Cas12a and hybridization chain reaction based on an evanescent wave fluorescence biosensor, Sens. Actuat. B Chem. 376 (2023), 133005.
|
[26] |
E.K. Hanson, C.W. Wang, L. Minkoff, et al., Strategies for mitigating commercial sensor chip variability with experimental design controls, Sensors 23 (2023), 6703.
|
[27] |
C. Liu, P. Wu, Y. Wei, et al., Dual-detection-parameter SPR sensor based on graded index multimode fiber, Sens. Actuat. A Phys. 335 (2022), 113360.
|
[28] |
J. Lin, J.P. Mueller, Q. Wang, et al., Polarization-controlled tunable directional coupling of surface plasmon polaritons, Science 340 (2013) 331-334.
|
[29] |
S. Kastner, P. Pritzke, A. Csaki, et al., The effect of layer thickness and immobilization chemistry on the detection of CRP in LSPR assays, Sci. Rep. 12 (2022), 836.
|
[30] |
D.G. Drescher, M.J. Drescher, Protein interaction analysis by surface plasmon resonance, Methods Mol. Biol. 2652 (2023) 319-344.
|
[31] |
S. Chen, Y. Liu, Q. Yu, et al., Microcapillary-based integrated LSPR device for refractive index detection and biosensing, J. Light. Technol. 38 (2020) 2485-2492.
|
[32] |
E. Ahrer, P.J. Wheatley, J. Kirk, et al., LRG-BEASTS: Sodium absorption and Rayleigh scattering in the atmosphere of WASP-94A b using NTT/EFOSC2, Mon. Not. R. Astron. Soc. 510 (2022) 4857-4871.
|
[33] |
H. Wei, A. McCarthy, J. Song, et al., Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance, Faraday Discuss. 205 (2017) 491-504.
|
[34] |
H. Wei, W. Leng, J. Song, et al., Improved quantitative SERS enabled by surface plasmon enhanced elastic light scattering, Anal. Chem. 90 (2018) 3227-3237.
|
[35] |
E. Smith, G. Dent, Modern Raman Apectroscopy: A Practical Approach, John Wiley & Sons, Hoboken, 2019.
|
[36] |
M.A. Otte, B. Sepulveda, W. Ni, et al., Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing, ACS Nano 4 (2010) 349-357.
|
[37] |
Y. Long, H. Li, Z. Du, et al., Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation, J. Colloid Interface Sci. 581 (2021) 698-708.
|
[38] |
J. Langer, D.J. de Aberasturi, J. Aizpurua, et al., Present and future of surface-enhanced Raman scattering, ACS Nano 14 (2020) 28-117.
|
[39] |
X. Wang, L. Guo, SERS activity of semiconductors: Crystalline and amorphous nanomaterials, Angew. Chem. Int. Ed 59 (2020) 4231-4239.
|
[40] |
H. Zhang, S. Yang, Q. Zhou, et al., The suitable condition of using LSPR model in SERS: LSPR effect versus chemical effect on microparticles surface-modified with nanostructures, Plasmonics 12 (2017) 77-81.
|
[41] |
X. Liang, N. Li, R. Zhang, et al., Carbon-based SERS biosensor: From substrate design to sensing and bioapplication, NPG Asia Mater. 13 (2021), 8.
|
[42] |
X. Wang, E. Zhang, H. Shi, et al., Semiconductor-based surface enhanced Raman scattering (SERS): From active materials to performance improvement, Analyst 147 (2022) 1257-1272.
|
[43] |
M. Puiu, C. Bala, SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events, Sensors 16 (2016), 870.
|
[44] |
S. Bai, A. Hu, Y. Hu, et al., Plasmonic superstructure arrays fabricated by laser near-field reduction for wide-range SERS analysis of fluorescent materials, Nanomaterials (Basel) 12 (2022), 970.
|
[45] |
H.M. Kim, H.J. Kim, J.H. Park, et al., High-performance biosensor using a sandwich assay via antibody-conjugated gold nanoparticles and fiber-optic localized surface plasmon resonance, Anal. Chim. Acta 1213 (2022), 339960.
|
[46] |
M.S.B. Raredon, J. Yang, J. Garritano, et al., Computation and visualization of cell-cell signaling topologies in single-cell systems data using Connectome, Sci. Rep. 12 (2022), 4187.
|
[47] |
H. Zhang, X. Zhou, X. Li, et al., Recent advancements of LSPR fiber-optic biosensing: Combination methods, structure, and prospects, Biosensors 13 (2023), 405.
|
[48] |
W. Nam, Y. Zhao, J. Song, et al., Plasmonic electronic Raman scattering as internal standard for spatial and temporal calibration in quantitative surface-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 11 (2020) 9543-9551.
|
[49] |
P. Sharma, V. Semwal, B.D. Gupta, A highly selective LSPR biosensor for the detection of taurine realized on optical fiber substrate and gold nanoparticles, Opt. Fiber Technol. 52 (2019), 101962.
|
[50] |
A. Sultangaziyev, A. Ilyas, A. Dyussupova, et al., Trends in application of SERS substrates beyond Ag and Au, and their role in bioanalysis, Biosensors 12 (2022), 967.
|
[51] |
J. Neng, Q. Zhang, P. Sun, Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food, Biosens. Bioelectron. 167 (2020), 112480.
|
[52] |
E. Prodan, C. Radloff, N.J. Halas, et al., A hybridization model for the plasmon response of complex nanostructures, Science 302 (2003) 419-422.
|
[53] |
S. Ali Safiabadi Tali, W. Zhou, Multiresonant plasmonics with spatial mode overlap: Overview and outlook, Nanophotonics 8 (2019) 1199-1225.
|
[54] |
] S.A. Khan, N.Z. Khan, Y. Xie, et al., Optical sensing by metamaterials and metasurfaces: From physics to biomolecule detection, Adv. Funct. Mate. 10 (2022), 2200500.
|
[55] |
] W. Zhou, Y. Hua, M.D. Huntington, et al., Delocalized lattice plasmon resonances show dispersive quality factors, J. Phys. Chem. Lett., 3 (2012) 1381-1385.
|
[56] |
S. Ali Safiabadi Tali, J. Song, W. Nam, et al., Two-tier nanolaminate plasmonic crystals for broadband multiresonant light concentration with spatial mode overlap, Adv. Optical Mater. 9 (2021), 2001908.
|
[57] |
A. Loren, J. Engelbrektsson, C. Eliasson, et al., Internal standard in surface-enhanced Raman spectroscopy, Anal. Chem. 76 (2004) 7391-7395.
|
[58] |
H.Y. Chen, M.H. Lin, C. Wang, et al., Large-scale hot spot engineering for quantitative SERS at the single-molecule scale, J. Am. Chem. Soc. 137 (2015) 13698-13705.
|
[59] |
W. Shen, X. Lin, C. Jiang, et al., Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards, Angew. Chem. Int. Ed 54 (2015) 7308-7312.
|
[60] |
Y. Zhou, R. Ding, P. Joshi, et al., Quantitative surface-enhanced Raman measurements with embedded internal reference, Anal. Chim. Acta 874 (2015) 49-53.
|
[61] |
X. Chen, H.R. Park, M. Pelton, et al., Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves, Nat. Commun. 4 (2013), 2361.
|
[62] |
M. Hu, F.S. Ou, W. Wu, et al., Gold nanofingers for molecule trapping and detection, J. Am. Chem. Soc. 132 (2010) 12820-12822.
|
[63] |
Q. Fu, Z. Zhan, J. Dou, et al., Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique, ACS Appl. Mater. Interfaces 7 (2015) 13322-13328.
|
[64] |
X. Zhang, Y. Zheng, X. Liu, et al., Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy, Adv. Mater. 27 (2015) 1090-1096.
|
[65] |
A. Garg, W. Nam, W. Zhou, Reusable surface-enhanced Raman spectroscopy membranes and textiles via template-assisted self-assembly and micro/nanoimprinting, ACS Appl. Mater. Interfaces 12 (2020) 56290-56299.
|
[66] |
J. Song, W. Nam, W. Zhou, Scalable high-performance nanolaminated SERS substrates based on multistack vertically oriented plasmonic nanogaps, Adv. Mater. Technol. 4 (2019), 1800689.
|
[67] |
W. Nam, J. Song, S. Ali Safiabadi Tali, et al., Au/SiO2-nanolaminated plasmonic nanoantennas as refractive-index-insensitive and transparent surface-enhanced Raman spectroscopy substrates, ACS Appl. Nano Mater. 4 (2021) 3175-3184.
|
[68] |
S.S. Zhao, M.A. Bichelberger, D.Y. Colin, et al., Monitoring methotrexate in clinical samples from cancer patients during chemotherapy with a LSPR-based competitive sensor, Analyst 137 (2012) 4742-4750.
|
[69] |
H. Hou, L. Chen, H. He, et al., Fine-tuning the LSPR response of gold nanorod-polyaniline core-shell nanoparticles with high photothermal efficiency for cancer cell ablation, J. Mater. Chem. B 3 (2015) 5189-5196.
|
[70] |
S.S. Acimovic, M.A. Ortega, V. Sanz, et al., LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum, Nano Lett. 14 (2014) 2636-2641.
|
[71] |
S. Zhang, Q. Huang, L. Zhang, et al., Vacancy engineering of Cu2-xSe nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer, Nanoscale 10 (2018) 3130-3143.
|
[72] |
J. Ki, H.Y. Lee, H.Y. Son, et al., Sensitive plasmonic detection of miR-10b in biological samples using enzyme-assisted target recycling and developed LSPR probe, ACS Appl. Mater. Interfaces 11 (2019) 18923-18929.
|
[73] |
S. Rostami, A. Mehdinia, R. Niroumand, et al., Enhanced LSPR performance of graphene nanoribbons-silver nanoparticles hybrid as a colorimetric sensor for sequential detection of dopamine and glutathione, Anal. Chim. Acta 1120 (2020) 11-23.
|
[74] |
S. Chen, Q. Zhao, L. Zhang, et al., Combined detection of breast cancer biomarkers based on plasmonic sensor of gold nanorods, Sens. Actuat. B Chem. 221 (2015) 1391-1397.
|
[75] |
Z. Wang, Q. Chen, Y. Zhong, et al., A multicolor immunosensor for sensitive visual detection of breast cancer biomarker based on sensitive NADH-ascorbic-acid-mediated growth of gold nanobipyramids, Anal. Chem. 92 (2020) 1534-1540.
|
[76] |
G. Abdi, H. Bahador, High sensitivity and optimum design of LSPR-based sensors by coupled nano-rings for cancer detection, Opt. Lasers Eng. 174 (2024), 107975.
|
[77] |
D. Zhang, X. Lin, S. Lan, et al., Localized surface plasmon resonance enhanced singlet oxygen generation and light absorption based on black Phosphorus@AuNPs nanosheet for tumor photodynamic/thermal therapy, Part. Part. Syst. Charact. 35 (2018), 1800010.
|
[78] |
M. Ney, I. Abdulhalim, Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range, J. Biomed. Opt. 20 (2015), 125007.
|
[79] |
X. Huang, H.M. Mahmudul, Z. Li, et al., Noble metal nanomaterials for the diagnosis and treatment of hematological malignancies, Front. Biosci. Landmark Ed. 27 (2022), 40.
|
[80] |
A. Tiwari, J. Chaskar, A. Ali, et al., Role of sensor technology in detection of the breast cancer, BioNanoScience 12 (2022) 639-659.
|
[81] |
M. Soler, M.C. Estevez, R. Villar-Vazquez, et al., Label-free nanoplasmonic sensing of tumor-associate autoantibodies for early diagnosis of colorectal cancer, Anal. Chim. Acta 930 (2016) 31-38.
|
[82] |
N. Bellassai, R. D’Agata, V. Jungbluth, et al., Surface plasmon resonance for biomarker detection: Advances in non-invasive cancer diagnosis, Front. Chem. 7 (2019), 570.
|
[83] |
B. Kaur, S. Kumar, B.K. Kaushik, MXenes-based fiber-optic SPR sensor for colorectal cancer diagnosis, IEEE Sens. J. 22 (2022) 6661-6668.
|
[84] |
M. Mahani, F. Alimohamadi, M. Torkzadeh-Mahani, et al., LSPR biosensing for the early-stage prostate cancer detection using hydrogen bonds between PSA and antibody: Molecular dynamic and experimental study, J. Mol. Liq. 324 (2021), 114736.
|
[85] |
P. Damborsky, N. Madaboosi, V. Chu, et al., Surface plasmon resonance application in prostate cancer biomarker research, Chem. Pap. 69 (2015) 143-149.
|
[86] |
L. Li, C. Cheng, H. Yang, et al., Label-free localized surface plasmon resonance biosensor used to detect serum interleukin-10 in patients with endometrial cancer, Acta Phys. Pol. A 138 (2020) 338-344.
|
[87] |
J. Yuan, R. Duan, H. Yang, et al., Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance, Int. J. Nanomedicine 7 (2012) 2921-2928.
|
[88] |
Q. Zhao, R. Duan, J. Yuan, et al., A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array, Int. J. Nanomedicine 9 (2014) 1097-1104.
|
[89] |
S. Mariani, M. Minunni, Surface plasmon resonance applications in clinical analysis, Anal. Bioanal. Chem. 406 (2014) 2303-2323.
|
[90] |
T. Narayan, S. Kumar, S. Kumar, et al., Protein functionalised self assembled monolayer based biosensor for colon cancer detection, Talanta 201 (2019) 465-473.
|
[91] |
J.H. Pai, C.T. Yang, H.Y. Hsu, et al., Development of a simplified approach for the fabrication of localised surface plasmon resonance sensors based on gold nanorods functionalized using mixed polyethylene glycol layers, Anal. Chim. Acta 974 (2017) 87-92.
|
[92] |
Y. Wang, R. Singh, S. Chaudhary, et al., 2-D nanomaterials assisted LSPR MPM optical fiber sensor probe for cardiac troponin I detection, IEEE Trans. Instrum. Meas. 71 (2022), 9504609.
|
[93] |
L. Tang, J. Casas, Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis, Biosens. Bioelectron. 61 (2014) 70-75.
|
[94] |
C. Maphanga, S. Manoto, S. Ombinda-Lemboumba, et al., Localized surface plasmon resonance biosensing of Mycobacterium tuberculosis biomarker for TB diagnosis, Sens. Bio Sens. Res. 39 (2023), 100545.
|
[95] |
Z. Wei, T.R. Mogan, K. Wang, et al., Morphology-governed performance of multi-dimensional photocatalysts for hydrogen generation, Energies 14 (2021), 7223.
|
[96] |
M. Endo-Kimura, E. Kowalska, Plasmonic photocatalysts for microbiological applications, Catalysts 10 (2020), 824.
|
[97] |
M. Manzano, P. Vizzini, K. Jia, et al., Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine, Sens. Actuat. B Chem. 223 (2016) 295-300.
|
[98] |
A. Taghipour, H. Heidarzadeh, Design and analysis of highly sensitive LSPR-based metal-insulator-metal nano-discs as a biosensor for fast detection of SARS-CoV-2, Photonics 9 (2022), 542.
|
[99] |
S.Y. Oh, N.S. Heo, S. Shukla, et al., Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat, Sci. Rep. 7 (2017), 10130.
|
[100] |
Tambe, A, S. Kumbhaj, NP. Lalla, et al., LSPR based fiber optic sensor for fluoride impurity sensing in potable water. J. Phys. Conf. Ser. 755 (2016), 012058.
|
[101] |
Z. Fattahi, A.Y. Khosroushahi, M. Hasanzadeh, Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer, Biomedecine Pharmacother. 132 (2020), 110850.
|
[102] |
S. Abalde-Cela, R. Rebelo, L. Wu, et al., A SERS-based 3D nanobiosensor: Towards cell metabolite monitoring, Mater. Adv. 1 (2020) 1613-1621.
|
[103] |
J. Ko, J. Ham, H. Lee, et al., Integration of a fiber-based cell culture and biosensing system for monitoring of multiple protein markers secreted from stem cells, Biosens. Bioelectron. 193 (2021), 113531.
|
[104] |
W. Nam, X. Ren, S.A.S. Tali, et al., Refractive-index-insensitive nanolaminated SERS substrates for label-free Raman profiling and classification of living cancer cells, Nano Lett. 19 (2019) 7273-7281.
|
[105] |
F. Lussier, D. Missirlis, J.P. Spatz, et al., Machine-learning-driven surface-enhanced Raman scattering optophysiology reveals multiplexed metabolite gradients near cells, ACS Nano 13 (2019) 1403-1411.
|
[106] |
A. Garg, W. Nam, W. Wang, et al., In situ spatiotemporal SERS measurements and multivariate analysis of virally infected bacterial biofilms using nanolaminated plasmonic crystals, ACS Sens. 8 (2023) 1132-1142.
|
[107] |
L. Tang, J. Casas, M. Venkataramasubramani, Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma, Anal. Chem. 85 (2013) 1431-1439.
|
[108] |
Y. Pang, Q. Li, C. Wang, et al., CRISPR-cas12a mediated SERS lateral flow assay for amplification-free detection of double-stranded DNA and single-base mutation, Chem. Eng. J. 429 (2022), 132109.
|
[109] |
W. Nam, X. Ren, I. Kim, et al., Plasmonically calibrated label-free surface-enhanced Raman spectroscopy for improved multivariate analysis of living cells in cancer subtyping and drug testing, Anal. Chem. 93 (2021) 4601-4610.
|
[110] |
M.R. Kagan, R.L. McCreery, Reduction of fluorescence interference in Raman spectroscopy via analyte adsorption on graphitic carbon, Anal. Chem. 66 (1994) 4159-4165.
|
[111] |
G. Vannucci, M.V. Canamares, S. Prati, et al., Analysis of the tautomeric equilibrium of two red monoazo dyes by UV-Visible, Raman and SERS spectroscopies, Spectrochim. Acta A Mol. Biomol. Spectrosc. 261 (2021), 120007.
|
[112] |
Y. Yang, X. Gao, S. Yang, et al., Synthesis and superior SERS performance of porous octahedron Cu2O with oxygen vacancy derived from MOFs, J. Mater. Sci. 56 (2021) 9702-9711.
|
[113] |
N. Albarghouthi, P. MacMillan, C.L. Brosseau, Optimization of gold nanorod arrays for surface enhanced Raman spectroscopy (SERS) detection of atrazine, Analyst 146 (2021) 2037-2047.
|
[114] |
Z. Shen, Q. Fan, Q. Yu, et al., Facile detection of carbendazim in food using TLC-SERS on diatomite thin layer chromatography, Spectrochim. Acta A Mol. Biomol. Spectrosc. 247 (2021), 119037.
|
[115] |
G. Barbillon, O. Graniel, M. Bechelany, Assembled Au/ZnO nano-urchins for SERS sensing of the pesticide thiram, Nanomaterials 11 (2021), 2174.
|
[116] |
C. Yao, X. Gao, X. Liu, et al., In-situ preparation of Ferrero® chocolate-like Cu2O@Ag microsphere as SERS substrate for detection of thiram, J. Mater. Res. Technol. 11 (2021) 857-865.
|
[117] |
H. Yu, Q. Lyu, X. Chen, et al., Nylon membranes modified by gold nanoparticles as surface-enhanced Raman spectroscopy substrates for several pesticides detection, RSC Adv. 11 (2021) 24183-24189.
|
[118] |
D. Ibanez, M.B. Gonzalez-Garcia, D. Hernandez-Santos, et al., Detection of dithiocarbamate, chloronicotinyl and organophosphate pesticides by electrochemical activation of SERS features of screen-printed electrodes, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 248 (2021), 119174.
|
[119] |
C. Huang, F.J. Jan, C.C. Chang, A 3D plasmonic crossed-wire nanostructure for surface-enhanced Raman scattering and plasmon-enhanced fluorescence detection, Molecules 26 (2021), 281.
|
[120] |
] R. Alvarez-Puebla, LM. Liz-Marzan, FJ. Garcia de Abajo et al., Light concentration at the nanometer scale. J. Phys. Chem. Lett. 16 (2010) 2428-2434.
|
[121] |
J. Xia, W. Li, M. Sun, et al., Application of SERS in the detection of fungi, bacteria and viruses, Nanomaterials 12 (2022), 3572.
|
[122] |
H.G.M. Edwards, N.C. Russell, R. Weinstein, et al., Fourier transform Raman spectroscopic study of fungi, J. Raman Spectrosc. 26 (1995) 911-916.
|
[123] |
K. De Gussem, P. Vandenabeele, A. Verbeken, et al., Raman spectroscopic study of Lactarius spores (Russulales, Fungi), Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61 (2005) 2896-2908.
|
[124] |
N.E. Dina, A.M.R. Gherman, V. Chis, et al., Characterization of clinically relevant fungi via SERS fingerprinting assisted by novel chemometric models, Anal. Chem. 90 (2018) 2484-2492.
|
[125] |
Q. Li, Z. Lu, X. Tan, et al., Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification, Biosens. Bioelectron. 97 (2017) 59-64.
|
[126] |
A.K. Boardman, W.S. Wong, W.R. Premasiri, et al., Rapid detection of bacteria from blood with surface-enhanced Raman spectroscopy, Anal. Chem. 88 (2016) 8026-8035.
|
[127] |
M.M. Hassan, Y. Xu, P. He, et al., Simultaneous determination of benzimidazole fungicides in food using signal optimized label-free HAu/Ag NS-SERS sensor, Food Chem. 397 (2022), 133755.
|
[128] |
M.M. Hassan, H. Li, W. Ahmad, et al., Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration, LWT 105 (2019) 290-297.
|
[129] |
J. Li, C. Wang, Y. Yao, et al., Label-free discrimination of glioma brain tumors in different stages by surface enhanced Raman scattering, Talanta 216 (2020), 120983.
|
[130] |
M.R. Islam, A.N.M. Iftekhar, A.A. Hassan, et al., Double plasmonic peak shift sensitivity: An analysis of a highly sensitive LSPR-PCF sensor for a diverse range of analyte detection, Appl. Phys. A 129 (2023), 571.
|
[131] |
Z. Wang, D. Wang, F. Deng, et al., Ag quantum dots decorated ultrathin g-C3N4 nanosheets for boosting degradation of pharmaceutical contaminants: Insight from interfacial electric field induced by local surface plasma resonance, Chem. Eng. J. 463 (2023), 142313.
|
[132] |
Y. Cao, Y. Cheng, M. Sun, et al., Graphene-based SERS for sensor and catalysis. Appl. Spectrosc. Rev. 58 (2023) 1-38.
|
[133] |
J. Zhang, S. Lu, G. Shi, et al., A study on a hybrid SERS substrates based on arrayed gold nanoparticle/graphene/copper cone cavities fabricated by a conical tip indentation, J. Mater. Res. Technol. 22 (2023) 1558-1571.
|