Turn off MathJax
Article Contents
Hanren Chen, Jiayi Xiao, Bihong Diao, Shiquan Zheng, Huaze Shao, Lihong Liu. Recent advances in bacterial detection techniques targeting genetic, protein, and enzymatic biomarkers[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101584
Citation: Hanren Chen, Jiayi Xiao, Bihong Diao, Shiquan Zheng, Huaze Shao, Lihong Liu. Recent advances in bacterial detection techniques targeting genetic, protein, and enzymatic biomarkers[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101584

Recent advances in bacterial detection techniques targeting genetic, protein, and enzymatic biomarkers

doi: 10.1016/j.jpha.2026.101584
Funds:

This work was supported financially by the Guangzhou Science and Technology Planning Project (Grant No.: 2024B03J0007) and the Guangdong Basic and Applied Basic Research Foundation (Grant Nos.: 2023A1515010996 and 2025A1515012729).

  • Received Date: Jun. 06, 2025
  • Accepted Date: Feb. 07, 2026
  • Rev Recd Date: Feb. 05, 2026
  • Available Online: Feb. 10, 2026
  • Rapid and accurate diagnosis of bacterial infections is essential for effective clinical management, food safety, and environmental monitoring. Traditional culture-based methods are time-consuming and inadequate for addressing urgent challenges such as antimicrobial resistance (AMR). This review categorizes recent bacterial detection strategies into three major biomarker types: genetic, protein, and enzymatic. For each category, we outline the underlying detection mechanisms, evaluate analytical performance, and highlight representative technologies, including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) assays, advanced immunoassays, aptamer sensors, and enzyme-based assays. Meanwhile, we provide a detailed description of representative examples for each representative technology. Key metrics such as sensitivity, detection time, portability, and point-of-care applicability are compared to reveal the strengths and limitations of each approach. Translational progress is discussed with emphasis on commercialized platforms, field-deployable devices, and multimodal workflows. Finally, major technical bottlenecks are identified, and future directions are proposed for developing robust, rapid, and widely accessible bacterial diagnostics.
  • loading
  • [1]
    U. P. Azad, P. Chandra, Handbook of nanobioelectrochemistry: application in devices and biomolecular sensing, Vol. 2, Springer: Singapore, 2023, pp. 32−37.
    [2]
    K.W.K. Tang, B.C. Millar, J.E. Moore, Antimicrobial resistance (AMR), Br. J. Biomed. Sci. 80 (2023), 11387.
    [3]
    W. Hu, J. Pang, S. Biswas, et al., Ultrasensitive detection of bacteria using a 2D MOF nanozyme-amplified electrochemical detector, Anal. Chem. 93 (2021) 8544-8552.
    [4]
    R. Liu, J. Li, B.J. Salena, et al., Aptamer and DNAzyme based colorimetric biosensors for pathogen detection, Angew. Chem. Int. Ed. Engl. 64 (2025), e202418725.
    [5]
    R. Pandey, D. Chang, M. Smieja, et al., Integrating programmable DNAzymes with electrical readout for rapid and culture-free bacterial detection using a handheld platform, Nat. Chem. 13 (2021) 895-901.
    [6]
    P. Kumar, J. Kumar Patra, P. Chandra, Advances in microbial biotechnology: current trends and future prospects, first ed., Vol. 1, Apple Academic Press, 2018, pp. 3−28.
    [7]
    N.G. Jha, D.S. Dkhar, S.K. Singh, et al., Engineered biosensors for diagnosing multidrug resistance in microbial and malignant cells, Biosensors 13 (2023), 235.
    [8]
    U.P. Azad, P. Chandra, Handbook of material engineering in nanobiomedicine and diagnostics, Vol. 1, Springer: Singapore, 2025, pp. 4−5.
    [9]
    A. Baranwal, A. Srivastava, P. Kumar, et al., Prospects of nanostructure materials and their composites as antimicrobial agents, Front. Microbiol. 9 (2018), 422.
    [10]
    X. Zhou, H. Wu, X. Chen, et al., Glucose-metabolism-triggered colorimetric sensor array for point-of-care differentiation and antibiotic susceptibility testing of bacteria, Food Chem. 438 (2024), 137983.
    [11]
    B. Doyle, G.Z.M. Reynolds, M. Dvorak, et al., Absolute quantification of prokaryotes in the microbiome by 16S rRNA qPCR or ddPCR, Nat. Protoc. 42 (2025) 328-338.
    [12]
    A. Regueira-Iglesias, L. Vazquez-Gonzalez, C. Balsa-Castro, et al., In silico evaluation and selection of the best 16S rRNA gene primers for use in next-generation sequencing to detect oral bacteria and Archaea, Microbiome 11 (2023), 58.
    [13]
    X. Zhao, H. Peng, J. Hu, et al., Nanotechnology-enabled PCR with tunable energy dynamics, JACS Au 4 (2024) 3370-3382.
    [14]
    L. Heijnen, H.J. de Vries, G. van Pelt, et al., Qualitative detection of E. coli in distributed drinking water using real-time reverse transcription PCR targeting 16S rRNA: Validation and practical experiences, Water Res. 259 (2024), 121843.
    [15]
    K. Phopin, S. Luk-in, W. Ruankham, et al., Duplex PCR-lateral flow immunoassay for rapid and visual screening of Salmonella and Vibrio cholerae for food safety assurance and hygiene surveillance, LWT 203 (2024), 116362.
    [16]
    Y. Jiao, Z. Zhang, K. Wang, et al., Rapid detection of Salmonella in food matrices by photonic PCR based on the photothermal effect of Fe3O4, Food Chem. X 19 (2023), 100798.
    [17]
    T.N.D. Trinh, K.T.L. Trinh, N.Y. Lee, Colorimetric polymerase chain reaction mediated by pH indicator: Rapid detection of drug-resistant nosocomial bacteria, Talanta 284 (2025), 127193.
    [18]
    Y. Ren, K. Liu, H. Yang, et al., Multiplexing imaging of closely located single-nucleotide mutations in single cells via encoded in situ PCR, ACS Sens. 9 (2024) 3549-3556.
    [19]
    H. Cao, J.M. Shockey, Comparison of TaqMan and SYBR Green qPCR methods for quantitative gene expression in tung tree tissues, J. Agric. Food Chem. 60 (2012) 12296-12303.
    [20]
    L. Ji, X. Du, H. Zhang, et al., Establishment of a multiplex qPCR method for sensitive detection of proteolytic psychrotrophic bacteria in raw milk, Food Biosci. 62 (2024), 105339.
    [21]
    H. Wang, X. Kang, L. Yu, et al., Developing a novel TaqMan qPCR assay for optimizing Salmonella Pullorum detection in chickens, Vet. Q. 45 (2025) 1-13.
    [22]
    H. Li, M. Xu, X. An, et al., High-risk ARGs (HRA) Chip: A high-throughput qPCR-based array for assessment of high-risk ARGs from the environment, Water Res. 262 (2024), 122106.
    [23]
    R. Chavada, M. Maley, Evaluation of a commercial multiplex PCR for rapid detection of multi drug resistant gram negative infections, Open Microbiol. J. 9 (2015) 125-135.
    [24]
    T.J. Abram, H. Cherukury, C. Ou, et al., Rapid bacterial detection and antibiotic susceptibility testing in whole blood using one-step, high throughput blood digital PCR, Lab Chip 20 (2020) 477-489.
    [25]
    L. Maestre-Carballa, V. Navarro-Lopez, M. Martinez-Garcia, City-scale monitoring of antibiotic resistance genes by digital PCR and metagenomics, Environ. Microbiome 19 (2024), 16.
    [26]
    A. Mirabile, G. Sangiorgio, P.G. Bonacci, et al., Advancing pathogen identification: The role of digital PCR in enhancing diagnostic power in different settings, Diagnostics 14 (2024), 1598.
    [27]
    C. Cao, M. You, H. Tong, et al., Similar color analysis based on deep learning (SCAD) for multiplex digital PCR via a single fluorescent channel, Lab Chip 22 (2022) 3837-3847.
    [28]
    M. Sidstedt, P. Radstrom, J. Hedman, PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions, Anal. Bioanal. Chem. 412 (2020) 2009-2023.
    [29]
    H. Kitagawa, M. Kojima, K. Tadera, et al., Clinical diagnostic performance of droplet digital PCR for pathogen detection in patients with Escherichia coli bloodstream infection: A prospective observational study, BMC Infect. Dis. 25 (2025), 22.
    [30]
    N. Yang, H. Zhang, X. Han, et al., Advancements and applications of loop-mediated isothermal amplification technology: A comprehensive overview, Front. Microbiol. 15 (2024), 1406632.
    [31]
    J. Kou, Y. Li, Z. Zhao, et al., Simultaneous dual-gene test of methicillin-resistant Staphylococcus aureus using an argonaute-centered portable and visual biosensor, Small 20 (2024), 2311764.
    [32]
    S. Kim, J.H. Kim, S. Kim, et al., Loop-mediated isothermal amplification-based nucleic acid lateral flow assay for the specific and multiplex detection of genetic markers, Anal. Chim. Acta. 1205 (2022), 339781.
    [33]
    S.Y. Lee, S.W. Oh, Filtration-based LAMP-CRISPR/Cas12a system for the rapid, sensitive and visualized detection of Escherichia coli O157:H7, Talanta 241 (2022), 123186.
    [34]
    T. Dong, L. Qin, Z. Wang, et al., Point-of-care diagnosis of tuberculosis using a portable nucleic acid test with distance-based readout, Anal. Chem. 96 (2024) 20204-20212.
    [35]
    H. Satam, K. Joshi, U. Mangrolia, et al., Next-generation sequencing technology: Current trends and advancements, Biology 12 (2023), 997.
    [36]
    Y. Zhao, W. Zhang, X. Zhang, Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases, Front. Cell. Infect. Microbiol. 14 (2024), 1458316.
    [37]
    V.L. Baillie, S.A. Madhi, V. Ahyong, et al., Metagenomic sequencing of post-mortem tissue samples for the identification of pathogens associated with neonatal deaths, Nat. Commun. 14 (2023), 5373.
    [38]
    D. Gu, J. Liu, J. Wang, et al., Integrating DNA and RNA sequencing for enhanced pathogen detection in respiratory infections, J. Transl. Med. 23 (2025), 325.
    [39]
    L. Zhang, X. Yu, C. Zhang, et al., Development and comprehensive evaluation of culture-independent, long amplicon-based targeted next-generation sequencing methods for predicting antimicrobial resistance in tuberculosis, Anal. Chem. 97 (2025) 281-289.
    [40]
    Y. Tomofuji, K. Sonehara, T. Kishikawa, et al., Reconstruction of the personal information from human genome reads in gut metagenome sequencing data, Nat. Microbiol. 8 (2023) 1079-1094.
    [41]
    M.K. Murthy, V.K. Gupta, A.P. Maurya, Diagnosis of nontuberculous mycobacterial infections using genomics and artificial intelligence-machine learning approaches: Scope, progress and challenges, Front. Microbiol. 16 (2025), 1665685.
    [42]
    M. Ateiah, E.R. Gandalipov, A.A. Rubel, et al., Differentiation of Bacillus cereus species based on detected unamplified bacterial 16S rRNA by DNA nanomachine, Bio. Protoc. 15 (2025), e5243.
    [43]
    S.K. Kushwaha, L.P. Narasimhan, C. Chithananthan, et al., Clustered regularly interspaced short palindromic repeats-Cas system: Diversity and regulation in Enterobacteriaceae, Future Microbiol. 17 (2022) 1249-1267.
    [44]
    Q. Bao, J. Sun, X. Fu, et al., A simplified amplification-free strategy with lyophilized CRISPR-CcrRNA system for drug-resistant Salmonella detection, Small 19 (2023), e2207343.
    [45]
    H. Zhang, S. Yao, R. Sheng, et al., A cascade amplification strategy for ultrasensitive Salmonella typhimurium detection based on DNA walker coupling with CRISPR-Cas12a, J. Colloid Interface Sci. 625 (2022) 257-263.
    [46]
    W. Guo, Y. Guo, H. Xu, et al., Ultrasensitive "on-off" ratiometric fluorescence biosensor based on RPA-CRISPR/Cas12a for detection of Staphylococcus aureus, J. Agric. Food Chem. 73 (2025) 2167-2173.
    [47]
    S.G. Thakku, J. Lirette, K. Murugesan, et al., Genome-wide tiled detection of circulating Mycobacterium tuberculosis cell-free DNA using Cas13, Nat. Commun. 14 (2023), 1803.
    [48]
    Y. Shang, G. Xing, J. Lin, et al., Multiplex bacteria detection using one-pot CRISPR/Cas13a-based droplet microfluidics, Biosens. Bioelectron. 243 (2024), 115771.
    [49]
    Y. Ren, P. Gao, Y. Song, et al., An aptamer-exonuclease III (Exo III)-assisted amplification-based lateral flow assay for sensitive detection of Escherichia coli O157:H7 in milk, J. Dairy Sci. 104 (2021) 8517-8529.
    [50]
    H. Chen, X. Hu, J. Xiao, et al., Rapid and visual detection of urinary pathogens by employing bifunctional deoxyribonucleic acid sensors and aggregation of gold nanoparticles, Anal. Chem. 97 (2025) 629-639.
    [51]
    X. Shan, D. Kuang, Q. Feng, et al., A dual-mode ratiometric aptasensor for accurate detection of pathogenic bacteria based on recycling of DNAzyme activation, Food Chem. 423 (2023), 136287.
    [52]
    N. Kirchgassler, H. Rosenbach, I. Span, Stability and activity of the 10-23 DNAzyme under molecular crowding conditions, Methods Mol. Biol. 2439 (2022) 79-89.
    [53]
    S.M. Imani, E. Osman, F. Bakhshandeh, et al., Liquid NanoBiosensors enable one-pot electrochemical detection of bacteria in complex matrices, Adv. Sci. 10 (2023), 2207223.
    [54]
    H. Yousefi, M.M. Ali, H.M. Su, et al., Sentinel wraps: Real-time monitoring of food contamination by printing DNAzyme probes on food packaging, ACS Nano 12 (2018) 3287-3294.
    [55]
    A. Singh, E. Ahmed, M.D. Rather, et al., Marketing strategies in nanomaterials for sensor applications: Bridging lab to market, Glob. Chall. 9 (2025), 2400294.
    [56]
    S. Wei, Q. Tang, X. Hu, et al., Rapid, ultrasensitive, and visual detection of pathogens based on cation dye-triggered gold nanoparticle electrokinetic agglutination analysis, ACS Sens. 9 (2024) 325-336.
    [57]
    Y. Zhao, S. Park, B.N. Kreiswirth, et al., Rapid real-time nucleic acid sequence-based amplification-molecular beacon platform to detect fungal and bacterial bloodstream infections, J. Clin. Microbiol. 47 (2009) 2067-2078.
    [58]
    K. Ma, Y. Cao, C. Xuan, et al., Ru nanoclusters engineer Prussian blue analog nanocubes for multiple active sites synergistic catalysis enabling high-performance bacterial detection, Chem. Eng. J. 507 (2025), 160553.
    [59]
    C. Li, Y. Huang, S. Li, et al., Portable foodborne pathogen detection via ratiometric fluorescence nanoprobe for adenosine triphosphate quantification based on DNA-functionalized metal-organic framework, Int. J. Biol. Macromol. 286 (2025), 138410.
    [60]
    S. Itagaki, A. Nakao, S. Nakamura, et al., Simultaneous electrochemical detection of multiple bacterial species using metal-organic nanohybrids, Anal. Chem. 96 (2024) 3787-3793.
    [61]
    H. Shen, Y. Fu, Z. Liu, et al., A handheld electrochemical bacterial sensor based on multifunctional composite hydrogels and DNA biomimetic nanowalls for accurate detection of Porphyromonas gingivalis, Chem. Eng. J. 498 (2024), 155344.
    [62]
    Y.L. Chu, S.J. Young, C.J. Liu, et al., Enhanced UV-sensing performances of 2-D Pd/ZnO nanosheet photodetectors through inexpensive photochemical synthesis at room temperature and their humidity applications, ACS Appl. Electron. Mater. 7 (2025) 129-142.
    [63]
    M.D. Madhuwantha, H. Galagedara, Y.Y. Kannangara, et al., Low-cost ZnO incorporated carbonized nitrile butadiene rubber (NBR) as a relative humidity monitoring sensor, Mater. Sci. Eng. B 298 (2023), 116862.
    [64]
    A. Mahajan, A. Dubey, A. Singh, et al., Electrochemical detection of nitrate ions using polyvinyl alcohol/copper and nickel co-doped titania (PCNT) nanocomposite, J. Mater. Sci. Mater. Electron. 36 (2025), 262.
    [65]
    A. Dubey, A. Singh, A.K. Sundramoorthy, et al., Synthesis and characterization of GO/TiO2-based electrode for the detection of ethyl lactate: A simulant of chemical warfare agent, J. Environ. Chem. Eng. 13 (2025), 115155.
    [66]
    A. Dubey, A. Ahmed, A. Singh, et al., Transformation of waste thermocol into activated carbon for electrochemical detection of ammonia in an aqueous solution, Diam. Relat. Mater. 149 (2024), 111596.
    [67]
    A. Dubey, A. Singh, A. Ahmed, et al., Amine-functionalized activated carbon for 2-chloroethyl phenyl sulphide (2-CEPS) sensing using a portable electrochemical circuit, Surf. Interfaces 51 (2024), 104731.
    [68]
    A. Gupta, A. Singh, S.V. Ranganayakulu, et al., Vanadium(IV) oxide nanoparticle-based modified conductive fabric for efficient electrochemical sensing of hydrogen peroxide, Braz. J. Phys. 54 (2024), 144.
    [69]
    A. Dubey, A. Ahmed, R. Singh, et al., Role of flexible sensors for the electrochemical detection of organophosphate-based chemical warfare agents, Int. J. Smart Nano Mater. 15 (2024) 502-533.
    [70]
    W. Chen, X. Peng, L. Kang, et al., Biosensors with vancomycin and polymetallic metal-organic frameworks for colorimetric-fluorescent dual-mode detection and sterilization of bacteria, J. Hazard. Mater. 482 (2025), 136582.
    [71]
    G. Batani, K. Bayer, J. Boge, et al., Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria, Sci. Rep. 9 (2019), 18618.
    [72]
    T. Hormsombut, N. Mekjinda, S. Kalasin, et al., Mesoporous silica nanoparticles-enhanced microarray technology for highly sensitive simultaneous detection of multiplex foodborne pathogens, ACS Appl. Bio Mater. 7 (2024) 2367-2377.
    [73]
    A. Maus, B. Bisha, C. Fagerquist, et al., Detection and identification of a protein biomarker in antibiotic-resistant Escherichia coli using intact protein LC offline MALDI-MS and MS/MS, J. Appl. Microbiol. 128 (2020) 697-709.
    [74]
    S. Park, D. Shin, S. Lee, et al., Airborne bacteria detection: Species-specific concentration measurement using colorimetric detection of free antibodies, J. Hazard. Mater. 494 (2025), 138761.
    [75]
    Z. Saldana-Ahuactzi, J.H. Gutierrez-Flores, V.M. Luna-Pineda, et al., Development and characterization of a polyvalent polyclonal antibody as a common capture antibody for the detection of enterotoxigenic Escherichia coli in a sandwich ELISA, Curr. Microbiol. 82 (2025), 177.
    [76]
    T.W. Kang, I.J. Hwang, S. Lee, et al., Multivalent nanosheet antibody mimics for selective microbial recognition and inactivation, Adv. Mater. 33 (2021), e2101376.
    [77]
    Zeeshan, S. Bahrami, S. Park, et al., Antibody functionalized capacitance sensor for label-free and real-time detection of bacteria and antibiotic susceptibility, Talanta 272 (2024), 125831.
    [78]
    H. Hayrapetyan, T. Tran, E. Tellez-Corrales, et al., Enzyme-linked immunosorbent assay: Types and applications, Methods Mol. Biol. 2612 (2023) 1-17.
    [79]
    J. Xue, R. Wang, J. Yang, et al., Sensitive plasmonic ELISA assay based on butyrylcholinesterase catalyzed hydrolysis for the detection of Staphylococcus aureus, Sens. Actuat. B Chem. 365 (2022), 131948.
    [80]
    E. Kiseleva, K. Mikhailopulo, O. Sviridov, Detection of Salmonella by competitive ELISA of lipopolysaccharide secreted into the culture medium, Anal. Biochem. 697 (2025), 115695.
    [81]
    X. Huang, L. Chen, W. Zhi, et al., Urchin-shaped Au-Ag@Pt sensor integrated lateral flow immunoassay for multimodal detection and specific discrimination of clinical multiple bacterial infections, Anal. Chem. 95 (2023) 13101-13112.
    [82]
    J. Li, Z. Li, B. Wang, et al., Electropositive magnetic fluorescent nanoprobe-mediated immunochromatographic assay for the ultrasensitive and simultaneous detection of bacteria, Adv. Sci. 12 (2025), e2412421.
    [83]
    P. Wu, W. Zuo, Y. Wang, et al., Multimodal capture−antibody-independent lateral flow immunoassay based on AuNF−PMBA for point-of-care diagnosis of bacterial urinary tract infections, Chem. Eng. J. 451 (2023), 139021.
    [84]
    I. Michael, D. Kim, O. Gulenko, et al., A fidget spinner for the point-of-care diagnosis of urinary tract infection, Nat. Biomed. Eng. 4 (2020) 591-600.
    [85]
    S. Bazsefidpar, E. Serrano-Pertierra, G. Gutierrez, et al., Rapid and sensitive detection of E. coli O157:H7 by lateral flow immunoassay and silver enhancement, Mikrochim. Acta 190 (2023) 264.
    [86]
    A. Viljoen, F. Viela, M. Mathelie-Guinlet, et al., Staphylococcus aureus vWF-binding protein triggers a strong interaction between clumping factor A and host vWF, Commun. Biol. 4 (2021), 453.
    [87]
    I. Piekarz, S. Gorska, A. Razim, et al., Planar single and dual-resonant microwave biosensors for label-free bacteria detection, Sens. Actuat. B Chem. 351 (2022), 130899.
    [88]
    E. Gheorghiu, Detection of pathogenic bacteria by magneto-immunoassays: A review, J. Biomed. Res. 35 (2020) 277-283.
    [89]
    A.E. Hall, P.J. Domanski, P.R. Patel, et al., Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A, Infect. Immun. 71 (2003) 6864-6870.
    [90]
    K. Wen, X. Meng, K. Lara, et al., Cost-effective evaluation of Aptamer candidates in SELEX-based Aptamer isolation, Talanta 275 (2024), 126103.
    [91]
    K.J. Fenstermacher, V. Achuthan, T.D. Schneider, et al., An evolutionary/biochemical connection between promoter-and primer-dependent polymerases revealed by systematic evolution of ligands by exponential enrichment, J. Bacteriol. 200 (2018) e00579-17.
    [92]
    M.G. Cordova-Espinoza, R. Gonzalez-Vazquez, R. R. Barron-Fattel, et al., Aptamers: A cutting-edge approach for gram-negative bacterial pathogen identification, Int. J. Mol. Sci. 25 (2024), 1257.
    [93]
    H. Zhou, Y. Li, W. Wu, Aptamers: Promising reagents in biomedicine application, Adv. Biol. 8 (2024), e2300584.
    [94]
    R. Abedi, J.B. Raoof, A. Bagheri Hashkavayi, et al., Innovations in aptamer-based biosensors for detection of pathogenic bacteria: Recent advances and perspective, Talanta 295 (2025), 128330.
    [95]
    Y. Wang, X. Hai, Y. Yan, et al., Self-powered biosensor-based multifunctional platform for detection and in situ elimination of bacteria, Adv. Funct. Mater. 35 (2025), 2420480.
    [96]
    M. Agar, M. Laabei, H.S. Leese, et al., Aptamer-molecularly imprinted polymer sensors for the detection of bacteria in water, Biosens. Bioelectron. 272 (2025), 117136.
    [97]
    B. Posha, S.R. Nambiar, N. Sandhyarani, Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide, Biosens. Bioelectron. 101 (2018) 199-205.
    [98]
    K. Jia, R. Xiao, Q. Lin, et al., RNase H2 triggered visual loop-mediated isothermal amplification combining smartphone assisted all-in-one aptamer magnetic enrichment device for ultrasensitive culture-independent detection of Salmonella Typhimurium in chicken meat, Sens. Actuat. B Chem. 380 (2023), 133399.
    [99]
    K. Kapil, S. Xu, I. Lee, et al., Highly sensitive detection of bacteria by binder-coupled multifunctional polymeric dyes, Polymers 15 (2023), 2723.
    [100]
    J. Niu, X. Hu, W. Ouyang, et al., Femtomolar detection of lipopolysaccharide in injectables and serum samples using aptamer-coupled reduced graphene oxide in a continuous injection-electrostacking biochip, Anal. Chem. 91 (2019) 2360-2367.
    [101]
    M. Thakur, A. Dan, Poly-l-lysine-functionalized green-light-emitting carbon dots as a fluorescence turn-on sensor for ultrasensitive detection of endotoxin, ACS Appl. Bio. Mater. 4 (2021) 3410-3422.
    [102]
    S. Wu, Y. Huang, J. Wen, et al., Multiplex aptamer-based fluorescence assay using magnetism-encoded nanoparticles for simultaneous detection of multiple pathogenic bacteria, Anal. Chem. 96 (2024) 2341-2350.
    [103]
    H. Nasrollahpour, B. Khalilzadeh, Naked eye biosensors for pathogen monitoring, Trac Trends Anal. Chem. 171 (2024), 117499.
    [104]
    B.R. Budiarto, A.Z. Mustopa, R.A. Ningrum, et al., Gold nanoparticles (AuNP)-based aptasensor for enteropathogenic Escherichia coli detection, Mol. Biol. Rep. 49 (2022) 9355-9363.
    [105]
    H. Chen, S. Zheng, Y. Zhang, et al., Visual detection of LPS at the femtomolar level based on click chemistry-induced gold nanoparticles electrokinetic accumulation, Anal. Chem. 96 (2024) 6995-7004.
    [106]
    C. Bayrac, F. Eyidogan, H. Avni Oktem, DNA aptamer-based colorimetric detection platform for Salmonella Enteritidis, Biosens. Bioelectron. 98 (2017) 22-28.
    [107]
    Y. Xie, Y. Huang, J. Li, et al., A trigger-based aggregation of aptamer-functionalized gold nanoparticles for colorimetry: An example on detection of Escherichia coli O157:H7, Sens. Actuat. B Chem. 339 (2021), 129865.
    [108]
    M. Majdinasab, J.L. Marty, Recent advances in electrochemical aptasensors for detection of biomarkers, Pharmaceuticals 15 (2022), 995.
    [109]
    P. Reich, R. Stoltenburg, B. Strehlitz, et al., Development of an impedimetric aptasensor for the detection of Staphylococcus aureus, Int. J. Mol. Sci. 18 (2017), 2484.
    [110]
    J. Zhang, M. Zhou, L. Yang, et al., Ultrasensitive electrochemical biosensor for bacteria detection based on Fe3O4@COF-AuNPs and trigging isothermal circular amplification, Sens. Actuat. B Chem. 422 (2025), 136609.
    [111]
    X. Lin, P. Liu, J. Yan, et al., Dual synthetic receptor-based sandwich electrochemical sensor for highly selective and ultrasensitive detection of pathogenic bacteria at the single-cell level, Anal. Chem. 95 (2023) 5561-5567.
    [112]
    Y. Wang, Z. Zhang, Y. Sun, et al., Recent advances in surface-enhanced raman scattering for pathogenic bacteria detection: A review, Sensors 25 (2025), 1370.
    [113]
    Y. Pang, N. Wan, L. Shi, et al., Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au, Anal. Chim. Acta 1077 (2019) 288-296.
    [114]
    Z. Nie, Z. Huang, Z. Wu, et al., SERS-based approaches in the investigation of bacterial metabolism, antibiotic resistance, and species identification, Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 336 (2025), 126051.
    [115]
    R. Beeram, K.R. Vepa, V.R. Soma, Recent trends in SERS-based plasmonic sensors for disease diagnostics, biomolecules detection, and machine learning techniques, Biosensors 13 (2023), 328.
    [116]
    H. Jayan, R. Zhou, Y. Zheng, et al., Microfluidic-SERS platform with in-situ nanoparticle synthesis for rapid E. coli detection in food, Food Chem. 471 (2025), 142800.
    [117]
    L. Jin, X. Cai, F. Ren, et al., An aptamer-based SERS method for rapid screening and identification of pathogens assisted by machine learning technique with robustness evaluation, Sens. Actuat. B Chem. 405 (2024), 135356.
    [118]
    G. Li, Z. Lai, A. Shan, Advances of antimicrobial peptide-based biomaterials for the treatment of bacterial infections, Adv. Sci. 10 (2023), e2206602.
    [119]
    S. Shriwastav, N. Kaur, M. Hassan, et al., Antimicrobial peptides: A promising frontier to combat antibiotic resistant pathogens, Ann. Med. Surg. 87 (2025) 2118-2132.
    [120]
    J.C. Stephani, L. Gerhards, B. Khairalla, et al., How do antimicrobial peptides interact with the outer membrane of gram-negative bacteria role of lipopolysaccharides in peptide binding, anchoring, and penetration, ACS Infect. Dis. 10 (2024) 763-778.
    [121]
    M.S. Mannoor, S. Zhang, A.J. Link, et al., Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides, Proc. Natl. Acad. Sci. USA 107 (2010) 19207-19212.
    [122]
    Z. Qiao, C. Lei, Y. Fu, et al., An antimicrobial peptide-based colorimetric bioassay for rapid and sensitive detection of E. coli O157:H7, RSC Adv. 7 (2017) 15769-15775.
    [123]
    A. Garrido-Maestu, P. Fucinos, S. Azinheiro, et al., Specific detection of viable Salmonella Enteritidis by phage amplification combined with qPCR (PAA-qPCR) in spiked chicken meat samples, Food Control 99 (2019) 79-83.
    [124]
    S.H. Hyeon, W.K. Lim, H.J. Shin, Novel surface plasmon resonance biosensor that uses full-length Det7 phage tail protein for rapid and selective detection of Salmonella enterica serovar Typhimurium, Biotechnol. Appl. Biochem. 68 (2021) 5-12.
    [125]
    K. Paramasivam, Y. Shen, J. Yuan, et al., Advances in the development of phage-based probes for detection of bio-species, Biosensors 12 (2022), 30.
    [126]
    J. Xu, C. Zhao, Y. Chau, et al., The synergy of chemical immobilization and electrical orientation of T4 bacteriophage on a micro electrochemical sensor for low-level viable bacteria detection via Differential Pulse Voltammetry, Biosens. Bioelectron. 151 (2020), 111914.
    [127]
    H.J. Tobias, M.P. Schafer, M. Pitesky, et al., Bioaerosol mass spectrometry for rapid detection of individual airborne Mycobacterium tuberculosis H37Ra particles, Appl. Environ. Microbiol. 71 (2005) 6086-6095.
    [128]
    L. Chen, W. Gao, X. Tan, et al., MALDI-TOF MS is an effective technique to classify specific microbiota, Microbiol. Spectr. 11 (2023) e00307-e00323.
    [129]
    S.S. Han, Y.S. Jeong, S.K. Choi, Current scenario and challenges in the direct identification of microorganisms using MALDI TOF MS, Microorganisms 9 (2021), 1917.
    [130]
    S. Chen, X. Chen, H. Su, et al., Advances in synthetic-biology-based whole-cell biosensors: Principles, genetic modules, and applications in food safety, Int. J. Mol. Sci. 24 (2023), 7989.
    [131]
    A. Ahmed, J.V. Rushworth, N.A. Hirst, et al., Biosensors for whole-cell bacterial detection, Clin. Microbiol. Rev. 27 (2014) 631-646.
    [132]
    F. Zheng, P. Wang, Q. Du, et al., Simultaneous and ultrasensitive detection of foodborne bacteria by gold nanoparticles-amplified microcantilever array biosensor, Front. Chem. 7 (2019) 232.
    [133]
    Aparna, M. Garg, N. Vishwakarma, et al., Molecularly imprinted conducting polymer based sensor for Salmonella typhimurium detection, Bioelectrochemistry 147 (2022), 108211.
    [134]
    L. Liu, J.L. Gray, E.W. Tate, et al., Bacterial enzymes: Powerful tools for protein labeling, cell signaling, and therapeutic discovery, Trends Biotechnol. 41 (2023) 1385-1399.
    [135]
    L. Pala, T. Sirec, U. Spitz, Modified enzyme substrates for the detection of bacteria: A review, Molecules 25 (2020), 3690.
    [136]
    P. Nabeta, P. Seshadri, J. Havumaki, et al., First clinical assessment of a prototype assay to detect the enzymatic activity of β-lactamase as a marker for pulmonary tuberculosis, Diagn. Microbiol. Infect. Dis. 97 (2020), 115026.
    [137]
    B. Chantemesse, L. Betelli, S. Solanas, et al., A nitrocefin-based amperometric assay for the rapid quantification of extended-spectrum β-lactamase-producing Escherichia coli in wastewaters, Water Res. 109 (2017) 375-381.
    [138]
    Y. Zhang, W. Wang, M. Wang, et al., Herbal allies in antibiotic warfare: Unveiling potent β-lactamase inhibitors with innovative cellulose-based colorimetric sensors, Chem. Eng. J. 507 (2025), 160433.
    [139]
    T. Dai, J. Xie, J.A. Buonomo, et al., Bioluminogenic probe for rapid, ultrasensitive detection of β-lactam-resistant bacteria, Anal. Chem. 95 (2023) 7329-7335.
    [140]
    Q. Tang, Z. Li, J. Li, et al., PCR-free, label-free, and centrifugation-free diagnosis of multiplex antibiotic resistance genes by combining mDNA-Au@Fe3O4 from heating dry and DNA concatamers with G-triplex, Anal. Chem. 96 (2024) 292-300.
    [141]
    D.Y. Graham, M. Miftahussurur, Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review, J. Adv. Res. 13 (2018) 51-57.
    [142]
    W.C. Albrich, C.R. Kahlert, S. Nigg, et al., Fluorescent probe for the pH-independent rapid and sensitive direct detection of urease-producing bacteria, Anal. Chem. 96 (2024) 20578-20586.
    [143]
    R. Huang, X. Cai, J. Du, et al., Bioinspired plasmonic nanosensor for on-site antimicrobial susceptibility testing in urine samples, ACS Nano 16 (2022) 19229-19239.
    [144]
    Q. Zhuang, L. Lu, Y. Lin, et al., A self-calibrating chemiluminescence sensor for rapid and precise antibiotic prescribing guidelines on urinary tract infections, ACS Sens. 10 (2025) 2203-2211.
    [145]
    Q. Yang, Y. Wang, Assembly of T4 bacteriophages with β-galactosidase for electrochemical detection of Escherichia coli K12, Food Chem. 484 (2025), 144399.
    [146]
    J. Chen, S.D. Alcaine, Z. Jiang, et al., Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe, Anal. Chem. 87 (2015) 8977-8984.
    [147]
    Y. Wang, X. Cheng, C. Wang, et al., Ag+-gated peroxidase activity of gold nanoparticles for sensitive detection of Escherichia coli, Talanta 264 (2023), 124779.
    [148]
    G.G. Salama, T.S. El-Mahdy, W.H. Moustafa, et al., Downregulation of Klebsiella pneumoniae RND efflux pump genes following indole signal produced by Escherichia coli, BMC Microbiol. 24 (2024), 312.
    [149]
    K. Mahato, A. Baranwal, A. Srivastava, et al. Smart materials for biosensing applications, Techno-Societal 2016, Springer, 2017, pp 421–431.
    [150]
    R. Kumari, P. Chandra, Electrochemical nano-imprinting of trimetallic dendritic surface for ultrasensitive detection of cephalexin in pharmaceutical formulations, Pharmaceutics 15 (2023), 876.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (42) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return