Volume 14 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Li Zhang, Li-Yue Xu, Fei Tang, Dong Liu, Xiao-Lan Zhao, Jing-Nan Zhang, Jia Xia, Jiao-Jiao Wu, Yu Yang, Cheng Peng, Hui Ao. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation[J]. Journal of Pharmaceutical Analysis, 2024, 14(6): 100930. doi: 10.1016/j.jpha.2023.12.020
Citation: Li Zhang, Li-Yue Xu, Fei Tang, Dong Liu, Xiao-Lan Zhao, Jing-Nan Zhang, Jia Xia, Jiao-Jiao Wu, Yu Yang, Cheng Peng, Hui Ao. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation[J]. Journal of Pharmaceutical Analysis, 2024, 14(6): 100930. doi: 10.1016/j.jpha.2023.12.020

New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation

doi: 10.1016/j.jpha.2023.12.020
Funds:

This research was funded by the National Natural Science Foundation of China (Grant Nos.: 81503272, 81630101, and 81891012), the Application Foundation Research Project of Sichuan Provincial Department of Science and Technology, China (Grant No.: 2017JY0187), and the Xinglin Scholar Research Premotion Project of Chengdu University of Traditional Chinese Medicine, China (Grant No.: 2018016).

  • Received Date: Aug. 30, 2023
  • Accepted Date: Dec. 28, 2023
  • Rev Recd Date: Dec. 18, 2023
  • Publish Date: Jan. 03, 2024
  • Non-communicable diseases (NCDs), including cardiovascular diseases, cancer, metabolic diseases, and skeletal diseases, pose significant challenges to public health worldwide. The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical transcription factor, plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury. Therefore, Nrf2-targeting therapies hold promise for preventing and treating NCDs. Quercetin (Que) is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties. It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation. Que modulates mitochondrial function, apoptosis, autophagy, and cell damage biomarkers to regulate oxidative stress and inflammation, highlighting its efficacy as a therapeutic agent against NCDs. Here, we discussed, for the first time, the close association between NCD pathogenesis and the Nrf2 signaling pathway, involved in neurodegenerative diseases (NDDs), cardiovascular disease, cancers, organ damage, and bone damage. Furthermore, we reviewed the availability, pharmacokinetics, pharmaceutics, and therapeutic applications of Que in treating NCDs. In addition, we focused on the challenges and prospects for its clinical use. Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.

  • loading
  • [1]
    A. Budreviciute, S. Damiati, D.K. Sabir, et al., Management and prevention strategies for non-communicable diseases (NCDs) and their risk factors, Front. Public Heath 8(2020), 574111.
    [2]
    J. Camps, A. García-Heredia, Introduction:Oxidation and inflammation, a molecular link between non-communicable diseases, Adv. Exp. Med. Biol. 824(2014)1-4.
    [3]
    Q. Ma, Role of nrf2 in oxidative stress and toxicity, Annu. Rev. Pharmacol. Toxicol. 53(2013)401-426.
    [4]
    T. Gou, M. Hu, M. Xu, et al., Novel wine in an old bottle:Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases, J. Pharm. Anal. 13(2023)563-589.
    [5]
    M. Lesjak, I. Beara, N. Simin, et al., Antioxidant and anti-inflammatory activities of quercetin and its derivatives, J. Funct. Foods 40(2018)68-75.
    [6]
    D. Hou, W. Zhang, Y. Gao, et al., Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis, Int. Immunopharmacol. 74(2019), 105676.
    [7]
    S. Miltonprabu, M. Tomczyk, K. Skalicka-Wo zniak, et al., Hepatoprotective effect of quercetin:From chemistry to medicine, Food Chem. Toxicol. 108(2017)365-374.
    [8]
    Y. Marunaka, R. Marunaka, H. Sun, et al., Actions of quercetin, a polyphenol, on blood pressure, Molecules 22(2017), 209.
    [9]
    R. Shafabakhsh, Z. Asemi, Quercetin:A natural compound for ovarian cancer treatment, J. Ovarian Res. 12(2019), 55.
    [10]
    H.M. Eid, P.S. Haddad, The antidiabetic potential of quercetin:Underlying mechanisms, Curr. Med. Chem. 24(2017)355-364.
    [11]
    J. Mlcek, T. Jurikova, S. Skrovankova, et al., Quercetin and its anti-allergic immune response, Molecules 21(2016), 623.
    [12]
    A. Di Petrillo, G. Orrù, A. Fais, et al., Quercetin and its derivates as antiviral potentials:A comprehensive review, Phytother Res. 36(2022)266-278.
    [13]
    W.M. Dabeek, M.V. Marra, Dietary quercetin and kaempferol:Bioavailability and potential cardiovascular-related bioactivity in humans, Nutrients 11(2019), 2288.
    [14]
    T.L. Suraweera, H.P.V. Vasantha Rupasinghe, G. Dellaire, et al., Regulation of Nrf2/ARE pathway by dietary flavonoids:A friend or foe for cancer management?Antioxidants 9(2020), 973.
    [15]
    A. Merelli, M. Repetto, A. Lazarowski, et al., Hypoxia, oxidative stress, and inflammation:Three faces of neurodegenerative diseases, J. Alzheimers Dis. 82(2021) S109eS126.
    [16]
    C. Rohl, E. Armbrust, E. Herbst, et al., Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia:Antioxidative systems, peroxide elimination, radical generation, lipid peroxidation, Neurotox. Res. 17(2010)317-331.
    [17]
    D.E. Place, R.K.S. Malireddi, J. Kim, et al., Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins, Nat. Commun. 12(2021), 496.
    [18]
    S. Reuter, S.C. Gupta, M.M. Chaturvedi, et al., Oxidative stress, inflammation, and cancer:How are they linked?Free Radic. Biol. Med. 49(2010)1603-1616.
    [19]
    I. Umbro, F. Baratta, F. Angelico, et al., Nonalcoholic fatty liver disease and the kidney:A review, Biomedicines 9(2021), 1370.
    [20]
    B.S. Karam, A. Chavez-Moreno, W. Koh, et al., Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes, Cardiovasc. Diabetol. 16(2017), 120.
    [21]
    C.Y. Huang, J.S. Deng, W.C. Huang, et al., Attenuation of lipopolysaccharideinduced acute lung injury by hispolon in mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated ER stress-induced apoptosis and autophagy, Nutrients 12(2020), 1742.
    [22]
    P. Czarny, P. Wigner, P. Galecki, et al., The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression, Prog. Neuropsychopharmacol. Biol. Psychiatry 80(2018)309-321.
    [23]
    H. Motohashi, F. Katsuoka, J.D. Engel, et al., Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway, Proc. Natl. Acad. Sci. U S A 101(2004)6379-6384.
    [24]
    Y. Fuse, M. Kobayashi, Conservation of the Keap1-Nrf2 system:An evolutionary journey through stressful space and time, Molecules 22(2017), 436.
    [25]
    K. Itoh, N. Wakabayashi, Y. Katoh, et al., Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the aminoterminal Neh2 domain, Genes Dev. 13(1999)76-86.
    [26]
    P. Nioi, T. Nguyen, P.J. Sherratt, et al., The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation, Mol. Cell. Biol. 25(2005)10895-10906.
    [27]
    P. Canning, F.J. Sorrell, A.N. Bullock, Structural basis of Keap1 interactions with Nrf2, Free Radic. Biol. Med. 88(2015)101-107.
    [28]
    V. Krajka-Ku zniak, J. Paluszczak, W. Baer-Dubowska, The Nrf2-ARE signaling pathway:An update on its regulation and possible role in cancer prevention and treatment, Pharmacol. Rep. 69(2017)393-402.
    [29]
    S. Chowdhry, Y. Zhang, M. McMahon, et al., Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity, Oncogene 32(2013)3765-3781.
    [30]
    I. Bellezza, I. Giambanco, A. Minelli, et al., Nrf2-Keap1 signaling in oxidative and reductive stress, Biochim. Biophys. Acta BBA Mol. Cell Res. 1865(2018)721-733.
    [31]
    H. Wang, K. Liu, M. Geng, et al., RXRa inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2, Cancer Res. 73(2013)3097-3108.
    [32]
    T. Nguyen, P.J. Sherratt, H.C. Huang, et al., Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome, J. Biol. Chem. 278(2003)4536-4541.
    [33]
    V.O. Tkachev, E.B. Menshchikova, N.K. Zenkov, Mechanism of the Nrf2/Keap1/ARE signaling system, Biochemistry (Mosc.)76(2011)407-422.
    [34]
    S. Papaiahgari, S.R. Kleeberger, H.Y. Cho, et al., NADPH oxidase and ERK signaling regulates hyperoxia-induced Nrf2-ARE transcriptional response in pulmonary epithelial cells, J. Biol. Chem. 279(2004)42302-42312.
    [35]
    S.W. Ryter, Heme oxgenase-1, a cardinal modulator of regulated cell death and inflammation, Cells 10(2021), 515.
    [36]
    A. Loboda, M. Damulewicz, E. Pyza, et al., Role of Nrf2/HO-1 system in development, oxidative stress response and diseases:An evolutionarily conserved mechanism, Cell. Mol. Life Sci. 73(2016)3221-3247.
    [37]
    Q. Liu, H. Lv, Z. Wen, et al., Isoliquiritigenin activates nuclear factor erythroid-2 related factor 2 to suppress the NOD-like receptor protein 3 inflammasome and inhibits the NF-kB pathway in macrophages and in acute lung injury, Front. Immunol. 8(2017), 1518.
    [38]
    Q. Ren, F. Guo, S. Tao, et al., Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-kB p65 and MAPK signaling pathways in septic AKI mice, Biomed. Pharmacother. 122(2020), 109772.
    [39]
    C. Nediani, M. Dinu, Oxidative stress and inflammation as targets for novel preventive and therapeutic approaches in non-communicable diseases II, Antioxidants 11(2022), 824.
    [40]
    J. Xia, Y. Wan, J.-J. Wu, et al., Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases:Targeting underlying properties of diseases, Crit. Rev. Food Sci. Nutr. 64(2022)1340-1370.
    [41]
    C. Tonelli, I.I.C. Chio, D.A. Tuveson, Transcriptional regulation by Nrf2, antioxid, Redox Signal 29(2018)1727-1745.
    [42]
    J. Muri, M. Kopf, Redox regulation of immunometabolism, Nat. Rev. Immunol. 21(2021)363-381.
    [43]
    S. Menegon, A. Columbano, S. Giordano, The dual roles of NRF2 in cancer, Trends Mol. Med. 22(2016)578-593.
    [44]
    D.M. Wilson 3rd, M.R. Cookson, L. Van Den Bosch, et al., Hallmarks of neurodegenerative diseases, Cell 186(2023)693-714.
    [45]
    I. Buendia, P. Michalska, E. Navarro, et al., Nrf2-ARE pathway:An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases, Pharmacol. Ther. 157(2016)84-104.
    [46]
    M.E. Rinaldi Tosi, V. Bocanegra, W. Manucha, et al., The Nrf2-Keap1 cellular defense pathway and heat shock protein 70(Hsp70) response. Role in protection against oxidative stress in early neonatal unilateral ureteral obstruction (UUO), Cell Stress Chaperones 16(2011)57-68.
    [47]
    R. Xin, D. Qu, S. Su, et al., Downregulation of miR-23b by transcription factor c-Myc alleviates ischemic brain injury by upregulating Nrf2, Int. J. Biol. Sci. 17(2021)3659-3671.
    [48]
    H. Wang, X. Zhou, L. Wu, et al., Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury, J. Neuroinflammation 17(2020), 188.
    [49]
    J. Zhang, W. Pan, Y. Zhang, et al., Comprehensive overview of Nrf2-related epigenetic regulations involved in ischemia-reperfusion injury, Theranostics 12(2022)6626-6645.
    [50]
    K. Taguchi, T.W. Kensler, Nrf2 in liver toxicology, Arch Pharm. Res. 43(2020)337-349.
    [51]
    J. Zhou, Q. Zheng, Z. Chen, The Nrf2 pathway in liver diseases, Front. Cell Dev. Biol. 10(2022), 826204.
    [52]
    R.M. da Costa, D. Rodrigues, C.A. Pereira, et al., Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases, Front. Pharmacol. 10(2019), 382.
    [53]
    R. Vashi, B.M. Patel, NRF2 in cardiovascular diseases:A Ray of hope!, J. Cardiovasc. Transl. Res. 14(2021)573-586.
    [54]
    Q. Zhang, J. Liu, H. Duan, et al., Activation of Nrf2/HO-1 signaling:An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress, J. Adv. Res. 34(2021)43-63.
    [55]
    J. Li, S. Deng, J. Li, et al., Obacunone alleviates ferroptosis during lipopolysaccharide-induced acute lung injury by upregulating Nrf2-dependent antioxidant responses, Cell. Mol. Biol. Lett. 27(2022), 29.
    [56]
    Q. Liu, Y. Gao, X. Ci, Role of Nrf2 and its activators in respiratory diseases, Oxid. Med. Cell. Longev. 2019(2019), 7090534.
    [57]
    M.A. Aminzadeh, S.B. Nicholas, K.C. Norris, et al., Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy, Nephrol. Dial. Transplant. 28(2013)2038-2045.
    [58]
    J. Hu, W. Gu, N. Ma, et al., Leonurine alleviates ferroptosis in cisplatininduced acute kidney injury by activating the Nrf2 signalling pathway, Br. J. Pharmacol. 179(2022)3991-4009.
    [59]
    P. Stenvinkel, G.M. Chertow, P. Devarajan, et al., Chronic inflammation in chronic kidney disease progression:Role of Nrf2, Kidney Int. Rep. 6(2021)1775-1787.
    [60]
    F. Ji, X. Hu, W. Hu, et al., FGF23 protects osteoblasts from dexamethasoneinduced oxidative injury, Aging 12(2020)19045-19059.
    [61]
    A.S. Marchev, P.A. Dimitrova, A.J. Burns, et al., Oxidative stress and chronic inflammation in osteoarthritis:Can NRF2 counteract these partners in crime?Ann. N. Y. Acad. Sci. 1401(2017)114-135.
    [62]
    Z. Chen, H. Zhong, J. Wei, et al., Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis, Arthritis Res. Ther. 21(2019), 300.
    [63]
    J. Han, K. Yang, J. An, et al., The role of NRF2 in bone metabolism e Friend or foe?Front. Endocrinol. 13(2022), 813057.
    [64]
    I. Bronisz-Budzynska, M. Kozakowska, P. Podkalicka, et al., The role of Nrf2 in acute and chronic muscle injury, Skeletal Muscle 10(2020)35.
    [65]
    D. Huang, S. Fan, X. Chen, et al., Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner, Exp. Gerontol. 119(2019)61-73.
    [66]
    X. Yan, Z. Shen, D. Yu, et al., Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp 1 stability and mitochondrial fission, Free Radic. Biol. Med. 178(2022)59-75.
    [67]
    J. Wei, G. Chen, X. Shi, et al., Nrf2 activation protects against intratracheal LPS induced mouse/murine acute respiratory distress syndrome by regulating macrophage polarization, Biochem. Biophys. Res. Commun. 500(2018)790-796.
    [68]
    Q. Zhang, S. Wang, F. Wang, et al., TBBPA induces inflammation, apoptosis, and necrosis of skeletal muscle in mice through the ROS/Nrf2/TNF-a signaling pathway, Environ. Pollut. 317(2023), 120745.
    [69]
    M.J. Kim, J.H. Jeon, Recent advances in understanding Nrf2 agonism and its potential clinical application to metabolic and inflammatory diseases, Int. J. Mol. Sci. 23(2022), 2846.
    [70]
    X. Wang, X. Chen, W. Zhou, et al., Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways, Acta Pharm. Sin. B 12(2022)708-722.
    [71]
    L. Li, J. Fu, D. Liu, et al., Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis:Involvement of reduced PPARg expression, Redox Biol. 30(2020), 101412.
    [72]
    F. Ma, J. Wu, Z. Jiang, et al., P53/NRF2 mediates SIRT1's protective effect on diabetic nephropathy, Biochim. Biophys. Acta Mol. Cell Res. 1866(2019)1272-1281.
    [73]
    M. Rojo de la Vega, E. Chapman, D.D. Zhang, NRF2 and the hallmarks of cancer, Cancer Cell 34(2018)21-43.
    [74]
    B.M. Hybertson, B. Gao, S.K. Bose, et al., Oxidative stress in health and disease:The therapeutic potential of Nrf2 activation, Mol. Aspect. Med. 32(2011)234-246.
    [75]
    C. Xie, X. Zhou, C. Liang, et al., Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer, J. Exp. Clin. Cancer Res. 40(2021), 266.
    [76]
    Z. Niu, R. Jin, Y. Zhang, et al., Signaling pathways and targeted therapies in lung squamous cell carcinoma:Mechanisms and clinical trials, Signal Transduct. Targeted Ther. 7(2022), 353.
    [77]
    C.J. Schmidlin, A. Shakya, M. Dodson, et al., The intricacies of NRF2 regulation in cancer, Semin. Cancer Biol. 76(2021)110-119.
    [78]
    M. Piotrowska, M. Swierczynski, J. Fichna, et al., The Nrf2 in the pathophysiology of the intestine:Molecular mechanisms and therapeutic implications for inflammatory bowel diseases, Pharmacol. Res. 163(2021), 105243.
    [79]
    Y. Nakagami, Nrf2 is an attractive therapeutic target for retinal diseases, Oxid. Med. Cell. Longev. 2016(2016), 7469326.
    [80]
    P.R. Chandrasekaran, V.G. Madanagopalan, Role of curcumin in retinal disease e A review, Graefes Arch. Clin. Exp. Ophthalmol. 260(2022)1457-1473.
    [81]
    J.J. Lee, S.C. Ng, J.Y. Hsu, et al., Galangin reverses H2O2-induced dermal fibroblast senescence via SIRT1-PGC-1a/Nrf2 signaling, Int. J. Mol. Sci. 23(2022), 1387.
    [82]
    C.G. Heijnen, G.R. Haenen, R.M. Oostveen, et al., Protection of flavonoids against lipid peroxidation:The structure activity relationship revisited, Free Radic. Res. 36(2002)575-581.
    [83]
    J. Bournival, M. Plouffe, J. Renaud, et al., Quercetin and sesamin protect dopaminergic cells from MPPþ-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system, Oxid. Med. Cell. Longev. 2012(2012), 921941.
    [84]
    L. Bachmetov, M. Gal-Tanamy, A. Shapira, et al., Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity, J. Viral Hepat. 19(2012) e81ee88.
    [85]
    M. Thiruvengadam, B. Venkidasamy, U. Subramanian, et al., Bioactive compounds in oxidative stress-mediated diseases:Targeting the NRF2/ARE signaling pathway and epigenetic regulation, Antioxidants 10(2021), 1859.
    [86]
    F. Arredondo, C. Echeverry, J.A. Abin-Carriquiry, et al., After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult, Free Radic. Biol. Med. 49(2010)738-747.
    [87]
    Y. Li, Q. Tian, Z. Li, et al., Activation of Nrf2 signaling by sitagliptin and quercetin combination against β-amyloid induced Alzheimer's disease in rats, Drug Dev. Res. 80(2019)837-845.
    [88]
    X. Yu, Y. Li, X. Mu, Effect of quercetin on PC12 Alzheimer's disease cell model induced by Aβ25-35 and its mechanism based on Sirtuin 1/Nrf2/HO-1 pathway, BioMed Res. Int. 2020(2020), 8210578.
    [89]
    N.-N. Chiang, T.-H. Lin, Y.-S. Teng, et al., Flavones 7, 8-DHF, quercetin, and apigenin against tau toxicity via activation of TRKB signaling in DK280 TauRD-DsRed SH-SY5Y cells, Front. Aging Neurosci. 13(2021), 758895.
    [90]
    M. Ay, J. Luo, M. Langley, et al., Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's disease, J. Neurochem. 141(2017)766-782.
    [91]
    C.H. Kang, Y.H. Choi, S.K. Moon, et al., Quercetin inhibits lipopolysaccharideinduced nitric oxide production in BV2 microglial cells by suppressing the NF-kB pathway and activating the Nrf2-dependent HO-1 pathway, Int. Immunopharm. 17(2013)808-813.
    [92]
    D. Ajit, A. Simonyi, R. Li, et al., Phytochemicals and botanical extracts regulate NF-kB and Nrf2/ARE reporter activities in DI TNC1 astrocytes, Neurochem. Int. 97(2016)49-56.
    [93]
    Y. Shi, X. Liang, H. Zhang, et al., Combination of quercetin, cinnamaldehyde and hirudin protects rat dorsal root ganglion neurons against high glucoseinduced injury through Nrf-2/HO-1 activation and NF-kB inhibition, Chin. J. Integr. Med. 23(2017)663-671.
    [94]
    Y. Shi, X. Liang, H. Zhang, et al., Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-kB inhibition, Acta Pharmacol. Sin. 34(2013)1140-1148.
    [95]
    X. Li, H. Wang, Y. Gao, et al., Protective effects of quercetin on mitochondrial biogenesis in experimental traumatic brain injury via the Nrf2 signaling pathway, PLoS One 11(2016), e0164237.
    [96]
    R. Yang, Y. Shen, M. Chen, et al., Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats, J. Asian Nat. Prod. Res. 24(2022)278-289.
    [97]
    Y.J. Lee, J.D. Bernstock, N. Nagaraja, et al., Global SUMOylation facilitates the multimodal neuroprotection afforded by quercetin against the deleterious effects of oxygen/glucose deprivation and the restoration of oxygen/glucose, J. Neurochem. 138(2016)101-116.
    [98]
    E. Bahar, J.Y. Kim, H. Yoon, Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-kB and HO-1/Nrf2 pathways, Int. J. Mol. Sci. 18(2017), 1989.
    [99]
    D. Wang, J. Zhao, S. Li, et al., Quercetin attenuates domoic acid-induced cognitive deficits in mice, Nutr. Neurosci. 21(2018)123-131.
    [100]
    A. Yammine, A. Zarrouk, T. Nury, et al., Prevention by dietary polyphenols (resveratrol, quercetin, apigenin) against 7-ketocholesterol-induced oxiapoptophagy in neuronal N2a cells:Potential interest for the treatment of neurodegenerative and age-related diseases, Cells 9(2020), 2346.
    [101]
    S. Xia, Z. Xie, Y. Qiao, et al., Differential effects of quercetin on hippocampusdependent learning and memory in mice fed with different diets related with oxidative stress, Physiol. Behav. 138(2015)325-331.
    [102]
    F. Dong, S. Wang, Y. Wang, et al., Quercetin ameliorates learning and memory via the Nrf2-ARE signaling pathway in D-galactose-induced neurotoxicity in mice, Biochem. Biophys. Res. Commun. 491(2017)636-641.
    [103]
    W.M. Sayed, Quercetin alleviates red bull energy drink-induced cerebral cortex neurotoxicity via modulation of Nrf2 and HO-1, Oxid. Med. Cell. Longev. 2021(2021), 9482529.
    [104]
    M.Y. Hsu, Y.P. Hsiao, Y. Lin, et al., Quercetin alleviates the accumulation of superoxide in sodium iodate-induced retinal autophagy by regulating mitochondrial reactive oxygen species homeostasis through enhanced deacetyl-SOD2 via the Nrf2-PGC-1a-Sirt1 pathway, Antioxidants 10(2021), 1125.
    [105]
    Y. Shao, H. Yu, Y. Yang, et al., A solid dispersion of quercetin shows enhanced Nrf2 activation and protective effects against oxidative injury in a mouse model of dry age-related macular degeneration, Oxid. Med. Cell. Longev. 2019(2019), 1479571.
    [106]
    Q. Zhu, M. Liu, Y. He, et al., Quercetin protect cigarette smoke extracts induced inflammation and apoptosis in RPE cells, Artif. Cells Nanomed. Biotechnol. 47(2019)2010-2015.
    [107]
    C.-M. Liu, J.-Q. Ma, W.-R. Xie, et al., Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-kB pathway, Food Chem. Toxicol. 82(2015)19-26.
    [108]
    I.O. Sherif, The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity:Role of Nrf2/HO-1 pathway, Int. Immunopharm. 61(2018)29-36.
    [109]
    J. Zhang, Y. Sheng, L. Shi, et al., Quercetin and baicalein suppress monocrotaline-induced hepatic sinusoidal obstruction syndrome in rats, Eur. J. Pharmacol. 795(2017)160-168.
    [110]
    Y. Jin, Z. Huang, L. Li, et al., Quercetin attenuates toosendanin-induced hepatotoxicity through inducing the Nrf2/GCL/GSH antioxidant signaling pathway, Acta Pharmacol. Sin. 40(2019)75-85.
    [111]
    L. Ji, Y. Sheng, Z. Zheng, et al., The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity, Free Radic. Biol. Med. 85(2015)12-23.
    [112]
    S. Liu, L. Tian, G. Chai, et al., Targeting heme oxygenase-1 by quercetin ameliorates alcohol-induced acute liver injury via inhibiting NLRP3 inflammasome activation, Food Funct. 9(2018)4184-4193.
    [113]
    X. Zhao, L. Gong, C. Wang, et al., Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/Keap1/Nrf2 signaling pathway, J. Ethnopharmacol. 268(2021), 113569.
    [114]
    S. Lee, J. Lee, H. Lee, et al., Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury, J. Food Biochem. 43(2019), e13002.
    [115]
    P. Yao, A. Nussler, L. Liu, et al., Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways, J. Hepatol. 47(2007)253-261.
    [116]
    Y.J. Lee, S.Y. Beak, I. Choi, et al., Quercetin and its metabolites protect hepatocytes against ethanol-induced oxidative stress by activation of Nrf2 and AP-1, Food Sci. Biotechnol. 27(2018)809-817.
    [117]
    R. Domitrovi c, H. Jakovac, V. Vasiljev Marchesi, et al., Differential hepatoprotective mechanisms of rutin and quercetin in CCl4-intoxicated BALB/cN mice, Acta Pharmacol. Sin. 33(2012)1260-1270.
    [118]
    J. Zhang, L. Shi, X. Xu, et al., Therapeutic detoxification of quercetin against carbon tetrachloride-induced acute liver injury in mice and its mechanism, J. Zhejiang Univ. Sci. B 15(2014)1039-1047.
    [119]
    G.M. Alshammari, W.H. Al-Qahtani, N.A. AlFaris, et al., Quercetin prevents cadmium chloride-induced hepatic steatosis and fibrosis by downregulating the transcription of miR-21, Biofactors 47(2021)489-505.
    [120]
    R.M. Hussein, D.M. Sawy, M.A. Kandeil, et al., Chlorogenic acid, quercetin, coenzyme Q10 and silymarin modulate Keap1-Nrf2/heme oxygenase-1 signaling in thioacetamide-induced acute liver toxicity, Life Sci. 277(2021), 119460.
    [121]
    B. Zhang, D. Yu, N. Luo, et al., Four active monomers from Moutan Cortex exert inhibitory effects against oxidative stress by activating Nrf2/Keap1 signaling pathway, korean J. Physiol. Pharmacol. 24(2020)373-384.
    [122]
    D. Wang, Y. Jiang, D.X. Sun-Waterhouse, et al., microRNA-based regulatory mechanisms underlying the synergistic antioxidant action of quercetin and catechin in H2O2-stimulated HepG2 cells:Roles of BACH1 in Nrf2-dependent pathways, Free Radic. Biol. Med. 153(2020)122-131.
    [123]
    C.J. Weng, M.J. Chen, C.T. Yeh, et al., Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity, N. Biotech. 28(2011)767-777.
    [124]
    P. Ramyaa, R. Krishnaswamy, V.V. Padma, Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells e up regulation of Nrf2 expression and down regulation of NF-kB and COX-2, Biochim. Biophys. Acta 1840(2014)681-692.
    [125]
    M. Kim, S.C. Jee, K.S. Kim, et al., Quercetin and isorhamnetin attenuate benzo[a]pyrene-induced toxicity by modulating detoxification enzymes through the AhR and NRF2 signaling pathways, Antioxidants 10(2021), 787.
    [126]
    J. Feng, Z. Li, H. Ma, et al., Quercetin alleviates intestinal inflammation and improves intestinal functions via modulating gut microbiota composition in LPS-challenged laying hens, Poult. Sci. 102(2023), 102433.
    [127]
    Y. Dong, J. Lei, B. Zhang, Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil, Poult. Sci. 99(2020)4892-4903.
    [128]
    C. Carrasco-Pozo, R.L. Castillo, C. Beltran, et al., Molecular mechanisms of gastrointestinal protection by quercetin against indomethacin-induced damage:Role of NF-kB and Nrf2, J. Nutr. Biochem. 27(2016)289-298.
    [129]
    H. Jia, Y. Zhang, X. Si, et al., Quercetin alleviates oxidative damage by activating nuclear factor erythroid 2-related factor 2 signaling in porcine enterocytes, Nutrients 13(2021), 375.
    [130]
    G.M. Albadrani, M.N. BinMowyna, M.N. Bin-Jumah, et al., Quercetin prevents myocardial infarction adverse remodeling in rats by attenuating TGF-b1/Smad3 signaling:Different mechanisms of action, Saudi J. Biol. Sci. 28(2021)2772-2782.
    [131]
    A. Sharma, M. Parikh, H. Shah, et al., Modulation of Nrf2 by quercetin in doxorubicin-treated rats, Heliyon 6(2020), e03803.
    [132]
    C. Li, W. Zhang, B. Frei, Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction, Redox Biol. 9(2016)104-113.
    [133]
    R.L. Castillo, E.A. Herrera, A. Gonzalez-Candia, et al., Quercetin prevents diastolic dysfunction induced by a high-cholesterol diet:Role of oxidative stress and bioenergetics in hyperglycemic rats, Oxid. Med. Cell. Longev. 2018(2018), 7239123.
    [134]
    A. Tripathi, B. Kumar, S.S.K. Sagi, Prophylactic efficacy of Quercetin in ameliorating the hypoxia induced vascular leakage in lungs of rats, PLoS One 14(2019), e0219075.
    [135]
    A.W. Boots, C. Veith, C. Albrecht, et al., The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice, BMC Pulm. Med. 20(2020), 112.
    [136]
    T. Nakamura, M. Matsushima, Y. Hayashi, et al., Attenuation of transforming growth factor-β-stimulated collagen production in fibroblasts by quercetininduced heme oxygenase-1, Am. J. Respir. Cell Mol. Biol. 44(2011)614-620.
    [137]
    C. Veith, M. Drent, A. Bast, et al., The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin, Toxicol. Appl. Pharmacol. 336(2017)40-48.
    [138]
    X. Peng, C. Dai, M. Zhang, et al., Molecular mechanisms underlying protective role of quercetin on copper sulfate-induced nephrotoxicity in mice, Front. Vet. Sci. 7(2021), 586033.
    [139]
    G.M. Alshammari, W.H. Al-Qahtani, N.A. AlFaris, et al., Quercetin alleviates cadmium chloride-induced renal damage in rats by suppressing endoplasmic reticulum stress through SIRT1-dependent deacetylation of Xbp-1s and eIF2α, Biomed. Pharmacother. 141(2021), 111862.
    [140]
    P. Ramyaa, V.V. Padma, Ochratoxin-induced toxicity, oxidative stress and apoptosis ameliorated by quercetin:Modulation by Nrf2, Food Chem. Toxicol. 62(2013)205-216.
    [141]
    N. Jamali, F. Zal, Z. Mostafavi-Pour, et al., Ameliorative effects of quercetin and metformin and their combination against experimental endometriosis in rats, Reprod. Sci. 28(2021)683-692.
    [142]
    M. Li, Y. Xue, H. Yu, et al., Quercetin alleviated H2O2-induced apoptosis and steroidogenic impairment in goat luteinized granulosa cells, J. Biochem. Mol. Toxicol. 34(2020), e22527.
    [143]
    Z. Rashidi, A. Aleyasin, M. Eslami, et al., Quercetin protects human granulosa cells against oxidative stress via thioredoxin system, Reprod. Biol. 19(2019)245-254.
    [144]
    J. Hu, Q. Yu, F. Zhao, et al., Protection of quercetin against triptolide-induced apoptosis by suppressing oxidative stress in rat Leydig cells, Chem. Biol. Interact. 240(2015)38-46.
    [145]
    O. Khadrawy, S. Gebremedhn, D. Salilew-Wondim, et al., Endogenous and exogenous modulation of Nrf2 mediated oxidative stress response in bovine granulosa cells:Potential implication for ovarian function, Int. J. Mol. Sci. 20(2019), 1635.
    [146]
    J.G. Messer, R.G. Hopkins, D.E. Kipp, Quercetin metabolites up-regulate the antioxidant response in osteoblasts isolated from fetal rat Calvaria, J. Cell. Biochem. 116(2015)1857-1866.
    [147]
    J.G. Messer, S. La, R.G. Hopkins, et al., Quercetin partially preserves development of osteoblast phenotype in fetal rat calvaria cells in an oxidative stress environment, J. Cell. Physiol. 231(2016)2779-2788.
    [148]
    Z. Shao, B. Wang, Y. Shi, et al., Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-kB axis, Osteoarthritis Cartilage 29(2021)413-422.
    [149]
    Y. Wei, J. Fu, W. Wu, et al., Quercetin prevents oxidative stress-induced injury of periodontal ligament cells and alveolar bone loss in periodontitis, Drug Des. Dev. Ther. 15(2021)3509-3522.
    [150]
    Y. Kim, C.S. Kim, Y. Joe, et al., Quercetin reduces tumor necrosis factor alphainduced muscle atrophy by upregulation of heme oxygenase-1, J. Med. Food 21(2018)551-559.
    [151]
    S.M. Borghi, F.A. Pinho-Ribeiro, V. Fattori, et al., Quercetin inhibits peripheral and spinal cord nociceptive mechanisms to reduce intense acute swimminginduced muscle pain in mice, PLoS One 11(2016), e0162267.
    [152]
    V. Karuppagounder, S. Arumugam, R.A. Thandavarayan, et al., Modulation of HMGB1 translocation and RAGE/NFkB cascade by quercetin treatment mitigates atopic dermatitis in NC/Nga transgenic mice, Exp. Dermatol. 24(2015)418-423.
    [153]
    S. Kimura, E. Warabi, T. Yanagawa, et al., Essential role of Nrf2 in keratinocyte protection from UVA by quercetin, Biochem. Biophys. Res. Commun. 387(2009)109-114.
    [154]
    S. Ebrahimpour, A. Esmaeili, F. Dehghanian, et al., Effects of quercetinconjugated with superparamagnetic iron oxide nanoparticles on learning and memory improvement through targeting microRNAs/NF-kB pathway, Sci. Rep. 10(2020), 15070.
    [155]
    C.S. Kim, Y. Kwon, S.Y. Choe, et al., Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1, Nutr. Metab. 12(2015), 33.
    [156]
    C.S. Kim, H.S. Choi, Y. Joe, et al., Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching, Nutr. Res. Pract. 10(2016)623-628.
    [157]
    P. Zhao, Z. Hu, W. Ma, et al., Quercetin alleviates hyperthyroidism-induced liver damage via Nrf2 Signaling pathway, Biofactors 46(2020)608-619.
    [158]
    M.E. Rubio-Ruiz, V. Guarner-Lans, A. Cano-Martínez, et al., Resveratrol and quercetin administration improves antioxidant DEFENSES and reduces fatty liver in metabolic syndrome rats, Molecules 24(2019), 1297.
    [159]
    S.K. Panchal, H. Poudyal, L. Brown, Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats, J. Nutr. 142(2012)1026-1032.
    [160]
    A.B. Granado-Serrano, M.A. Martín, L. Bravo, et al., Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells:Involvement of p38, Chem. Biol. Interact. 195(2012)154-164.
    [161]
    C.L. Saw, Y. Guo, A.Y. Yang, et al., The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species:Involvement of the Nrf2-ARE signaling pathway, Food Chem. Toxicol. 72(2014)303-311.
    [162]
    R. Marina, P. Gonzalez, M.C. Ferreras, et al., Hepatic Nrf2 expression is altered by quercetin supplementation in X-irradiated rats, Mol. Med. Rep. 11(2015)539-546.
    [163]
    A. Yarahmadi, F. Khademi, Z. Mostafavi-Pour, et al., In-vitro analysis of glucose and quercetin effects on m-TOR and Nrf-2 expression in HepG2 cell line (diabetes and cancer connection), Nutr, Cancer 70(2018)770-775.
    [164]
    S.G. Darband, S. Sadighparvar, B. Yousefi, et al., Quercetin attenuated oxidative DNA damage through NRF2 signaling pathway in rats with DMH induced colon carcinogenesis, Life Sci. 253(2020), 117584.
    [165]
    J. Niestroy, A. Barbara, K. Herbst, et al., Single and concerted effects of benzo[a]pyrene and flavonoids on the AhR and Nrf2-pathway in the human colon carcinoma cell line Caco-2, Toxicol. In Vitro 25(2011)671-683.
    [166]
    M. Matsushima, K. Takagi, M. Ogawa, et al., Heme oxygenase-1 mediates the anti-allergic actions of quercetin in rodent mast cells, Inflamm. Res. 58(2009)705-715.
    [167]
    V. Rubio, A.I. García-Perez, A. Herr aez, et al., Different roles of Nrf2 and NFKB in the antioxidant imbalance produced by esculetin or quercetin on NB4 leukemia cells, Chem. Biol. Interact. 294(2018)158-166.
    [168]
    Z. Mostafavi-Pour, F. Ramezani, F. Keshavarzi, et al., The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cells, Oncol. Lett. 13(2017)1965-1973.
    [169]
    H. Hundsberger, A. Stierschneider, V. Sarne, et al., Concentration-dependent pro-and antitumor activities of quercetin in human melanoma spheroids:Comparative analysis of 2D and 3D cell culture models, Molecules 26(2021), 717.
    [170]
    Y.J. Lee, D.M. Lee, S. Lee, Nrf2 expression and apoptosis in quercetin-treated malignant mesothelioma cells, Mol. Cells 38(2015)416-425.
    [171]
    P. Singh, Y. Arif, A. Bajguz, et al., The role of quercetin in plants, Plant Physiol. Biochem. 166(2021)10-19.
    [172]
    S.H. Hakkinen, S.O. K arenlampi, I.M. Heinonen, et al., Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries, J. Agric. Food Chem. 47(1999)2274-2279.
    [173]
    W. Wiczkowski, J. Romaszko, A. Bucinski, et al., Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides, J. Nutr. 138(2008)885-888.
    [174]
    E.Y. Ko, S.H. Nile, K. Sharma, et al., Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.), Saudi J. Biol. Sci. 22(2015)398-403.
    [175]
    T. Zhou, D. Xu, S. Lin, et al., Ultrasound-assisted extraction and identification of natural antioxidants from the fruit of Melastoma sanguineum Sims, Molecules 22(2017), 306.
    [176]
    L. Campone, R. Celano, A. Lisa Piccinelli, et al., Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds, Food Chem. 269(2018)495-502.
    [177]
    S. Kumar, V.G. Krishnakumar, V. Morya, et al., Nanobiocatalyst facilitated aglycosidic quercetin as a potent inhibitor of tau protein aggregation, Int. J. Biol. Macromol. 138(2019)168-180.
    [178]
    P. Ader, A. Wessmann, S. Wolffram, Bioavailability and metabolism of the flavonol quercetin in the pig, Free Radic. Biol. Med. 28(2000)1056-1067.
    [179]
    M. Carbonaro, G. Grant, Absorption of quercetin and rutin in rat small intestine, Ann. Nutr. Metab. 49(2005)178-182.
    [180]
    K. Murota, J. Terao, Antioxidative flavonoid quercetin:Implication of its intestinal absorption and metabolism, Arch. Biochem. Biophys. 417(2003)12-17.
    [181]
    S.S. Percival, Commentary on:Tissue distribution of quercetin in rats and pigs, J. Nutr. 135(2005)1617-1618.
    [182]
    L. Chen, H. Cao, Q. Huang, et al., Absorption, metabolism and bioavailability of flavonoids:A review, Crit. Rev. Food Sci. Nutr. 62(2022)7730-7742.
    [183]
    L. Pan, H. Ye, X. Pi, et al., Effects of several flavonoids on human gut microbiota and its metabolism by in vitro simulated fermentation, Front. Microbiol. 14(2023), 1092729.
    [184]
    X. Peng, Z. Zhang, N. Zhang, et al., In vitro catabolism of quercetin by human fecal bacteria and the antioxidant capacity of its catabolites, Food Nutr. Res. 58(2014), 58.
    [185]
    Z. Zhang, X. Peng, S. Li, et al., Isolation and identification of quercetin degrading bacteria from human fecal microbes, PLoS One 9(2014), e90531.
    [186]
    J.F. Young, S.E. Nielsen, J. Haraldsdottir, et al., Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status, Am. J. Clin. Nutr. 69(1999)87-94.
    [187]
    T. Walle, U.K. Walle, P.V. Halushka, Carbon dioxide is the major metabolite of quercetin in humans, J. Nutr. 131(2001)2648-2652.
    [188]
    M. Harwood, B. Danielewska-Nikiel, J.F. Borzelleca, et al., A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties, Food Chem. Toxicol. 45(2007)2179-2205.
    [189]
    M. Vinayak, A.K. Maurya, Quercetin loaded nanoparticles in targeting cancer:Recent development, Anti Cancer Agents Med. Chem. 19(2019)1560-1576.
    [190]
    Y. Birinci, J.H. Niazi, O. Aktay-Çetin, et al., Quercetin in the form of a nanoantioxidant (QTiO2) provides stabilization of quercetin and maximizes its antioxidant capacity in the mouse fibroblast model, Enzyme Microb. Technol. 138(2020), 109559.
    [191]
    R. Penalva, I. Esparza, J. Morales-Gracia, et al., Casein nanoparticles in com-~bination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin, Int. J. Pharm. 570(2019), 118652.
    [192]
    A. Riva, M. Ronchi, G. Petrangolini, et al., Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin, Eur. J. Drug Metab. Pharmacokinet. 44(2019)169-177. L. Zhang, L.-Y. Xu, F. Tang et al. Journal of Pharmaceutical Analysis 14(2024)10093017
    [193]
    F.Di Pierro, A. Khan, A. Bertuccioli, et al., Quercetin Phytosome® as a potential candidate for managing COVID-19, Minerva Gastroenterol. 67(2021)190-195.
    [194]
    J. Ma, X. Huang, S. Yin, et al., Bioavailability of quercetin in zein-based colloidal particles-stabilized Pickering emulsions investigated by the in vitro digestion coupled with Caco-2 cell monolayer model, Food Chem. 360(2021), 130152.
    [195]
    D.R. Ferry, A. Smith, J. Malkhandi, et al., Phase I clinical trial of the flavonoid quercetin:Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition, Clin. Cancer Res. 2(1996)659-668.
    [196]
    V. Ostadmohammadi, A. Milajerdi, E. Ayati, et al., Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders:A systematic review and meta-analysis of randomized controlled trials, Phytother Res. 33(2019)1330-1340.
    [197]
    M. Martin-Rincon, M. Gelabert-Rebato, V. Galvan-Alvarez, et al., Supplementation with a mango leaf extract (zynamite®) in combination with quercetin attenuates muscle damage and pain and accelerates recovery after strenuous damaging exercise, Nutrients 12(2020), 614.
    [198]
    M. Nishimura, T. Muro, M. Kobori, et al., Effect of daily ingestion of quercetinrich onion powder for 12 weeks on visceral fat:A randomised, double-blind, placebo-controlled, parallel-group study, Nutrients 12(2019), 91.
    [199]
    F. Dehghani, M. Vafa, A. Ebrahimkhani, et al., Effects of quercetin supplementation on endothelial dysfunction biomarkers and depression in postmyocardial infarction patients:A double-blind, placebo-controlled, randomized clinical trial, Clin. Nutr. ESPEN 56(2023)73-80.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (73) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return