Volume 14 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Guiya Yang, Yue Liu, Yuying Hu, Yue Yuan, Yunan Qin, Quan Li, Shuangcheng Ma. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond[J]. Journal of Pharmaceutical Analysis, 2024, 14(6): 100943. doi: 10.1016/j.jpha.2024.01.011
Citation: Guiya Yang, Yue Liu, Yuying Hu, Yue Yuan, Yunan Qin, Quan Li, Shuangcheng Ma. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond[J]. Journal of Pharmaceutical Analysis, 2024, 14(6): 100943. doi: 10.1016/j.jpha.2024.01.011

Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond

doi: 10.1016/j.jpha.2024.01.011
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No.: 82374033 and 21901067), Ministry of Science and Technology of China (Grant No.: 2023YFC3504100), and Starting Grant from the Ministry of Human Resource and Social Security of China (Quan Li).

  • Received Date: Oct. 02, 2023
  • Accepted Date: Jan. 31, 2024
  • Rev Recd Date: Jan. 03, 2024
  • Publish Date: Feb. 07, 2024
  • Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.

  • loading
  • [1]
    Y. Liu, Z. Yang, J. Cheng, et al., Barriers and countermeasures in developing traditional Chinese medicine in Europe, Front. Med. 10(2016)360-376.
    [2]
    J. Hou, J. Zhang, C. Yao, et al., Deeper chemical perceptions for better traditional Chinese medicine standards, Engineering. 5(2019)83-97.
    [3]
    Z. Zhang, T. Bo, Y. Bai, et al., Quadrupole time-of-flight mass spectrometry as a powerful tool for demystifying traditional Chinese medicine, TRAC. 72(2015)169-180.
    [4]
    Y. Chen, W. Bicker, J. Wu, et al., Ganoderma species discrimination by dual-mode chromatographic fingerprinting:a study on stationary phase effects in hydrophilic interaction chromatography and reduction of sample misclassification rate by additional use of reversed-phase chromatography, J. Chromatogr., A 1217(2010)1255-1265.
    [5]
    W.J. Chen, Honoring antiparasitics:the 2015 Nobel prize in physiology or medicine, Biomed. J. 39(2016)93-97.
    [6]
    N. Han, X. Huang, X. Tian, et al., Self-assembled nanoparticles of natural phytochemicals (berberine and 3,4,5-Methoxycinnamic acid) originated from traditional Chinese medicine for inhibiting multidrug-resistant Staphylococcus aureus, Curr. Drug Deliv. 18(2021)914-921.
    [7]
    X. Huang, P. Wang, T. Li, et al., Self-assemblies based on traditional medicine berberine and cinnamic acid for adhesion-induced inhibition multidrug-resistant Staphylococcus aureus, ACS Appl. Mater. Interfaces 12(2020)227-237.
    [8]
    T. Li, P. Wang, W. Guo, et al., Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application, ACS Nano. 13(2019)6770-6781.
    [9]
    X. Tian, P. Wang, T. Li, et al., Self-assembled natural phytochemicals for synergistically antibacterial application from the enlightenment of traditional Chinese medicine combination, Acta Pharm. Sin. B 10(2020)1784-1795.
    [10]
    S. Li, Q. Zou, R. Xing, et al., Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics, Theranostics. 9(2019)3249-3261.
    [11]
    S. Yadav, A.K. Sharma, P. Kumar, Nanoscale self-assembly for therapeutic delivery, Front. Bioeng. Biotechnol. 8(2020)127.
    [12]
    Y. Hou, L. Zou, Q. Li, et al, Supramolecular assemblies based on natural small molecules:union would be effective, Materials Today Bio. 15(2022)100327.
    [13]
    X. Su, L. Wu, M. Hu, et al., Glycyrrhizic acid:a promising carrier material for anticancer therapy, Biomed. Pharmacother. 95(2017)670-678.
    [14]
    F.H. Yang, Q. Zhang, Q.Y. Liang, et al., Bioavailability enhancement of paclitaxel via a novel oral drug delivery system:paclitaxel-loaded glycyrrhizic acid micelles, Molecules. 20(2015)4337-4356.
    [15]
    R. Yang, X. Zuo, Synchrotron X-ray and neutron diffraction, total scattering, and small-angle scattering techniques for rechargeable battery research, Small Methods (2018)1800064.
    [16]
    C.J. Gommes, S. Jaksch, H. Frielinghaus, Small-angle scattering for beginners, J. Appl. Crystallogr. 54(2021)1832-1843.
    [17]
    G.W. Wheland, John, Wiley, Inc., Sons, Resonance in Organic Chemistry. 45(1956)192.
    [18]
    L.A. Feigin, D.I. Svergun, Structure Analysis by Small-Angle X-Ray and Nuetron Scattering, 1987.
    [19]
    M.S. Dresselhaus, Intercalation in layered materials, MRS bulletin, J. Am. Pharmaceut. Assoc. 12(1987)24-28.
    [20]
    K. Matsuoka, R. Miyajima, Y. Ishida, et al., Aggregate formation of glycyrrhizic acid, Colloids Surf. A Physicochem. Eng. Aspects. 500(2016)112-117.
    [21]
    I.M. Tucker, A. Burley, R.E. Petkova, et al., Adsorption and self-assembly properties of the plant based biosurfactant, glycyrrhizic acid, J. Colloid Interface Sci. 598(2021)444-454.
    [22]
    M.V. Zelikman, A.V. Kim, N.N. Medvedev, et al., Structure of dimers of glycyrrhizic acid in water and their complexes with cholesterol:molecular dynamics simulation, J. Struct. Chem. 56(2015)67-76.
    [23]
    C. Dargel, R. Geisler, Y. Hannappel, et al., Self-assembly of the bio-surfactant aescin in solution:a small-angle X-ray scattering and fluorescence study, Colloids Interfaces. 3(2019)47.
    [24]
    I.M. Tucker, A. Burley, R.E. Petkova, et al., Self-assembly of Quillaja saponin mixtures with different conventional synthetic surfactants, Colloids Surf. A Physicochem. Eng. Aspects. 633(2022)127854.
    [25]
    D.C. Drummond, O. Meyer, K. Hong, et al., Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors, Pharmacol. Rev. 51(1999)691-743.
    [26]
    D. Papahadjopoulos, T.M. Allen, A. Gabizon, et al., Sterically stabilized liposomes:improvements in pharmacokinetics and antitumor therapeutic efficacy, Proc. Natl. Acad. Sci. U. S. A 88(1991)11460-11464.
    [27]
    D.-C. Li, X.-K. Zhong, Z.-P. Zeng, et al., Application of targeted drug delivery system in Chinese medicine, J. Contr. Release. 138(2009)103-112.
    [28]
    K.T. Magar, G.F. Boafo, X. Li, et al, Liposome-based delivery of biological drugs, Chin. Chem. Lett. 33(2022)587-596.
    [29]
    M.K. Shanmugam, X. Dai, A.P. Kumar, et al., Ursolic acid in cancer prevention and treatment:molecular targets, pharmacokinetics and clinical studies, Biochem. Pharmacol. 85(2013)1579-1587.
    [30]
    X.-H. Wang, S.-Y. Zhou, Z.-Z. Qian, et al., Evaluation of toxicity and single-dose pharmacokinetics of intravenous ursolic acid liposomes in healthy adult volunteers and patients with advanced solid tumors, Expet Opin. Drug Metabol. Toxicol. 9(2013)117-125.
    [31]
    T. Zhao, Y. Liu, Z. Gao, et al., Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes, Mater. Sci. Eng., C 53(2015)196-203.
    [32]
    J. Wan, Y. Long, S. Liu, et al., Geniposide-loaded liposomes for brain targeting:development, evaluation, and in vivo studies, AAPS PharmSciTech. 22(2021)222.
    [33]
    U. Walthelm, K. Dittrich, G. Gelbrich, et al., Effects of saponins on the water solubility of different model compounds, Planta Med. 67(2001)49-54.
    [34]
    H. Kimata, N. Sumida, N. Matsufuji, et al., Interaction of saponin of Bupleuri radix with ginseng saponin:solubilization of saikosaponin-a with chikusetsusaponin V (=ginsenoside-Ro), Chem. Pharm. Bull.(Tokyo)33(1985)2849-2853.
    [35]
    X. Dai, X. Shi, Y. Wang, et al., Solubilization of saikosaponin a by ginsenoside Ro biosurfactant in aqueous solution:mesoscopic simulation, J. Colloid Interface Sci. 384(2012)73-80.
    [36]
    X.-H. Xu, T.-J. Yuan, H.A. Dad, et al., Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo, Nano Lett. 21(2021)8151-8159.
    [37]
    C. Dargel, Y. Hannappel, T. Hellweg, Heating-induced DMPC/glycyrrhizin bicelle-to-vesicle transition:a X-ray contrast variation study, Biophys. J. 118(2020)2411-2425.
    [38]
    L. Fan, B. Zhang, A. Xu, et al., Carrier-free, pure nanodrug formed by the self-assembly of an anticancer drug for cancer immune therapy, Mol. Pharm. 15(2018)2466-2478.
    [39]
    J. Wang, W. Qiao, X. Li, et al., A directed co-assembly of herbal small molecules into carrier-free nanodrugs for enhanced synergistic antitumor efficacy, J. Mater. Chem. B 9(2021)1040-1048.
    [40]
    X. Du, J. Zhou, J. Shi, et al., Supramolecular hydrogelators and hydrogels:from soft matter to molecular biomaterials, Chem. Rev. 115(2015)13165-13307.
    [41]
    P.W. Frederix, G.G. Scott, Y.M. Abul-Haija, et al., Exploring the sequence space for (tri-) peptide self-assembly to design and discover new hydrogels, Nat. Chem. 7(2015)30-37.
    [42]
    A.S. Weingarten, R.V. Kazantsev, L.C. Palmer, et al., Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels, J. Am. Chem. Soc. 137(2015)15241-15246.
    [43]
    D. Yuan, X. Du, J. Shi, et al., Mixing biomimetic heterodimers of Nucleopeptides to generate biocompatible and biostable supramolecular hydrogels, Angew. Chem. Int. Ed. 54(2015)5705-5708.
    [44]
    N.A. Dudukovic, C.F. Zukoski, Mechanical properties of self-assembled Fmoc-diphenylalanine molecular gels, Langmuir. 30(2014)4493-4500.
    [45]
    J. Omar, D. Ponsford, C.A. Dreiss, et al., Supramolecular hydrogels:design strategies and contemporary biomedical applications, Chem. Asian J. 17(2022) e202200081.
    [46]
    J. Raeburn, C. Mendoza-Cuenca, B.N. Cattoz, et al., The effect of solvent choice on the gelation and final hydrogel properties of Fmoc-diphenylalanine, Matter. 11(2015)927-935.
    [47]
    D. Adams, M.F. Butler, W. Frith, et al., A new method for maintaining homogeneity during liquid-hydrogel transitions using low molecular weight hydrogelators, Soft Matter. 5(2009)1856-1862.
    [48]
    C. Tang, A.M. Smith, R.F. Collins et al., Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts, Langmuir. 25(2009)9447-9453.
    [49]
    Z. Yang, G. Liang, B. Xu, Enzymatic hydrogelation of small molecules, Acc. Chem. Res. 41(2008)315-326.
    [50]
    J. Raeburn, A.Z. Zamith Cardoso, D.J. Adams, The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels, Chem. Soc. Rev. 42(2013)5143-5156.
    [51]
    Y. Gao, Y. Dong, Q. Guo, et al., Study on supramolecules in traditional Chinese medicine decoction, Molecules. 27(2022)3268.
    [52]
    X.-J. Yao, J.-A. Yin, Y.-F. Xia, et al., Puerarin exerts antipyretic effect on lipopolysaccharide-induced fever in rats involving inhibition of pyrogen production from macrophages, J. Ethnopharmacol. 141(2012)322-330.
    [53]
    L.-P. Yan, S.-W. Chan, A.S.-C. Chan, et al., Puerarin decreases serum total cholesterol and enhances thoracic aorta endothelial nitric oxide synthase expression in diet-induced hypercholesterolemic rats, Life Sci. 79(2006)324-330.
    [54]
    Y. Yuan, J. Zong, H. Zhou, et al., Puerarin attenuates pressure overload-induced cardiac hypertrophy, J. Cardiol. 63(2014)73-81.
    [55]
    Y.-X. Zhou, H. Zhang, C. Peng, Puerarin:a review of pharmacological effects, Phytother Res. 28(2014)961-975.
    [56]
    Y. Cai, J. Zhang, Y. He, et al., A supramolecular hydrogel of puerarin, J. Biomed. Nanotechnol. 14(2018)257-266.
    [57]
    Z. Pang, Y. Wei, N. Wang, et al., Gel formation of puerarin and mechanistic study during its cooling process, Int. J. Pharm. 548(2018)625-635.
    [58]
    Y.H. Feng, X.P. Zhang, Y.Y. Hao, et al., Simulation study of the pH sensitive directed self-assembly of rheins for sustained drug release hydrogel, Colloids Surf. B Biointerfaces 195(2020)111260.
    [59]
    J. Zheng, R. Fan, H. Wu, et al., Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation, Nat. Commun. 10(2019)1604.
    [60]
    W. Zhao, X. Zhang, R. Zhang, et al., Self-assembled herbal medicine encapsulated by an oxidation-sensitive supramolecular hydrogel for chronic wound treatment, ACS Appl. Mater. Interfaces. 12(2020)56898-56907.
    [61]
    M.P. Peixoto, J. Treter, P.E. de Resende, et al., Wormlike micellar aggregates of saponins from Ilex paraguariensis A. St. Hil.(mate):a characterisation by cryo-TEM, rheology, light scattering and small-angle neutron scattering, J. Pharmaceut. Sci. 100(2011)536-546.
    [62]
    X. Dai, H. Ding, Q. Yin, et al., Dissipative particle dynamics study on self-assembled platycodin structures:the potential biocarriers for drug delivery, J. Mol. Graph. Model. 57(2015)20-26.
    [63]
    H.M. Gu, E. Sun, J. Li, et al., Effect of processing excipient suet oil on formation and absorption of baohuoside I-bile salt self-assembled micelles, Zhongguo Zhongyao Zazhi. 44(2019)5143-5150.
    [64]
    L.-Y. Shiu, H. Huang, C.Y. Chen, et al., Reparative and toxicity-reducing effects of liposome-encapsulated saikosaponin in mice with liver fibrosis, Biosci. Rep. 40(2020) BSR20201219.
    [65]
    Y. Chen, L.V. Minh, J. Liu, et al., Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting, Colloids Surf. B Biointerfaces 140(2016)74-82.
    [66]
    M. Zhang, B. Xiao, H. Wang, et al., Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy, Mol. Ther. 24(2016)1783-1796.
    [67]
    Y. Teng, Y. Ren, M. Sayed, et al., Plant-derived exosomal microRNAs shape the gut microbiota, Cell Host Microbe. 24(2018)637-652.e8.
    [68]
    K. Sundaram, J. Mu, A. Kumar, et al., Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis, Theranostics. 12(2022)1220-1246.
    [69]
    M.K. Sriwastva, Z.B. Deng, B. Wang, et al., Exosome-like nanoparticles from mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway, EMBO Rep. 23(2022), e53365.
    [70]
    B.G. Bag, K. Paul, Vesicular and fibrillar gels by self-assembly of nanosized oleanolic acid, Asian J. Org. Chem. 1(2012)150-154.
    [71]
    Y. Huang, Y.J. Wang, Y. Wang, et al, Exploring naturally occurring ivy nanoparticles as an alternative biomaterial, Acta Biomater. 25(2015)268-283.
    [72]
    Q. Li, Z. Zhang, S.S. Haque, et al., Localized surface plasmon resonance effects by naturally occurring Chinese yam particles, J. Appl. Phys. 108(2010)123502.
    [73]
    J. Wang, H. Zhao, K. Zhi, et al., Exploration of the natural active small-molecule drug-loading process and highly efficient synergistic antitumor efficacy, ACS Appl. Mater. Interfaces 12(2020)6827-6839.
    [74]
    J. Wang, W. Qiao, H. Zhao, et al., Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles, Biochem. Pharmacol. 182(2020)114232.
    [75]
    J. Cheng, S. Fu, Z. Qin, et al., Self-assembled natural small molecule diterpene acids with favorable anticancer activity and biosafety for synergistically enhanced antitumor chemotherapy, J. Mater. Chem. B 9(2021)2674-2687.
    [76]
    A. Saha, J. Adamcik, S. Bolisetty, et al., Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features, Angew. Chem. Int. Ed. Engl. 54(2015)5408-5412.
    [77]
    B.G. Bag, S.S. Dash, First self-assembly study of betulinic acid, a renewable nano-sized, 6-6-6-6-5 pentacyclic monohydroxy triterpenic acid, Nanoscale. 3(2011)4564-4566.
    [78]
    B.G. Bag, S.S. Dash, Hierarchical self-assembly of a renewable nanosized pentacyclic dihydroxy-triterpenoid betulin yielding flower-like architectures, Langmuir. 31(2015)13664-13672.
    [79]
    K. Zhi, J. Wang, H. Zhao, et al., Self-assembled small molecule natural product gel for drug delivery:a breakthrough in new application of small molecule natural products, Acta Pharm. Sin. B 10(2020)913-927.
    [80]
    J. Lu, X. Wu, L. Liu, et al., First Organogelation study of ursolic acid, a natural ursane triterpenoid, Chem. Lett. 45(2016)860-862.
    [81]
    Z. Liang, Z. Yin, X. Liu, et al., A glucomannogalactan from Pleurotus geesteranus:structural characterization, chain conformation and immunological effect, Carbohydr. Polym. 287(2022)119346.
    [82]
    Q. Yuan, J. Zhang, C. Xiao, et al., Structural characterization of a low-molecular-weight polysaccharide from Angelica pubescens Maxim. f. Biserrata Shan et Yuan root and evaluation of its antioxidant activity, Carbohydr. Polym. 236(2020)116047.
    [83]
    V.O. Kratky, H. Sembach, Der verknauelungsgrad von gelostem cellulosenitrat nach der rontgenkleinwinkelmethode, Makromol. Chem. 18(1956)463-487.
    [84]
    T.T. Thanh, V.T. Tran, Y. Yuguchi, et al., Structure of fucoidan from brown seaweed Turbinaria ornata as studied by electrospray ionization mass spectrometry (ESIMS) and small angle X-ray scattering (SAXS) techniques, Mar. Drugs 11(2013)2431-2443.
    [85]
    Y. Yuguchi, V.T.T. Tran, L.M. Bui, et al., Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis, Carbohydr. Polym. 147(2016)69-78.
    [86]
    T.T.V. Tran, H.B. Truong, N.H.V. Tran, et al., Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata, Nat. Prod. Res. 32(2018)2291-2296.
    [87]
    X. Ji, C. Hou, Y. Yan, et al., Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit, Int. J. Biol. Macromol. 149(2020)1008-1018.
    [88]
    C.-Y. Liu, D.-J. Hu, H. Zhu, et al., Preparation, characterization and immunoregulatory activity of derivatives of polysaccharide from Atractylodes Lancea (Thunb.) DC, Int. J. Biol. Macromol. 216(2022)225-234.
    [89]
    L. He, B. Yan, C. Yao, et al, Oligosaccharides from polygonatum cyrtonema hua:structural characterization and treatment of LPS-induced peritonitis in mice, Carbohydr. Polym. 255(2021)117392.
    [90]
    Y. He, H. Peng, H. Zhang, et al., Structural characteristics and immunopotentiation activity of two polysaccharides from the petal of Crocus sativus, Int. J. Biol. Macromol. 180(2021)129-142.
    [91]
    B. Yang, Y. Luo, Y. Sang, et al., Isolation, purification, structural characterization, and hypoglycemic activity assessment of polysaccharides from Hovenia dulcis (Guai Zao), Int. J. Biol. Macromol. 208(2022)1106-1115.
    [92]
    Y. Jing, J. Li, Y. Zhang, et al, Structural characterization and biological activities of a novel polysaccharide from Glehnia littoralis and its application in preparation of nano-silver, Int. J. Biol. Macromol. 183(2021)1317-1326.
    [93]
    X. Feng, N. Bie, J. Li, et al., Effect of in vitro simulated gastrointestinal digestion on the antioxidant activity, molecular weight, and microstructure of polysaccharides from Chinese yam, Int. J. Biol. Macromol. 207(2022)873-882.
    [94]
    W. Liu, X. Lv, W. Huang, et al., Characterization and hypoglycemic effect of a neutral polysaccharide extracted from the residue of Codonopsis pilosula, Carbohydr. Polym. 197(2018)215-226.
    [95]
    L. Lin, Y. Zhu, C. Li, et al., Antibacterial activity of PEO nanofibers incorporating polysaccharide from dandelion and its derivative, Carbohydr. Polym. 198(2018)225-232.
    [96]
    Z. Lin, T. Li, Q. Yu, et al., Structural characterization and in vitro osteogenic activity of ABPB-4, a heteropolysaccharide from the rhizome of Achyranthes bidentata, Carbohydr. Polym. 259(2021)117553.
    [97]
    Z. Chen, Y. Zhao, M. Zhang, et al., Structural characterization and antioxidant activity of a new polysaccharide from Bletilla striata fibrous roots, Carbohydr. Polym. 227(2020)115362.
    [98]
    H. Wang, X. Wang, Y. Li, et al., Structural properties and in vitro and in vivo immunomodulatory activity of an arabinofuranan from the fruits of akebia quinata, Carbohydr. Polym. 256(2021)117521.
    [99]
    J. Hu, Y. Liu, L. Cheng, et al., Comparison in bioactivity and characteristics of Ginkgo biloba seed polysaccharides from four extract pathways, Int. J. Biol. Macromol. 159(2020)1156-1164.
    [100]
    Y. Zhang, Z. Cui, H. Mei, et al., Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer, Carbohydr. Polym. 219(2019)143-154.
    [101]
    P. Gu, A. Wusiman, S. Wang, et al., Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses, Carbohydr. Polym. 223(2019)115128.
    [102]
    H. Chen, Y. Huang, C. Zhou, et al., Effects of ultrahigh pressure treatment on structure and bioactivity of polysaccharides from large leaf yellow tea, Food Chem. 387(2022)132862.
    [103]
    Q. Gong, D. Deng, J. Ding, et al., Trichosanthin, an extract of Trichosanthes kirilowii, effectively prevents acute rejection of major histocompatibility complex-mismatched mouse skin allograft, Transplant. Proc. 40(2008)3714-3718.
    [104]
    X. Li, Self-assembly Effect of Angelica Sinensis Protein and its Application[Master's Thesis], Fuzhou University, Fuzhou, 2018.
    [105]
    W. Li, Z.-J. Wang, X.-J. Liu, et al., Based on weak bond chemistry, the interaction mechanism between Glycyrrhiza protein and berberine in water decocting process of Rhizomad Coptidis and liquorice was investigated, Yao Xue Xue Bao. 56(2021)2119-2126.
    [106]
    D. Li, Study on the Proteins Formed by Self-Assembly from Gegen-Qin-Lian Decoction[Master's Thesis], Fuzhou University, Fuzhou, 2013.
    [107]
    N. Yu, S. Shao, W. Huan, et al., Preparation of novel self-assembled albumin nanoparticles from Camellia seed cake waste for lutein delivery, Food Chem. 389(2022)133032.
    [108]
    D. Lin, W. Lin, G. Gao, et al., Purification and characterization of the major protein isolated from Semen Armeniacae Amarum and the properties of its thermally induced nanoparticles, Int. J. Biol. Macromol. 159(2020)850-858.
    [109]
    S.C. Lenaghan, J.N. Burris, K. Chourey, et al., Isolation and chemical analysis of nanoparticles from English ivy (Hedera helix L.), J. R. Soc. Interface. 10(2013)20130392.
    [110]
    Q. Weng, X. Cai, F. Zhang, et al., Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin, Food Chem. 274(2019)796-802.
    [111]
    J. Zhou, J. Zhang, G. Gao, et al., Boiling licorice produces self-assembled protein nanoparticles:a novel source of bioactive nanomaterials, J. Agric. Food Chem. 67(2019)9354-9361.
    [112]
    J. Zhou, J. Liu, D. Lin, et al., Boiling-induced nanoparticles and their constitutive proteins from Isatis indigotica Fort. root decoction:purification and identification, J. Tradit. Complement. Med. 7(2017)178-187.
    [113]
    B.-L. Ma, C. Yin, B.-K. Zhang, et al, Naturally occurring proteinaceous nanoparticles in Coptidis rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption, Sci. Rep. 6(2016)20110.
    [114]
    Z. Yu, G. Gao, H. Wang, et al., Identification of protein-polysaccharide nanoparticles carrying hepatoprotective bioactives in freshwater clam (Corbicula fluminea Muller) soup, Int. J. Biol. Macromol. 151(2020)781-786.
    [115]
    Y. Zhao, H. Qu, Y. Zhao, Research progress on pharmacological effects of nano-components of charcoal drugs, Zhongcaoyao. 53(2020)921-929.
    [116]
    Y.-L. Zhang, Y.-L. Wang, K. Yan, et al., Nanostructures in Chinese herbal medicines (CHMs) for potential therapy, Nanoscale Horiz. 8(2023)976-990.
    [117]
    W.-K. Luo, L.-L. Zhang, Z.-Y. Yang, et al., Herbal medicine derived carbon dots:synthesis and applications in therapeutics, bioimaging and sensing, J. Nanobiotechnol. 19(2021)320.
    [118]
    D. Li, K.-Y. Xu, W.-P. Zhao, et al., Chinese medicinal herb-derived carbon dots for common diseases:efficacies and potential mechanisms, Front. Pharmacol. 13(2022)815479.
    [119]
    Z. Chen, S.-Y. Ye, Y. Yang, et al., A review on charred traditional Chinese herbs:carbonization to yield a haemostatic effect, Pharm. Biol. 57(2019)498-506.
    [120]
    B. Liu, S. Guo, X. Fan, et al., Carbon quantum dot preparation and application to detecting active ingredients in traditional Chinese medicine, Acupuncture and Herbal Medicine. 1(2021)81-89.
    [121]
    X. Yan, Y. Zhao, J. Luo, et al., Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots, J. Nanobiotechnol. 15(2017)60.
    [122]
    Y. Zhao, Y. Zhang, H. Kong, et al., Carbon dots from paeoniae radix alba carbonisata:hepatoprotective effect, Int. J. Nanomed. 15(2020)9049-9059.
    [123]
    J. Wu, M. Zhang, J. Cheng, et al., Effect of Lonicerae japonicae Flos Carbonisata-derived carbon dots on rat models of fever and hypothermia induced by lipopolysaccharide, Int. J. Nanomed. 15(2020)4139-4149.
    [124]
    J. Hu, J. Luo, M. Zhang, et al., Protective effects of radix Sophorae flavescentis carbonisata-based carbon dots against ethanol-induced acute gastric ulcer in rats:anti-inflammatory and antioxidant activities, Int. J. Nanomed. 16(2021)2461-2475.
    [125]
    Y. Zhao, Y. Zhang, H. Kong, et al., Protective effects of carbon dots derived from armeniacae Semen amarum Carbonisata against acute lung injury induced by lipopolysaccharides in rats, Int. J. Nanomed. 17(2022)1-14.
    [126]
    M. Zhang, Y. Zhao, J. Cheng, et al., Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy, Artif. Cells, Nanomed. Biotechnol. 46(2018)1562-1571.
    [127]
    J. Luo, J. Hu, Y. Liu, et al., The effect of moutan cortex carbonisata nano-components on the blood-cooling and hemostatic, Acta Pharmacol. Sin. 56(2021)2093-2101.
    [128]
    Y. Zhao, L. Li, W. Li, et al., Material basis of Granati Pericarpium Carbonisatum for antidiarrheal effect from perspective of nanomaterials, Zhongcaoyao. 52(2021)1335-1342.
    [129]
    J. Luo, M. Zhang, J. Cheng, et al., Hemostatic effect of novel carbon dots derived from Cirsium setosum Carbonisata, RSC Adv. 8(2018)37707-37714.
    [130]
    H. Kong, Y. Zhao, Y. Zhu, et al., Carbon dots from artemisiae argyi folium carbonisata:strengthening the anti-frostbite ability, Artif. Cells, Nanomed. Biotechnol. 49(2021)11-19.
    [131]
    Z. Sun, F. Lu, J. Cheng, et al., Hypoglycemic bioactivity of novel eco-friendly carbon dots derived from traditional Chinese medicine, J. Biomed. Nanotechnol. 14(2018)2146-2155.
    [132]
    Y. Liu, M. Zhang, J. Cheng, et al., Novel carbon dots derived from Glycyrrhizae radix et rhizoma and their anti-gastric ulcer effect, Molecules. 26(2021)1512.
    [133]
    X. Wang, Y. Zhang, H. Kong, et al., Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties, Artif. Cells, Nanomed. Biotechnol. 48(2020)68-76.
    [134]
    X. Wang, Y. Zhang, M. Zhang, et al., Novel carbon dots derived from Puerariae lobatae radix and their anti-gout effects, Molecules. 24(2019)4152.
    [135]
    S. Wang, Y. Zhang, H. Kong, et al., Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots, Nanomedicine (Lond). 14(2019)2925-2939.
    [136]
    X. Liu, Y. Wang, X. Yan, et al., Novel Phellodendri cortex (Huang Bo)-derived carbon dots and their hemostatic effect, Nanomedicine (Lond). 13(2018)391-405.
    [137]
    K. Anggara, L. Srsan, T. Jaroentomeechai, et al., Direct observation of glycans bonded to proteins and lipids at the single-molecule level, Science. 382(2023)219-223.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (72) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return