Volume 14 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Bibhu Prasad Nanda, Priyanka Rani, Priyanka Paul, Aman, Subrahmanya S. Ganti, Rohit Bhatia. Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis[J]. Journal of Pharmaceutical Analysis, 2024, 14(11): 100959. doi: 10.1016/j.jpha.2024.02.013
Citation: Bibhu Prasad Nanda, Priyanka Rani, Priyanka Paul, Aman, Subrahmanya S. Ganti, Rohit Bhatia. Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis[J]. Journal of Pharmaceutical Analysis, 2024, 14(11): 100959. doi: 10.1016/j.jpha.2024.02.013

Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis

doi: 10.1016/j.jpha.2024.02.013
  • Received Date: Sep. 20, 2023
  • Accepted Date: Feb. 26, 2024
  • Rev Recd Date: Feb. 01, 2024
  • Publish Date: Feb. 28, 2024
  • An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures. A detailed exploration of the recent ground-breaking developments in optical biosensors employing LSPR and SERS technologies has been thoroughly discussed along with their underlying principles and the working mechanisms. A biosensor chip has been created, featuring a high-density deposition of gold nanoparticles (AuNPs) under varying ligand concentration and reaction duration on the substrate. An ordinary description, along with a visual illustration, has been thoroughly provided for concepts such as a sensogram, refractive index shift, surface plasmon resonance (SPR), and the evanescent field, Rayleigh scattering, Raman scattering, as well as the electromagnetic enhancement and chemical enhancement. LSPR and SERS both have advantages and disadvantages, but widely used SERS has some advantages over LSPR, like chemical specificity, high sensitivity, multiplexing, and versatility in different fields. This review confirms and elucidates the significance of different disease biomarker identification. LSPR and SERS both play a vital role in the detection of various types of cancer, such as cervical cancer, ovarian cancer, endometrial cancer, prostate cancer, colorectal cancer, and brain tumors. This proposed optical biosensor offers potential applications for early diagnosis and monitoring of viral disease, bacterial infectious diseases, fungal diseases, diabetes, and cardiac disease biosensing. LSPR and SERS provide a new direction for environmental monitoring, food safety, refining impurities from water samples, and lead detection. The understanding of these biosensors is still limited and challenging.
  • loading
  • [1]
    S. Kastner, A.K. Dietel, F. Seier, et al., LSPR-based biosensing enables the detection of antimicrobial resistance genes, Small 19 (2023), e2207953.
    [2]
    R. Gu, Y. Duan, Y. Li, et al., Fiber-optic-based biosensor as an innovative technology for point-of-care testing detection of foodborne pathogenic bacteria to defend food and agricultural product safety, J. Agric. Food Chem. 71 (2023) 10982-10988.
    [3]
    D.M. Kim, J.S. Park, S.W. Jung, et al., Biosensing applications using nanostructure-based localized surface plasmon resonance sensors, Sensors 21 (2021), 3191.
    [4]
    F.S. Ligler, J.J. Gooding, Lighting up biosensors: Now and the decade to come, Anal. Chem. 91 (2019) 8732-8738.
    [5]
    ] U. Chadha, P. Bhardwaj, R. Agarwal et al., Recent progress and growth in biosensors technology. A critical review. J. Ind. Eng. Chem. 109 (2022) 21-51.
    [6]
    E. MacHugh, G. Antony, A.K. Mallik, et al., Development and characterisation of a whole hybrid Sol-gel optofluidic platform for biosensing applications, Nanomaterials 12 (2022), 4192.
    [7]
    Y. Yan, M. Ni, F. Wang, et al., Metal-organic framework-based biosensor for detecting hydrogen peroxide in plants through color-to-thermal signal conversion, ACS Nano 16 (2022) 15175-15187.
    [8]
    R. Arreguin-Campos, M. Frigoli, M. Caldara, et al., Functionalized screen-printed electrodes for the thermal detection of Escherichia coli in dairy products, Food Chem. 404 (2023), 134653.
    [9]
    X. Wan, H. Cong, G. Jiang, et al., A review on PVDF nanofibers in textiles for flexible piezoelectric sensors, ACS Appl. Nano Mater. 6 (2023) 1522-1540.
    [10]
    S. Akgonullu, E. Ozgur, A. Denizli, Recent advances in quartz crystal microbalance biosensors based on the molecular imprinting technique for disease-related biomarkers, Chemosensors 10 (2022), 106.
    [11]
    A. Mohammadpour-Haratbar, Y. Zare, K.Y. Rhee, Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects, Adv. Colloid Interface Sci. 309 (2022), 102795.
    [12]
    L. Lei, B. Ma, C. Xu, et al., Emerging tumor-on-chips with electrochemical biosensors, Trac Trends Anal. Chem. 153 (2022), 116640.
    [13]
    S. Kumar, R. Singh, Z. Wang, et al., (Invited) Advances in 2D nanomaterials-assisted plasmonics optical fiber sensors for biomolecules detection, Results Opt. 10 (2023), 100342.
    [14]
    J. Divya, S. Selvendran, A.S. Raja, et al., Surface plasmon based plasmonic sensors: A review on their past, present and future, Biosens. Bioelectron. X 11 (2022), 100175.
    [15]
    K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58 (2007) 267-297.
    [16]
    M. Tavakkoli Yaraki, A. Tukova, Y. Wang, Emerging SERS biosensors for the analysis of cells and extracellular vesicles, Nanoscale 14 (2022) 15242-15268.
    [17]
    J. Qu, A. Dillen, W. Saeys, et al., Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing, Anal. Chim. Acta 1104 (2020) 10-27.
    [18]
    N. Ravindran, S. Kumar, M. Yashini, et al., Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: A review, Crit. Rev. Food Sci. Nutr. 63 (2023) 1055-1077.
    [19]
    T. Itoh, M. Prochazka, Z. Dong, et al., Toward a new era of SERS and TERS at the nanometer scale: From fundamentals to innovative applications, Chem. Rev. 123 (2023) 1552-1634.
    [20]
    H.C. Lin, Y. Lee, C.C. Lin, et al., Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process, Nanoscale 14 (2022) 10075-10081.
    [21]
    P.A. Mosier-Boss, Review on SERS of bacteria, Biosensors 7 (2017), 51.
    [22]
    X. Zhou, Z. Hu, D. Yang, et al., Bacteria detection: From powerful SERS to its advanced compatible techniques, Adv. Sci. 7 (2020), 2001739.
    [23]
    T. Teranishi, M. Eguchi, M. Kanehara, et al., Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region, J. Mater. Chem. 21 (2011) 10238-10242.
    [24]
    L. Yang, J. Wang, J. Altreuter, et al., Tutorial: Integrative computational analysis of bulk RNA-sequencing data to characterize tumor immunity using RIMA, Nat. Protoc. 18 (2023) 2404-2414.
    [25]
    D. Song, X. Han, W. Xu, et al., Target nucleic acid amplification-free detection of Escherichia coli O157: H7 by CRISPR/Cas12a and hybridization chain reaction based on an evanescent wave fluorescence biosensor, Sens. Actuat. B Chem. 376 (2023), 133005.
    [26]
    E.K. Hanson, C.W. Wang, L. Minkoff, et al., Strategies for mitigating commercial sensor chip variability with experimental design controls, Sensors 23 (2023), 6703.
    [27]
    C. Liu, P. Wu, Y. Wei, et al., Dual-detection-parameter SPR sensor based on graded index multimode fiber, Sens. Actuat. A Phys. 335 (2022), 113360.
    [28]
    J. Lin, J.P. Mueller, Q. Wang, et al., Polarization-controlled tunable directional coupling of surface plasmon polaritons, Science 340 (2013) 331-334.
    [29]
    S. Kastner, P. Pritzke, A. Csaki, et al., The effect of layer thickness and immobilization chemistry on the detection of CRP in LSPR assays, Sci. Rep. 12 (2022), 836.
    [30]
    D.G. Drescher, M.J. Drescher, Protein interaction analysis by surface plasmon resonance, Methods Mol. Biol. 2652 (2023) 319-344.
    [31]
    S. Chen, Y. Liu, Q. Yu, et al., Microcapillary-based integrated LSPR device for refractive index detection and biosensing, J. Light. Technol. 38 (2020) 2485-2492.
    [32]
    E. Ahrer, P.J. Wheatley, J. Kirk, et al., LRG-BEASTS: Sodium absorption and Rayleigh scattering in the atmosphere of WASP-94A b using NTT/EFOSC2, Mon. Not. R. Astron. Soc. 510 (2022) 4857-4871.
    [33]
    H. Wei, A. McCarthy, J. Song, et al., Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance, Faraday Discuss. 205 (2017) 491-504.
    [34]
    H. Wei, W. Leng, J. Song, et al., Improved quantitative SERS enabled by surface plasmon enhanced elastic light scattering, Anal. Chem. 90 (2018) 3227-3237.
    [35]
    E. Smith, G. Dent, Modern Raman Apectroscopy: A Practical Approach, John Wiley & Sons, Hoboken, 2019.
    [36]
    M.A. Otte, B. Sepulveda, W. Ni, et al., Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing, ACS Nano 4 (2010) 349-357.
    [37]
    Y. Long, H. Li, Z. Du, et al., Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation, J. Colloid Interface Sci. 581 (2021) 698-708.
    [38]
    J. Langer, D.J. de Aberasturi, J. Aizpurua, et al., Present and future of surface-enhanced Raman scattering, ACS Nano 14 (2020) 28-117.
    [39]
    X. Wang, L. Guo, SERS activity of semiconductors: Crystalline and amorphous nanomaterials, Angew. Chem. Int. Ed 59 (2020) 4231-4239.
    [40]
    H. Zhang, S. Yang, Q. Zhou, et al., The suitable condition of using LSPR model in SERS: LSPR effect versus chemical effect on microparticles surface-modified with nanostructures, Plasmonics 12 (2017) 77-81.
    [41]
    X. Liang, N. Li, R. Zhang, et al., Carbon-based SERS biosensor: From substrate design to sensing and bioapplication, NPG Asia Mater. 13 (2021), 8.
    [42]
    X. Wang, E. Zhang, H. Shi, et al., Semiconductor-based surface enhanced Raman scattering (SERS): From active materials to performance improvement, Analyst 147 (2022) 1257-1272.
    [43]
    M. Puiu, C. Bala, SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events, Sensors 16 (2016), 870.
    [44]
    S. Bai, A. Hu, Y. Hu, et al., Plasmonic superstructure arrays fabricated by laser near-field reduction for wide-range SERS analysis of fluorescent materials, Nanomaterials (Basel) 12 (2022), 970.
    [45]
    H.M. Kim, H.J. Kim, J.H. Park, et al., High-performance biosensor using a sandwich assay via antibody-conjugated gold nanoparticles and fiber-optic localized surface plasmon resonance, Anal. Chim. Acta 1213 (2022), 339960.
    [46]
    M.S.B. Raredon, J. Yang, J. Garritano, et al., Computation and visualization of cell-cell signaling topologies in single-cell systems data using Connectome, Sci. Rep. 12 (2022), 4187.
    [47]
    H. Zhang, X. Zhou, X. Li, et al., Recent advancements of LSPR fiber-optic biosensing: Combination methods, structure, and prospects, Biosensors 13 (2023), 405.
    [48]
    W. Nam, Y. Zhao, J. Song, et al., Plasmonic electronic Raman scattering as internal standard for spatial and temporal calibration in quantitative surface-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 11 (2020) 9543-9551.
    [49]
    P. Sharma, V. Semwal, B.D. Gupta, A highly selective LSPR biosensor for the detection of taurine realized on optical fiber substrate and gold nanoparticles, Opt. Fiber Technol. 52 (2019), 101962.
    [50]
    A. Sultangaziyev, A. Ilyas, A. Dyussupova, et al., Trends in application of SERS substrates beyond Ag and Au, and their role in bioanalysis, Biosensors 12 (2022), 967.
    [51]
    J. Neng, Q. Zhang, P. Sun, Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food, Biosens. Bioelectron. 167 (2020), 112480.
    [52]
    E. Prodan, C. Radloff, N.J. Halas, et al., A hybridization model for the plasmon response of complex nanostructures, Science 302 (2003) 419-422.
    [53]
    S. Ali Safiabadi Tali, W. Zhou, Multiresonant plasmonics with spatial mode overlap: Overview and outlook, Nanophotonics 8 (2019) 1199-1225.
    [54]
    ] S.A. Khan, N.Z. Khan, Y. Xie, et al., Optical sensing by metamaterials and metasurfaces: From physics to biomolecule detection, Adv. Funct. Mate. 10 (2022), 2200500.
    [55]
    ] W. Zhou, Y. Hua, M.D. Huntington, et al., Delocalized lattice plasmon resonances show dispersive quality factors, J. Phys. Chem. Lett., 3 (2012) 1381-1385.
    [56]
    S. Ali Safiabadi Tali, J. Song, W. Nam, et al., Two-tier nanolaminate plasmonic crystals for broadband multiresonant light concentration with spatial mode overlap, Adv. Optical Mater. 9 (2021), 2001908.
    [57]
    A. Loren, J. Engelbrektsson, C. Eliasson, et al., Internal standard in surface-enhanced Raman spectroscopy, Anal. Chem. 76 (2004) 7391-7395.
    [58]
    H.Y. Chen, M.H. Lin, C. Wang, et al., Large-scale hot spot engineering for quantitative SERS at the single-molecule scale, J. Am. Chem. Soc. 137 (2015) 13698-13705.
    [59]
    W. Shen, X. Lin, C. Jiang, et al., Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards, Angew. Chem. Int. Ed 54 (2015) 7308-7312.
    [60]
    Y. Zhou, R. Ding, P. Joshi, et al., Quantitative surface-enhanced Raman measurements with embedded internal reference, Anal. Chim. Acta 874 (2015) 49-53.
    [61]
    X. Chen, H.R. Park, M. Pelton, et al., Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves, Nat. Commun. 4 (2013), 2361.
    [62]
    M. Hu, F.S. Ou, W. Wu, et al., Gold nanofingers for molecule trapping and detection, J. Am. Chem. Soc. 132 (2010) 12820-12822.
    [63]
    Q. Fu, Z. Zhan, J. Dou, et al., Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique, ACS Appl. Mater. Interfaces 7 (2015) 13322-13328.
    [64]
    X. Zhang, Y. Zheng, X. Liu, et al., Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy, Adv. Mater. 27 (2015) 1090-1096.
    [65]
    A. Garg, W. Nam, W. Zhou, Reusable surface-enhanced Raman spectroscopy membranes and textiles via template-assisted self-assembly and micro/nanoimprinting, ACS Appl. Mater. Interfaces 12 (2020) 56290-56299.
    [66]
    J. Song, W. Nam, W. Zhou, Scalable high-performance nanolaminated SERS substrates based on multistack vertically oriented plasmonic nanogaps, Adv. Mater. Technol. 4 (2019), 1800689.
    [67]
    W. Nam, J. Song, S. Ali Safiabadi Tali, et al., Au/SiO2-nanolaminated plasmonic nanoantennas as refractive-index-insensitive and transparent surface-enhanced Raman spectroscopy substrates, ACS Appl. Nano Mater. 4 (2021) 3175-3184.
    [68]
    S.S. Zhao, M.A. Bichelberger, D.Y. Colin, et al., Monitoring methotrexate in clinical samples from cancer patients during chemotherapy with a LSPR-based competitive sensor, Analyst 137 (2012) 4742-4750.
    [69]
    H. Hou, L. Chen, H. He, et al., Fine-tuning the LSPR response of gold nanorod-polyaniline core-shell nanoparticles with high photothermal efficiency for cancer cell ablation, J. Mater. Chem. B 3 (2015) 5189-5196.
    [70]
    S.S. Acimovic, M.A. Ortega, V. Sanz, et al., LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum, Nano Lett. 14 (2014) 2636-2641.
    [71]
    S. Zhang, Q. Huang, L. Zhang, et al., Vacancy engineering of Cu2-xSe nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer, Nanoscale 10 (2018) 3130-3143.
    [72]
    J. Ki, H.Y. Lee, H.Y. Son, et al., Sensitive plasmonic detection of miR-10b in biological samples using enzyme-assisted target recycling and developed LSPR probe, ACS Appl. Mater. Interfaces 11 (2019) 18923-18929.
    [73]
    S. Rostami, A. Mehdinia, R. Niroumand, et al., Enhanced LSPR performance of graphene nanoribbons-silver nanoparticles hybrid as a colorimetric sensor for sequential detection of dopamine and glutathione, Anal. Chim. Acta 1120 (2020) 11-23.
    [74]
    S. Chen, Q. Zhao, L. Zhang, et al., Combined detection of breast cancer biomarkers based on plasmonic sensor of gold nanorods, Sens. Actuat. B Chem. 221 (2015) 1391-1397.
    [75]
    Z. Wang, Q. Chen, Y. Zhong, et al., A multicolor immunosensor for sensitive visual detection of breast cancer biomarker based on sensitive NADH-ascorbic-acid-mediated growth of gold nanobipyramids, Anal. Chem. 92 (2020) 1534-1540.
    [76]
    G. Abdi, H. Bahador, High sensitivity and optimum design of LSPR-based sensors by coupled nano-rings for cancer detection, Opt. Lasers Eng. 174 (2024), 107975.
    [77]
    D. Zhang, X. Lin, S. Lan, et al., Localized surface plasmon resonance enhanced singlet oxygen generation and light absorption based on black Phosphorus@AuNPs nanosheet for tumor photodynamic/thermal therapy, Part. Part. Syst. Charact. 35 (2018), 1800010.
    [78]
    M. Ney, I. Abdulhalim, Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range, J. Biomed. Opt. 20 (2015), 125007.
    [79]
    X. Huang, H.M. Mahmudul, Z. Li, et al., Noble metal nanomaterials for the diagnosis and treatment of hematological malignancies, Front. Biosci. Landmark Ed. 27 (2022), 40.
    [80]
    A. Tiwari, J. Chaskar, A. Ali, et al., Role of sensor technology in detection of the breast cancer, BioNanoScience 12 (2022) 639-659.
    [81]
    M. Soler, M.C. Estevez, R. Villar-Vazquez, et al., Label-free nanoplasmonic sensing of tumor-associate autoantibodies for early diagnosis of colorectal cancer, Anal. Chim. Acta 930 (2016) 31-38.
    [82]
    N. Bellassai, R. D’Agata, V. Jungbluth, et al., Surface plasmon resonance for biomarker detection: Advances in non-invasive cancer diagnosis, Front. Chem. 7 (2019), 570.
    [83]
    B. Kaur, S. Kumar, B.K. Kaushik, MXenes-based fiber-optic SPR sensor for colorectal cancer diagnosis, IEEE Sens. J. 22 (2022) 6661-6668.
    [84]
    M. Mahani, F. Alimohamadi, M. Torkzadeh-Mahani, et al., LSPR biosensing for the early-stage prostate cancer detection using hydrogen bonds between PSA and antibody: Molecular dynamic and experimental study, J. Mol. Liq. 324 (2021), 114736.
    [85]
    P. Damborsky, N. Madaboosi, V. Chu, et al., Surface plasmon resonance application in prostate cancer biomarker research, Chem. Pap. 69 (2015) 143-149.
    [86]
    L. Li, C. Cheng, H. Yang, et al., Label-free localized surface plasmon resonance biosensor used to detect serum interleukin-10 in patients with endometrial cancer, Acta Phys. Pol. A 138 (2020) 338-344.
    [87]
    J. Yuan, R. Duan, H. Yang, et al., Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance, Int. J. Nanomedicine 7 (2012) 2921-2928.
    [88]
    Q. Zhao, R. Duan, J. Yuan, et al., A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array, Int. J. Nanomedicine 9 (2014) 1097-1104.
    [89]
    S. Mariani, M. Minunni, Surface plasmon resonance applications in clinical analysis, Anal. Bioanal. Chem. 406 (2014) 2303-2323.
    [90]
    T. Narayan, S. Kumar, S. Kumar, et al., Protein functionalised self assembled monolayer based biosensor for colon cancer detection, Talanta 201 (2019) 465-473.
    [91]
    J.H. Pai, C.T. Yang, H.Y. Hsu, et al., Development of a simplified approach for the fabrication of localised surface plasmon resonance sensors based on gold nanorods functionalized using mixed polyethylene glycol layers, Anal. Chim. Acta 974 (2017) 87-92.
    [92]
    Y. Wang, R. Singh, S. Chaudhary, et al., 2-D nanomaterials assisted LSPR MPM optical fiber sensor probe for cardiac troponin I detection, IEEE Trans. Instrum. Meas. 71 (2022), 9504609.
    [93]
    L. Tang, J. Casas, Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis, Biosens. Bioelectron. 61 (2014) 70-75.
    [94]
    C. Maphanga, S. Manoto, S. Ombinda-Lemboumba, et al., Localized surface plasmon resonance biosensing of Mycobacterium tuberculosis biomarker for TB diagnosis, Sens. Bio Sens. Res. 39 (2023), 100545.
    [95]
    Z. Wei, T.R. Mogan, K. Wang, et al., Morphology-governed performance of multi-dimensional photocatalysts for hydrogen generation, Energies 14 (2021), 7223.
    [96]
    M. Endo-Kimura, E. Kowalska, Plasmonic photocatalysts for microbiological applications, Catalysts 10 (2020), 824.
    [97]
    M. Manzano, P. Vizzini, K. Jia, et al., Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine, Sens. Actuat. B Chem. 223 (2016) 295-300.
    [98]
    A. Taghipour, H. Heidarzadeh, Design and analysis of highly sensitive LSPR-based metal-insulator-metal nano-discs as a biosensor for fast detection of SARS-CoV-2, Photonics 9 (2022), 542.
    [99]
    S.Y. Oh, N.S. Heo, S. Shukla, et al., Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat, Sci. Rep. 7 (2017), 10130.
    [100]
    Tambe, A, S. Kumbhaj, NP. Lalla, et al., LSPR based fiber optic sensor for fluoride impurity sensing in potable water. J. Phys. Conf. Ser. 755 (2016), 012058.
    [101]
    Z. Fattahi, A.Y. Khosroushahi, M. Hasanzadeh, Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer, Biomedecine Pharmacother. 132 (2020), 110850.
    [102]
    S. Abalde-Cela, R. Rebelo, L. Wu, et al., A SERS-based 3D nanobiosensor: Towards cell metabolite monitoring, Mater. Adv. 1 (2020) 1613-1621.
    [103]
    J. Ko, J. Ham, H. Lee, et al., Integration of a fiber-based cell culture and biosensing system for monitoring of multiple protein markers secreted from stem cells, Biosens. Bioelectron. 193 (2021), 113531.
    [104]
    W. Nam, X. Ren, S.A.S. Tali, et al., Refractive-index-insensitive nanolaminated SERS substrates for label-free Raman profiling and classification of living cancer cells, Nano Lett. 19 (2019) 7273-7281.
    [105]
    F. Lussier, D. Missirlis, J.P. Spatz, et al., Machine-learning-driven surface-enhanced Raman scattering optophysiology reveals multiplexed metabolite gradients near cells, ACS Nano 13 (2019) 1403-1411.
    [106]
    A. Garg, W. Nam, W. Wang, et al., In situ spatiotemporal SERS measurements and multivariate analysis of virally infected bacterial biofilms using nanolaminated plasmonic crystals, ACS Sens. 8 (2023) 1132-1142.
    [107]
    L. Tang, J. Casas, M. Venkataramasubramani, Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma, Anal. Chem. 85 (2013) 1431-1439.
    [108]
    Y. Pang, Q. Li, C. Wang, et al., CRISPR-cas12a mediated SERS lateral flow assay for amplification-free detection of double-stranded DNA and single-base mutation, Chem. Eng. J. 429 (2022), 132109.
    [109]
    W. Nam, X. Ren, I. Kim, et al., Plasmonically calibrated label-free surface-enhanced Raman spectroscopy for improved multivariate analysis of living cells in cancer subtyping and drug testing, Anal. Chem. 93 (2021) 4601-4610.
    [110]
    M.R. Kagan, R.L. McCreery, Reduction of fluorescence interference in Raman spectroscopy via analyte adsorption on graphitic carbon, Anal. Chem. 66 (1994) 4159-4165.
    [111]
    G. Vannucci, M.V. Canamares, S. Prati, et al., Analysis of the tautomeric equilibrium of two red monoazo dyes by UV-Visible, Raman and SERS spectroscopies, Spectrochim. Acta A Mol. Biomol. Spectrosc. 261 (2021), 120007.
    [112]
    Y. Yang, X. Gao, S. Yang, et al., Synthesis and superior SERS performance of porous octahedron Cu2O with oxygen vacancy derived from MOFs, J. Mater. Sci. 56 (2021) 9702-9711.
    [113]
    N. Albarghouthi, P. MacMillan, C.L. Brosseau, Optimization of gold nanorod arrays for surface enhanced Raman spectroscopy (SERS) detection of atrazine, Analyst 146 (2021) 2037-2047.
    [114]
    Z. Shen, Q. Fan, Q. Yu, et al., Facile detection of carbendazim in food using TLC-SERS on diatomite thin layer chromatography, Spectrochim. Acta A Mol. Biomol. Spectrosc. 247 (2021), 119037.
    [115]
    G. Barbillon, O. Graniel, M. Bechelany, Assembled Au/ZnO nano-urchins for SERS sensing of the pesticide thiram, Nanomaterials 11 (2021), 2174.
    [116]
    C. Yao, X. Gao, X. Liu, et al., In-situ preparation of Ferrero® chocolate-like Cu2O@Ag microsphere as SERS substrate for detection of thiram, J. Mater. Res. Technol. 11 (2021) 857-865.
    [117]
    H. Yu, Q. Lyu, X. Chen, et al., Nylon membranes modified by gold nanoparticles as surface-enhanced Raman spectroscopy substrates for several pesticides detection, RSC Adv. 11 (2021) 24183-24189.
    [118]
    D. Ibanez, M.B. Gonzalez-Garcia, D. Hernandez-Santos, et al., Detection of dithiocarbamate, chloronicotinyl and organophosphate pesticides by electrochemical activation of SERS features of screen-printed electrodes, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 248 (2021), 119174.
    [119]
    C. Huang, F.J. Jan, C.C. Chang, A 3D plasmonic crossed-wire nanostructure for surface-enhanced Raman scattering and plasmon-enhanced fluorescence detection, Molecules 26 (2021), 281.
    [120]
    ] R. Alvarez-Puebla, LM. Liz-Marzan, FJ. Garcia de Abajo et al., Light concentration at the nanometer scale. J. Phys. Chem. Lett. 16 (2010) 2428-2434.
    [121]
    J. Xia, W. Li, M. Sun, et al., Application of SERS in the detection of fungi, bacteria and viruses, Nanomaterials 12 (2022), 3572.
    [122]
    H.G.M. Edwards, N.C. Russell, R. Weinstein, et al., Fourier transform Raman spectroscopic study of fungi, J. Raman Spectrosc. 26 (1995) 911-916.
    [123]
    K. De Gussem, P. Vandenabeele, A. Verbeken, et al., Raman spectroscopic study of Lactarius spores (Russulales, Fungi), Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61 (2005) 2896-2908.
    [124]
    N.E. Dina, A.M.R. Gherman, V. Chis, et al., Characterization of clinically relevant fungi via SERS fingerprinting assisted by novel chemometric models, Anal. Chem. 90 (2018) 2484-2492.
    [125]
    Q. Li, Z. Lu, X. Tan, et al., Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification, Biosens. Bioelectron. 97 (2017) 59-64.
    [126]
    A.K. Boardman, W.S. Wong, W.R. Premasiri, et al., Rapid detection of bacteria from blood with surface-enhanced Raman spectroscopy, Anal. Chem. 88 (2016) 8026-8035.
    [127]
    M.M. Hassan, Y. Xu, P. He, et al., Simultaneous determination of benzimidazole fungicides in food using signal optimized label-free HAu/Ag NS-SERS sensor, Food Chem. 397 (2022), 133755.
    [128]
    M.M. Hassan, H. Li, W. Ahmad, et al., Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration, LWT 105 (2019) 290-297.
    [129]
    J. Li, C. Wang, Y. Yao, et al., Label-free discrimination of glioma brain tumors in different stages by surface enhanced Raman scattering, Talanta 216 (2020), 120983.
    [130]
    M.R. Islam, A.N.M. Iftekhar, A.A. Hassan, et al., Double plasmonic peak shift sensitivity: An analysis of a highly sensitive LSPR-PCF sensor for a diverse range of analyte detection, Appl. Phys. A 129 (2023), 571.
    [131]
    Z. Wang, D. Wang, F. Deng, et al., Ag quantum dots decorated ultrathin g-C3N4 nanosheets for boosting degradation of pharmaceutical contaminants: Insight from interfacial electric field induced by local surface plasma resonance, Chem. Eng. J. 463 (2023), 142313.
    [132]
    Y. Cao, Y. Cheng, M. Sun, et al., Graphene-based SERS for sensor and catalysis. Appl. Spectrosc. Rev. 58 (2023) 1-38.
    [133]
    J. Zhang, S. Lu, G. Shi, et al., A study on a hybrid SERS substrates based on arrayed gold nanoparticle/graphene/copper cone cavities fabricated by a conical tip indentation, J. Mater. Res. Technol. 22 (2023) 1558-1571.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (215) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return