Volume 10 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
Vijayabhaskar Veeravalli, Hanumanth Srikanth Cheruvu, Pratima Srivastava, Lakshmi Mohan Vamsi Madgula. Three-dimensional aspects of formulation excipients in drug discovery: a critical assessment on orphan excipients, matrix effects and drug interactions[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 522-531. doi: 10.1016/j.jpha.2020.02.007
Citation: Vijayabhaskar Veeravalli, Hanumanth Srikanth Cheruvu, Pratima Srivastava, Lakshmi Mohan Vamsi Madgula. Three-dimensional aspects of formulation excipients in drug discovery: a critical assessment on orphan excipients, matrix effects and drug interactions[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 522-531. doi: 10.1016/j.jpha.2020.02.007

Three-dimensional aspects of formulation excipients in drug discovery: a critical assessment on orphan excipients, matrix effects and drug interactions

doi: 10.1016/j.jpha.2020.02.007
  • Received Date: Sep. 14, 2019
  • Accepted Date: Feb. 17, 2020
  • Rev Recd Date: Feb. 02, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Dec. 10, 2020
  • Formulation/pharmaceutical excipients play a major role in formulating drug candidates, with the objectives of ease of administration, targeted delivery and complete availability. Many excipients used in pharmaceutical formulations are orphanized in preclinical drug discovery. These orphan excipients could enhance formulatability of highly lipophilic compounds. Additionally, they are safe in preclinical species when used below the LD50 values. However, when the excipients are used in formulating compounds with diverse physico-chemical properties, they pose challenges by modulating study results through their bioanalytical matrix effects. Excipients invariably present in study samples and not in the calibration curve standards cause over-/under- estimation of exposures. Thus, the mechanism by which excipients cause matrix effects and strategies to nullify these effects needs to be revisited. Furthermore, formulation excipients cause drug interactions by moderating the pathways of drug metabolizing enzymes and drug transport proteins. Although it is not possible to get rid of excipient driven interactions, it is always advised to be aware of these interactions and apply the knowledge to draw meaningful conclusions from study results. In this review, we will comprehensively discuss a) orphan excipients that have wider applications in preclinical formulations, b) bioanalytical matrix effects and possible approaches to mitigating these effects, and c) excipient driven drug interactions and strategies to alleviate the impacts of drug interactions.
  • loading
  • F. Pascal, The central role of excipients in drug formulation, Eur. Pharm. Rev. 18(2) (2013) 67-70
    H. Alison, D.G. Beverley, Pharmaceutical Excipient - where do we begin, Aust. Prescr. 34(4) (2011) 112-114
    C. Dorothy, C. Ron-Kun, Review of Current Issues in Pharmaceutical Excipients, Pharm. Tech. 31(5) (2007) 56-66
    G.L. Pramod, K.S. Reddy, J.D. Reddy, et al. Global regulatory perspective of bulk pharmaceutical excipients, Pharm. Rev. 8(3) (2010)
    J.C. Patrick, G.M. Luigi, Encyclopedia of pharmaceutical technology, third ed., Informa healthcare, New York, 2007
    A. Katdare, M. Chaubal, Excipient development for pharmaceutical, biotechnology, and drug delivery systems, first ed., Informa Healthcare, New York, 2006
    G. Pifferi, P. Restani, The safety of pharmaceutical excipients, Farmaco 58(8) (2003) 541-550
    J. Sunil, Pharmaceutical Dosage Forms: Tablets. Vol. 1, J. Pharm. Sci. 79(11) (1990) 1043
    P. Srivastava, Chapter 13, Excipients for Semisolid Formulations, in: A. Katdare, V.M. Chaubal (Eds.), Excipient Development for Pharmaceutical, Biotechnology, and Drug Delivery Systems, Informa healthcare, Inc, New York, 2006, pp. 197-224
    T.G. Heath, D.O. Scott, Quantification of a potent 5-HT2a antagonist and an active metabolite in rat plasma and brain microdialysate by liquid chromatography-tandem mass spectrometry, J. Am. Soc. Mass Spec. 8(4) (1997) 371-379
    T.V. Olah, D.A. McLoughlin, J.D. Gilbert, The simultaneous determination of mixtures of drug candidates by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry as an in vivo drug screening procedure, Rapid Commun. Mass Spectrom. 11(1) (1997) 17-23
    A.P. Watt, D. Morrison, K.L. Locker, et al. Higher throughput bioanalysis by automation of a protein precipitation assay using a 96-well format with detection by LC-MS/MS, Anal. Chem. 72(5) (2000) 979-984
    T.R. Covey, E.D. Lee, J.D. Henion, High-speed liquid chromatography/tandem mass spectrometry for the determination of drugs in biological samples, Anal. Chem. 58(12) (1986) 2453-2460
    T. Hall, I. Smukste, K. Bresciano, et al. Identifying and Overcoming Matrix Effects in Drug Discovery and Development, in: J.K. Prasain (Ed.), Tandem Mass Spectrometry-Applications and principles, Intech open, DOI:10.5772/32108, 2012
    T. Brody, Chapter 7 - Drug-Drug Interactions: Part One (Small Molecule Drugs), FDA’s Drug Review Process and the Package Label, Academic Press, 2018, pp. 255-335
    P.H. Thakkar, Influence of excipients on drug absorption via modulation of intestinal transporters activity, Asian J. Pharm. 9(2) (2015) 69-82
    A.E. Nassar, P. Hollenberg, J. Scatina, Drug Metabolism Handbook: Concepts and Applications, John Wiley and Sons, Inc., New York, 2009
    Z. Rao, L. Si, Y. Guan, et al. Inhibitive effect of cremophor RH40 or tween 80-based self-microemulsiflying drug delivery system on cytochrome P450 3A enzymes in murine hepatocytes, J. Huazhong Univ. Sci. Tech. [Medical Sciences] 30(5) (2010) 562-568
    A. Engel, S. Oswald, W. Siegmund, et al. Pharmaceutical excipients influence the function of human uptake transporting proteins, Mol. Pharm. 9(9) (2012) 2577-2581
    C. Wandel, R.B. Kim, C.M. Stein, "Inactive" excipients such as Cremophor can affect in vivo drug disposition, Clin. Pharm. Ther. 73(5) (2003) 394-396
    X. Ren, X. Mao, L. Cao, et al. Nonionic surfactants are strong inhibitors of cytochrome P450 3A biotransformation activity in vitro and in vivo, Eur. J. Pharm. Sci. 36(4-5) (2009) 401-411
    K. Sachs-Barrable, A. Thamboo, S.D. Lee, et al. Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells, J. Pharm. Pharm. Sci. 10(3) (2007) 319-331
    D.P. Elder, M. Kuentz, R. Holm, Pharmaceutical excipients - quality, regulatory and biopharmaceutical considerations, Eur. J. Pharm. Sci. 87 (2016) 88-99
    B.J. Aungst, Optimizing Oral Bioavailability in Drug Discovery: An Overview of Design and Testing Strategies and Formulation Options, J. Pharm. Sci. 106(4) (2017) 921-929
    N.H. Shah, M.T. Carvajal, C.I. Patel, et al. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs, Int. J. Pharm. 106(1) (1994) 15-23
    A.J. Humberstone, W.N. Charman, Lipid-based vehicles for the oral delivery of poorly water soluble drugs, Adv. Drug Deliv. Rev. 25(1) (1997) 103-128
    H.D. Williams, N.L. Trevaskis, S.A. Charman, et al. Strategies to address low drug solubility in discovery and development, Pharmacol. Rev. 65(1) (2013) 315-499
    C.J. Porter, N.L. Trevaskis, W.N. Charman, Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs, Nat. Rev. Drug Discov. 6(3) (2007) 231-248
    R. Vandecruys, J. Peeters, G. Verreck, et al. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design, Int. J. Pharm. 342(1-2) (2007) 168-175
    X.Q. Chen, K. Stefanski, H. Shen, et al. Oral delivery of highly lipophilic poorly water-soluble drugs: spray-dried dispersions to improve oral absorption and enable high-dose toxicology studies of a P2Y1 antagonist, J. Pharm. Sci. 103(12) (2014) 3924-3931
    G.G. Liversidge, K.C. Cundy, Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs, Int. J. Pharm. 125(1) (1995) 91-97
    E. Merisko-Liversidge, G.G. Liversidge, E.R. Cooper, Nanosizing: a formulation approach for poorly-water-soluble compounds, Eur. J. Pharm. Sci. 18(2) (2003) 113-120
    T. Komasaka, H. Fujimura, T. Tagawa, et al. Practical method for preparing nanosuspension formulations for toxicology studies in the discovery stage: formulation optimization and in vitro/in vivo evaluation of nanosized poorly water-soluble compounds, Chem. Pharm. Bull. 62(11) (2014) 1073-1082
    R.G. Strickley, Solubilizing excipients in oral and injectable formulations, Pharm. Res. 21(2) (2004) 201-230
    A.K. Shah, S.A. Agnihotri, Recent advances and novel strategies in pre-clinical formulation development: an overview, J. Control. Release 156(3) (2011) 281-296
    N. Kanojia, L. Kaur, M. Nagpal, et al. Modified Excipients in Novel Drug Delivery: Need of the Day, J. Pharm. Tech. Res. Manag. 1 (2013) 81-107
    S. Neervannan, Preclinical formulations for discovery and toxicology: physicochemical challenges, Expert Opin. Drug Metab. Toxicol. 2(5) (2006) 715-731
    R.C. Rowe, P.J. Sheskey, S.C. Owen, Handbook of pharmaceutical excipients, Pharmaceutical press, London, 2006
    D. Wisher, Martindale: The Complete Drug Reference. 37th ed, Journal of the Medical Library Association 100(1) (2009) 2314-2315
    Centers for Disease Control and Prevention, NIOSH Pocket Guide to Chemical Hazards, https://www.cdc.gov/niosh/npg/default.html
    P. Nielsen, A. Mullertz, T. Norling, et al. The effect of α-tocopherol on the in vitro solubilisation of lipophilic drugs, Int. J. Pharm. 222(2) (2001) 217-224
    P.P. Constantinides, A. Tustian, D.R. Kessler, Tocol emulsions for drug solubilization and parenteral delivery, Adv. Drug Deliv. Rev. 56(9) (2004) 1243-1255
    Michael I. Ash, Handbook of fillers, extenders, and diluents, second ed., Synapse Information Resources, New York, 2007
    K. Lee, S.C. Shin, I. Oh, Fluorescence spectroscopy studies on micellization of poloxamer 407 solution, Arch. Pharm. Res. 26(8) (2003) 653-658
    J. Mata, P. Majhi, C. Guo, et al. Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media, J. Colloid Interface Sci. 292(2) (2005) 548-556
    M.M. Jebari, N. Ghaouar, A. Aschi, et al. Aggregation behaviour of Pluronic® L64 surfactant at various temperatures and concentrations examined by dynamic light scattering and viscosity measurements, Polym. Int. 55(2) (2006) 176-183
    G. Dumortier, N. El Kateb, M. Sahli, et al. Development of a thermogelling ophthalmic formulation of cysteine, Drug Dev. Ind. Pharm. 32(1) (2006) 63-72
    H. Qi, W. Chen, C. Huang, et al. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin, Int. J. Pharm. 337(1-2) (2007) 178-187
    A.M. Darwish, E. Hafez, I. El-Gebali, et al. Evaluation of a novel vaginal bromocriptine mesylate formulation: a pilot study, Fertil. Steril. 83(4) (2005) 1053-1055
    A. El-Kamel, M. El-Khatib, Thermally reversible in situ gelling carbamazepine liquid suppository, Drug Deliv. 13(2) (2006) 143-148
    Y. Wang, S. Liu, C.Y. Li, et al. A novel method for viral gene delivery in solid tumors, Cancer Res. 65(17) (2005) 7541-7545
    G. Cornaire, J. Woodley, P. Hermann, et al. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo, Int. J. Pharm. 278(1) (2004) 119-131
    S.C. Gad, C.D. Cassidy, N. Aubert, et al. Nonclinical vehicle use in studies by multiple routes in multiple species, Int. J. Toxicol. 25(6) (2006) 499-521
    Cosmetic Ingredient Review, Safety Assessment of Polyglyceryl Fatty Acid Esters as Used in Cosmetics, https://www.cir-safety.org/sites/default/files/PGlyFE092016FR.pdf, accessed on 01/05/2020
    R. Bakhtiar, T.K. Majumdar, Tracking problems and possible solutions in the quantitative determination of small molecule drugs and metabolites in biological fluids using liquid chromatography-mass spectrometry, J. Pharmacol. Toxicol. Methods 55(3) (2007) 227-243
    C. Cote, A. Bergeron, J.N. Mess, et al. Matrix effect elimination during LC-MS/MS bioanalytical method development, Bioanalysis 1(7) (2009) 1243-1257
    H. Trufelli, P. Palma, G. Famiglini, et al. An overview of matrix effects in liquid chromatography-mass spectrometry, Mass Spectrom. Rev. 30(3) (2011) 491-509
    V. Vijaya Bhaskar, Identification and Reduction of Matrix Effects Caused By Polyethylene Glycol 400 in Bioanalysis Using Liquid Chromatography/Tandem Mass Spectrometry, Int. J. Pharm. Innov. 3(1) (2013) 48-65
    V. Vijaya Bhaskar, A. Middha, S. Tiwari, et al. Identification and reduction of matrix effects caused by cremophor EL in bioanalysis using liquid chromatography/tandem mass spectrometry, J. Anal. Bioanal. Tech. 4(3) (2013) 1-7
    V. Vijaya Bhaskar, T. Sudhir, M. Anil, et al. Identification and Reduction of Matrix Effects Caused by Solutol Hs15 in Bioanalysis Using Liquid Chromatography/Tandem Mass Spectrometry, J. Anal. Bioanal. Tech. 4(166) (2013)
    J.L. Little, M.F. Wempe, C.M. Buchanan, Liquid chromatography-mass spectrometry/mass spectrometry method development for drug metabolism studies: examining lipid matrix ionization effects in plasma, J. Chromatogr. B 833(2) (2006) 219-230
    L.E. Sojo, G. Lum, P. Chee, Internal standard signal suppression by co-eluting analyte in isotope dilution LC-ESI-MS, Analyst 128(1) (2003) 51-54
    X.S. Tong, J. Wang, S. Zheng, et al. Effect of signal interference from dosing excipients on pharmacokinetic screening of drug candidates by liquid chromatography/mass spectrometry, Anal. Chem. 74(24) (2002) 6305-6313
    W.Z. Shou, W. Naidong, Post-column infusion study of the ‘dosing vehicle effect’in the liquid chromatography/tandem mass spectrometric analysis of discovery pharmacokinetic samples, Rapid Commun. Mass Spectrom. 17(6) (2003) 589-597
    J. Schuhmacher, D. Zimmer, F. Tesche, et al. Matrix effects during analysis of plasma samples by electrospray and atmospheric pressure chemical ionization mass spectrometry: practical approaches to their elimination, Rapid Commun. Mass Spectrom. 17(17) (2003) 1950-1957
    C.R. Mallet, Z. Lu, J.R. Mazzeo, A study of ion suppression effects in electrospray ionization from mobile phase additives and solid-phase extracts, Rapid Commun. Mass Spectrom. 18(1) (2004) 49-58
    H. Mei, Y. Hsieh, C. Nardo, et al. Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays: application to drug discovery, Rapid Commun. Mass Spectrom. 17(1) (2003) 97-103
    P.R. Tiller, L.A. Romanyshyn, Implications of matrix effects in ultra-fast gradient or fast isocratic liquid chromatography with mass spectrometry in drug discovery, Rapid Commun. Mass Spectrom. 16(2) (2002) 92-98
    V. Vijaya Bhaskar, M. Anil, Liquid chromatography/tandem mass spectrometry method for quantitation of Cremophor EL and its applications, Int. J. Anal. Chem. (2013) 1-11
    V. Vijaya Bhaskar, A. Middha, P. Srivastava, et al. Liquid chromatography/tandem mass spectrometry method for quantitative estimation of solutol HS15 and its applications, J. Pharm. Anal. 5(2) (2015) 120-129
    V. Vijaya Bhaskar, A. Middha, S. Tiwari, et al. Determination of Cremophor EL in Rat Plasma by LC-MS/MS: Application to a Pharmacokinetic Study, J. Anal. Bioanal. Tech. 4 (2013) 163, doi: 10.4172/2155-9872.1000163
    V. Vijaya Bhaskar, A. Middha, S. Tiwari, et al. Liquid chromatography/tandem mass spectrometry method for quantitative estimation of polyethylene glycol 400 and its applications, J. Chrom. B. 926 (2013) 68-76
    X. Xu, H. Mei, S. Wang, et al. A study of common discovery dosing formulation components and their potential for causing time-dependent matrix effects in high-performance liquid chromatography tandem mass spectrometry assays, Rapid Commun. Mass Spectrom. 19(18) (2005) 2643-2650
    P.J. Larger, M. Breda, D. Fraier, et al. Ion-suppression effects in liquid chromatography-tandem mass spectrometry due to a formulation agent, a case study in drug discovery bioanalysis, J. Pharm. Biomed. Anal. 39(1-2) (2005) 206-216
    F. Li, M. Ewles, M. Pelzer, et al. Case studies: the impact of nonanalyte components on LC-MS/MS-based bioanalysis: strategies for identifying and overcoming matrix effects, Bioanalysis 5(19) (2013) 2409-2441
    R. Weaver, R.J. Riley, Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400, Rapid Commun. Mass Spectrom. 20(17) (2006) 2559-2564
    Z. Liang, Perspectives on addressing ionization matrix effects in LC-MS bioanalysis, Bioanalysis 4(10) (2012) 1227-1234
    R. King, R. Bonfiglio, C. Fernandez-Metzler, et al. Mechanistic investigation of ionization suppression in electrospray ionization, J. Am. Soc. Mass Spectrom. 11(11) (2000) 942-950
    US Food and Drug Administration, Centre for Drug Evaluation and Research. Guidance for industry: bioanalytical method validation, 2001
    B. Matuszewski, M. Constanzer, C. Chavez-Eng, Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC− MS/MS, Anal. Chem. 75(13) (2003) 3019-3030
    R.B. Cole, Some tenets pertaining to electrospray ionization mass spectrometry, J. Mass Spectrom. 35(7) (2000) 763-772
    L. Tang, P. Kebarle, Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution, Anal. Chem. 65(24) (1993) 3654-3668
    P. Kebarle, U.H. Verkerk, Electrospray: from ions in solution to ions in the gas phase, what we know now, Mass Spectrom. Rev. 28(6) (2009) 898-917
    C.G. Enke, A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes, Anal. Chem. 69(23) (1997) 4885-4893
    M.G. Ikonomou, A.T. Blades, P. Kebarle, Investigations of the electrospray interface for liquid chromatography/mass spectrometry, Anal. Chem. 62(9) (1990) 957-967
    T.L. Constantopoulos, G.S. Jackson, C.G. Enke, Challenges in achieving a fundamental model for ESI, Anal. Chim. Acta 406(1) (2000) 37-52
    R. Bonfiglio, R.C. King, T.V. Olah, et al. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds, Rapid Commun. Mass Spectrom. 13(12) (1999) 1175-1185
    A. Apffel, S. Fischer, G. Goldberg, et al. Enhanced sensitivity for peptide mapping with electrospray liquid chromatography-mass spectrometry in the presence of signal suppression due to trifluoroacetic acid-containing mobile phases, J. Chromatogr. A 712(1) (1995) 177-190
    M.a.H. Amad, N.B. Cech, G.S. Jackson, et al. Importance of gas-phase proton affinities in determining the electrospray ionization response for analytes and solvents, J. Mass Spectrom. 35(7) (2000) 784-789
    N.B. Cech, C.G. Enke, Practical implications of some recent studies in electrospray ionization fundamentals, Mass Spectrom. Rev. 20(6) (2001) 362-387
    P. Bennett, H. Liang, Overcoming matrix effects resulting from biological phospholipids through selective extractions in quantitative LC/MS/MS, 52nd ASMS Conference on Mass Spectrometry, Nashville, TN, 2004
    E. Chambers, D.M. Wagrowski-Diehl, Z. Lu, et al. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses, J. Chromatogr. B 852(1-2) (2007) 22-34
    M. Van Hout, H. Niederlander, R. De Zeeuw, et al. Ion suppression in the determination of clenbuterol in urine by solid-phase extraction atmospheric pressure chemical ionisation ion-trap mass spectrometry, Rapid Commun. Mass Spectrom. 17(3) (2003) 245-250
    J.E. Renew, C.H. Huang, Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography-electrospray mass spectrometry, J. Chromatogr. A 1042(1-2) (2004) 113-121
    E.D. Hugger, B.L. Novak, P.S. Burton, et al. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro, J. Pharm. Sci. 91(9) (2002) 1991-2002
    J.M. Dintaman, J.A. Silverman, Inhibition of P-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), Pharm. Res. 16(10) (1999) 1550-1556
    P.G. Komarov, A.A. Shtil, L.E. Buckingham, et al. Inhibition of cytarabine-induced MDR1 (P-glycoprotein) gene activation in human tumor cells by fatty acid-polyethylene glycol-fatty acid diesters, novel inhibitors of P-glycoprotein function, Int. J. Cancer 68(2) (1996) 245-250
    L. Bromberg, V. Alakhov, Effects of polyether-modified poly (acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers, J. Control Release 88(1) (2003) 11-22
    O.A. Badary, O.A. Al-Shabanah, N.M. Al-Gharably, et al. Effect of Cremophor EL on the pharmacokinetics, antitumor activity and toxicity of doxorubicin in mice, Anticancer Drugs 9(9) (1998) 809-815
    S.W. Wang, J. Monagle, C. McNulty, et al. Determination of P-glycoprotein inhibition by excipients and their combinations using an integrated high-throughput process, J. Pharm. Sci. 93(11) (2004) 2755-2767
    R.C. Bravo Gonzalez, J. Huwyler, F. Boess, et al. In vitro investigation on the impact of the surface-active excipients Cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam, Biopharm. Drug Dispos. 25(1) (2004) 37-49
    D.R. Bhagwant, X.Y. Lawrence, S.H. Ajaz, et al. Effect of common excipients on Caco-2 transport of low-permeability drugs, J. Pharm. Sci. 90(11) (2001) 1776-1786
    E.K. Anderberg, C. Nystrom, P. Artursson, Epithelial transport of drugs in cell culture. VII: Effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells, J. Pharm. Sci. 81(9) (1992) 879-887
    G. Martin, C. Marriott, I. Kellaway, Direct effect of bile salts and phospholipids on the physical properties of mucus, Gut 19(2) (1978) 103-107
    M. Tomita, M. Hayashi, T. Horie, et al. Enhancement of colonic drug absorption by the transcellular permeation route, Pharm. Res. 5(12) (1988) 786-789
    T. Yamagata, M. Morishita, H. Kusuhara, et al. Characterization of the inhibition of breast cancer resistance protein-mediated efflux of mitoxantrone by pharmaceutical excipients, Int. J. Pharm. 370(1-2) (2009) 216-219
    J.S.H. Yoo, T.J. Smith, S.M. Ning, et al. Modulation of the levels of cytochromes P450 in rat liver and lung by dietary lipid, Biochem. Pharmacol. 43(12) (1992) 2535-2542
    T.R. Buggins, P.A. Dickinson, G. Taylor, The effects of pharmaceutical excipients on drug disposition, Adv. Drug Deliv. Rev. 59(15) (2007) 1482-1503
    P. Martin, M. Giardiello, T.O. McDonald, et al. Mediation of in vitro cytochrome P450 activity by common pharmaceutical excipients, Mol. Pharm. 10(7) (2013) 2739-2748
    C. Zhang, Y. Xu, Q. Zhong, et al. In vitro evaluation of the inhibitory potential of pharmaceutical excipients on human carboxylesterase 1A and 2, PLos One 9(4) (2014) e93819
    L. Tompkins, C. Lynch, S. Haidar, et al. Effects of commonly used excipients on the expression of CYP3A4 in colon and liver cells, Pharm. Res. 27(8) (2010) 1703-1712
    X. Ren, X. Mao, L. Si, et al. Pharmaceutical excipients inhibit cytochrome P450 activity in cell free systems and after systemic administration, Eur. J. Pharm. Biopharm. 70(1) (2008) 279-288
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (194) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return