| Citation: | Li Zhou, Xin-Lei Shen, Qing-Ru Zhu, Wen-Kai Yu, Hang-Chao Li, Gang Cao, Yi-Ni Bao. Targeting posttranslational modifications of oxidative stress pathways for the treatment of diabetic nephropathy[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101558 |
| [1] |
Y.S. Kanwar, L. Sun, P. Xie, et al., A glimpse of various pathogenetic mechanisms of diabetic nephropathy, Annu. Rev. Pathol. 6 (2011) 395-423.
|
| [2] |
B. Singh, A. Kumar, H. Singh, et al., Protective effect of vanillic acid against diabetes and diabetic nephropathy by attenuating oxidative stress and upregulation of NF-κB, TNF-α and COX-2 proteins in rats, Phytother. Res. 36 (2022) 1338-1352.
|
| [3] |
R.Z. Alicic, E.J. Cox, J.J. Neumiller, et al., Incretin drugs in diabetic kidney disease: Biological mechanisms and clinical evidence, Nat. Rev. Nephrol. 17 (2021) 227-244.
|
| [4] |
F. Xu, H. Jiang, X. Li, et al., Discovery of PRDM16-mediated TRPA1 induction as the mechanism for low tubulo-interstitial fibrosis in diabetic kidney disease, Adv. Sci. 11 (2024), 2306704.
|
| [5] |
Y. Zheng, S.H. Ley, F.B. Hu, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications, Nat. Rev. Endocrinol. 14 (2018) 88-98.
|
| [6] |
Q. Hu, L. Jiang, Q. Yan, et al., A natural products solution to diabetic nephropathy therapy, Pharmacol. Ther. 241 (2023), 108314.
|
| [7] |
S. Rayego-Mateos, R.R. Rodrigues-Diez, B. Fernandez-Fernandez, et al., Targeting inflammation to treat diabetic kidney disease: The road to 2030, Kidney Int. 103 (2023) 282-296.
|
| [8] |
A. Ashfaq, M. Meineck, A. Pautz, et al., A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy, Pharmacol. Ther. 249 (2023), 108503.
|
| [9] |
G. Filomeni, D. De Zio, F. Cecconi, Oxidative stress and autophagy: The clash between damage and metabolic needs, Cell Death Differ. 22 (2015) 377-388.
|
| [10] |
K. Hassanzadeh, J. Liu, S. Maddila, et al., Posttranslational modifications of α-synuclein, their therapeutic potential, and crosstalk in health and neurodegenerative diseases, Pharmacol. Rev. 76 (2024) 1254-1290.
|
| [11] |
Y. Kim, H. Li, J. Choi, et al., Glycosidase-targeting small molecules for biological and therapeutic applications, Chem. Soc. Rev. 52 (2023) 7036-7070.
|
| [12] |
N. Zhang, Y. Zhang, B. Wu, et al., Deacetylation-dependent regulation of PARP1 by SIRT2 dictates ubiquitination of PARP1 in oxidative stress-induced vascular injury, Redox Biol. 47 (2021), 102141.
|
| [13] |
S. Ramazi, J. Zahiri, Posttranslational modifications in proteins: Resources, tools and prediction methods, Database 2021 (2021), baab012.
|
| [14] |
P. Kang, L. Xiao, Y. Liu, et al., Morusin ameliorates tubulointerstitial damage in diabetic mice through SIRT1/HIF-1α/IL-16 signaling pathway, Phytomedicine 142 (2025), 156781.
|
| [15] |
X. Hu, W. Chen, M. Yang, et al., IGFBP5 promotes EndoMT and renal fibrosis through H3K18 lactylation in diabetic nephropathy, Cell. Mol. Life Sci. 82 (2025), 215.
|
| [16] |
B. Qi, Y. Chen, S. Chai, et al., O-linked β-N-acetylglucosamine (O-GlcNAc) modification: Emerging pathogenesis and a therapeutic target of diabetic nephropathy, Diabet. Med. 42 (2025), e15436.
|
| [17] |
Z. Zhang, F. Zhou, M. Lu, et al., WTAP-mediated m6A modification of TRIM22 promotes diabetic nephropathy by inducing mitochondrial dysfunction via ubiquitination of OPA1, Redox Rep. 29 (2024), 2404794.
|
| [18] |
X. Wang, L. Meng, L. Zhao, et al., Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway, Diabetes Res. Clin. Pract. 126 (2017) 172-181.
|
| [19] |
X. Cui, Y. Li, S. Yuan, et al., Alpha-kinase1 promotes tubular injury and interstitial inflammation in diabetic nephropathy by canonical pyroptosis pathway, Biol. Res. 56 (2023), 5.
|
| [20] |
Y. Zhang, F. Su, E. Zhu, et al., A systematical review on traditional Chinese medicine treating chronic diseases via regulating ferroptosis from the perspective of experimental evidence and clinical application, Chin. Herb. Med. 17 (2025) 246-260.
|
| [21] |
Q. He, W. He, Y. Ren, et al., PRPF19 mediates the proteasomal degradation of VDR to exacerbate ferroptosis in diabetic nephropathy, Cell Commun. Signal. 23 (2025), 242.
|
| [22] |
Q. Peng, H. Zhang, Z. Li, KAT2A-mediated H3K79 succinylation promotes ferroptosis in diabetic nephropathy by regulating SAT2, Life Sci. 376 (2025), 123746.
|
| [23] |
W. Dong, H. Zhang, C. Zhao, et al., Silencing of miR-150-5p ameliorates diabetic nephropathy by targeting SIRT1/p53/AMPK pathway, Front. Physiol. 12 (2021), 624989.
|
| [24] |
X. Li, T. Ma, S. Wen, et al., LncRNA ARAP1-AS2 promotes high glucose-induced human proximal tubular cell injury via persistent transactivation of the EGFR by interacting with ARAP1, J. Cell. Mol. Med. 24 (2020) 12994-13009.
|
| [25] |
J. Xu, Y. Deng, Y. Wang, et al., SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway, Cell Prolif. 53 (2020), e12738.
|
| [26] |
G. Ye, M. Hu, L. Xiao, Forkhead box A2-mediated lncRNA SOX2OT up-regulation alleviates oxidative stress and apoptosis of renal tubular epithelial cells by promoting SIRT1 expression in diabetic nephropathy, Nephrology 28 (2023) 196-207.
|
| [27] |
F. Giacco, M. Brownlee, Oxidative stress and diabetic complications, Circ. Res. 107 (2010) 1058-1070.
|
| [28] |
Y. Liu, H. Li, S. Wang, et al., Ibrolipim attenuates early-stage nephropathy in diet-induced diabetic minipigs: Focus on oxidative stress and fibrogenesis, Biomed. Pharmacother. 129 (2020), 110321.
|
| [29] |
R. Huang, C. Zhang, Z. Xiang, et al., Role of mitochondria in renal ischemia-reperfusion injury, Febs. j. 291 (2024) 5365-5378.
|
| [30] |
Y. Guo, M. Wang, Y. Liu, et al., BaoShenTongLuo formula protects against podocyte injury by regulating AMPK-mediated mitochondrial biogenesis in diabetic kidney disease, Chin. Med. 18 (2023), 32.
|
| [31] |
Z. Liu, P. Nan, Y. Gong, et al., Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy, Biomed. Pharmacother. 164 (2023), 114897.
|
| [32] |
W. Wang, Y. Liu, M. Wang, et al., Inhibition of renal tubular epithelial mesenchymal transition and endoplasmic reticulum stress-induced apoptosis with Shenkang injection attenuates diabetic tubulopathy, Front. Pharmacol. 12 (2021), 662706.
|
| [33] |
X. Li, J. Zhang, L. Li, et al., Deficiency of growth arrest and DNA damage-inducible 45 α-R-loop pathway and kidney injury in diabetic nephropathy, J. Am. Soc. Nephrol. 36 (2025) 1476-1489.
|
| [34] |
X. Ma, J. Ma, T. Leng, et al., Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention, Ren. Fail. 45 (2023), 2146512.
|
| [35] |
D. Verzola, S. Milanesi, F. Viazzi, et al., Enhanced myostatin expression and signalling promote tubulointerstitial inflammation in diabetic nephropathy, Sci. Rep. 10 (2020), 6343.
|
| [36] |
H. Elimam, Z. Hassan, N.A.A. Alhamshry, et al., Carvedilol-loaded self-nanoemulsifying drug delivery system target diabetic nephropathy: Preclinical evidence of antioxidant and antifibrotic effects, Naunyn Schmiedeberg’s Arch. Pharmacol. 2025. 2022. https://doi.org/10.1007/s00210-025-04356-9.
|
| [37] |
M. Darenskaya, S. Kolesnikov, N. Semenova, et al., Diabetic nephropathy: Significance of determining oxidative stress and opportunities for antioxidant therapies, Int. J. Mol. Sci. 24 (2023), 12378.
|
| [38] |
J. Laget, F. Duranton, A. Argiles, et al., Renal insufficiency and chronic kidney disease-Promotor or consequence of pathological post-translational modifications, Mol. Aspects Med. 86 (2022), 101082.
|
| [39] |
Y. Zeng, M. Guo, Q. Wu, et al., Gut microbiota-derived indole-3-propionic acid alleviates diabetic kidney disease through its mitochondrial protective effect via reducing ubiquitination mediated-degradation of SIRT1, J. Adv. Res. 73 (2025) 607-630.
|
| [40] |
H. Sun, S. Xiong, X. Cao, et al., Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3, Redox Biol. 38 (2021), 101813.
|
| [41] |
J. Feng, L. Feng, Y. Yan, et al., SIRT3 deficiency aggravates mitochondrial metabolic disorder and podocyte injury in DKD via MPC2 acetylation, Cell. Signal. 135 (2025), 112029.
|
| [42] |
H. Noh, E.Y. Oh, J.Y. Seo, et al., Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury, Am. J. Physiol. Renal Physiol. 297 (2009) F729-F739.
|
| [43] |
C. Lin, P.H. Lee, Y.C. Hsu, et al., microRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction, J. Am. Soc. Nephrol. 25 (2014) 1698-1709.
|
| [44] |
Q. Lu, X. Hu, Q. Hou, et al., Rheb1 deficiency elicits mitochondrial dysfunction and accelerates podocyte senescence through promoting Atp5f1c acetylation, Cell. Signal. 124 (2024), 111451.
|
| [45] |
W. Gong, Z. Chen, Y. Zou, et al., CKIP-1 affects the polyubiquitination of Nrf2 and Keap1 via mediating Smurf1 to resist HG-induced renal fibrosis in GMCs and diabetic mice kidneys, Free Radic. Biol. Med. 115 (2018) 338-350.
|
| [46] |
D. Kim, G.Y. Nam, E. Seo, et al., Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells, J. Biomed. Sci. 29 (2022), 31.
|
| [47] |
S. Li, H. Xiao, X. Sun, et al., Connexin32 promotes the activation of Foxo3a to ameliorate diabetic nephropathy via inhibiting the polyubiquitination and degradation of Sirt1, Antioxid. Redox Signal. 39 (2023) 241-261.
|
| [48] |
Z. Chen, X. Sun, X. Li, et al., Polydatin attenuates renal fibrosis in diabetic mice through regulating the Cx32-Nox4 signaling pathway, Acta Pharmacol. Sin. 41 (2020) 1587-1596.
|
| [49] |
S. Li, Z. Lin, H. Xiao, et al., Fyn deficiency inhibits oxidative stress by decreasing c-Cbl-mediated ubiquitination of Sirt1 to attenuate diabetic renal fibrosis, Metabolism 139 (2023), 155378.
|
| [50] |
L. Liu, F. Bai, H. Song, et al., Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy, Redox Biol. 50 (2022), 102260.
|
| [51] |
Q. Zhao, S. Yan, F. Wang, et al., STING deficiency alleviates ferroptosis through FPN1 stabilization in diabetic kidney disease, Biochem. Pharmacol. 222 (2024), 116102.
|
| [52] |
Y. Zhao, S. Fan, H. Zhu, et al., Podocyte OTUD5 alleviates diabetic kidney disease through deubiquitinating TAK1 and reducing podocyte inflammation and injury, Nat. Commun. 15 (2024), 5441.
|
| [53] |
K. Huang, X. Zhao, USP9X prevents AGEs-induced upregulation of FN and TGF-β1 through activating Nrf2-ARE pathway in rat glomerular mesangial cells, Exp. Cell Res. 393 (2020), 112100.
|
| [54] |
F. Lizotte, M. Rousseau, B. Denhez, et al., Deletion of protein tyrosine phosphatase SHP-1 restores SUMOylation of podocin and reverses the progression of diabetic kidney disease, Kidney Int. 104 (2023) 787-802.
|
| [55] |
Y. Yang, S. Ren, J. Xue, et al., DeSUMOylation of RBMX regulates exosomal sorting of cargo to promote renal tubulointerstitial fibrosis in diabetic kidney disease, J. Adv. Res. 74 (2025) 175-189.
|
| [56] |
R. Wusiman, S. Haimiti, H. Abuduaini, et al., Increased SUMO-activating enzyme subunit 1 promotes glycolysis and fibrotic phenotype of diabetic nephropathy, Biochem. Pharmacol. 237 (2025), 116920.
|
| [57] |
R. Gellai, J. Hodrea, L. Lenart, et al., Role of O-linked N-acetylglucosamine modification in diabetic nephropathy, Am. J. Physiol. Renal Physiol. 311 (2016) F1172-F1181.
|
| [58] |
N. Fang, P. Li, O-linked N-acetylglucosaminyltransferase OGT inhibits diabetic nephropathy by stabilizing histone methyltransferases EZH2 via the HES1/PTEN axis, Life Sci. 274 (2021), 119226.
|
| [59] |
Q. Li, D. Veron, A. Tufro, S-nitrosylation of RhoGAP Myosin9A is altered in advanced diabetic kidney disease, Front. Med. 8 (2021), 679518.
|
| [60] |
D. Veron, P.K. Aggarwal, Q. Li, et al., Podocyte VEGF-A knockdown induces diffuse glomerulosclerosis in diabetic and in ENOS knockout mice, Front. Pharmacol. 12 (2022), 788886.
|
| [61] |
F.R. Danesh, M.M. Sadeghi, N. Amro, et al., 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway: Implications for diabetic nephropathy, Proc. Natl. Acad. Sci. USA 99 (2002) 8301-8305.
|
| [62] |
Z. Fan, Y. Zhang, L. Yuan, et al., LARS1 lactylation inhibits autophagy by activating mTORC1 to promote podocytes injury in diabetic kidney disease, Cell. Signal. 134 (2025), 111955.
|
| [63] |
G. Yang, X. Liu, Y. Li, et al., TRIM65 as a key regulator of ferroptosis and glycolysis in lactate-driven renal tubular injury and diabetic kidney disease, Cell Rep. 44 (2025), 116091.
|
| [64] |
J. Chen, Q. Feng, Y. Qiao, et al., ACSF2 and lysine lactylation contribute to renal tubule injury in diabetes, Diabetologia 67 (2024) 1429-1443.
|
| [65] |
Y. He, Y. Xie, T. Zhou, et al., Sodium crotonate alleviates diabetic kidney disease partially via the histone crotonylation pathway, Inflammation 48 (2025) 254-275.
|
| [66] |
M. Wu, X. Ye, Quercetin-4'-O-β-D-glucopyranoside inhibits podocyte injury by SIRT5-mediated desuccinylation of NEK7, Clin. Exp. Pharmacol. Physiol. 51 (2024), e13909.
|
| [67] |
M. Wang, Q. Li, S. Wang, et al., Astragaloside IV protects renal tubular epithelial cells against oxidative stress-induced injury by upregulating CPT1A-mediated HSD17B10 lysine succinylation in diabetic kidney disease, Phytother. Res. 38 (2024) 4519-4540.
|
| [68] |
J. Wang, J. Hu, H. Hu, et al., APT1-derived depalmitoylation of CD36 alleviates diabetes-induced lipotoxicity in podocytes, Int. J. Biol. Sci. 21 (2025) 3852-3866.
|
| [69] |
T. Zhou, H. Xu, X. Cheng, et al., Sodium butyrate attenuates diabetic kidney disease partially via histone butyrylation modification, Mediators Inflamm. 2022 (2022), 7643322.
|
| [70] |
T. Arnesen, D. Gromyko, D. Kagabo, et al., A novel human NatA Nalpha-terminal acetyltransferase complex: HNaa16p-hNaa10p (hNat2-hArd1), BMC Biochem. 10 (2009), 15.
|
| [71] |
Y. Shen, W. Wei, D. Zhou, Histone acetylation enzymes coordinate metabolism and gene expression, Trends Plant Sci. 20 (2015) 614-621.
|
| [72] |
Z. Guo, X. Ma, R. Zhang, et al., Oxidative stress, epigenetic regulation and pathological processes of lens epithelial cells underlying diabetic cataract, Adv. Ophthalmol. Pract. Res. 3 (2023) 180-186.
|
| [73] |
B. Mutlu, P. Puigserver, GCN5 acetyltransferase in cellular energetic and metabolic processes, Biochim. Biophys. Acta Gene Regul. Mech. 1864 (2021), 194626.
|
| [74] |
H. Xu, X. Wu, H. Qin, et al., Myocardin-related transcription factor a epigenetically regulates renal fibrosis in diabetic nephropathy, J. Am. Soc. Nephrol. 26 (2015) 1648-1660.
|
| [75] |
H. Yuan, M.A. Reddy, G. Sun, et al., Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells, Am. J. Physiol. Renal Physiol. 304 (2013) F601-F613.
|
| [76] |
H. Chen, J. Li, L. Jiao, et al., Apelin inhibits the development of diabetic nephropathy by regulating histone acetylation in Akita mouse, J. Physiol. 592 (2014) 505-521.
|
| [77] |
M. Wang, Z. Huang, X. Li, et al., Apabetalone, a BET protein inhibitor, inhibits kidney damage in diabetes by preventing pyroptosis via modulating the P300/H3K27ac/PLK1 axis, Pharmacol. Res. 207 (2024), 107306.
|
| [78] |
N. Zheng, N. Shabek, Ubiquitin ligases: Structure, function, and regulation, Annu. Rev. Biochem. 86 (2017) 129-157.
|
| [79] |
S. Parashar, A. Kaushik, R.K. Ambasta, et al., E2 conjugating enzymes: A silent but crucial player in ubiquitin biology, Ageing Res. Rev. 108 (2025), 102740.
|
| [80] |
H. Wang, Q. Li, Q. Tang, et al., Role and therapeutic potential of E3s in the tumor microenvironment of hepatocellular carcinoma, Front. Immunol. 15 (2024), 1483721.
|
| [81] |
P. Wang, X. Dai, W. Jiang, et al., RBR E3 ubiquitin ligases in tumorigenesis, Semin. Cancer Biol. 67 (2020) 131-144.
|
| [82] |
D. Wang, L. Ma, B. Wang, et al., E3 ubiquitin ligases in cancer and implications for therapies, Cancer Metastasis Rev. 36 (2017) 683-702.
|
| [83] |
C. Gao, W. Huang, K. Kanasaki, et al., The role of ubiquitination and sumoylation in diabetic nephropathy, Biomed Res. Int. 2014 (2014), 160692.
|
| [84] |
X. Zhou, C. Gao, W. Huang, et al., High glucose induces sumoylation of Smad4 via SUMO2/3 in mesangial cells, Biomed Res. Int. 2014 (2014), 782625.
|
| [85] |
X. He, Q. Lai, C. Chen, et al., Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function, Diabetologia 61 (2018) 881-895.
|
| [86] |
E. Arvaniti, A. Vakrakou, V. Kaltezioti, et al., Nuclear receptor NR5A2 is involved in the calreticulin gene regulation during renal fibrosis, Biochim. Biophys. Acta 1862 (2016) 1774-1785.
|
| [87] |
Y. Chen, S. Lu, S. Shan, et al., New insights into phytochemicals via protein glycosylation focused on aging and diabetes, Phytomedicine 141 (2025), 156673.
|
| [88] |
L. Xu, Y. Zhou, G. Wang, et al., The UDPase ENTPD5 regulates ER stress-associated renal injury by mediating protein N-glycosylation, Cell Death Dis. 14 (2023), 166.
|
| [89] |
Y. Li, Q. Cao, Y. Hu, et al., Advances in the interaction of glycolytic reprogramming with lactylation, Biomed. Pharmacother. 177 (2024), 116982.
|
| [90] |
R.M. Costa, M.C. Dias, J.V. Alves, et al., Pharmacological activation of nuclear factor erythroid 2-related factor-2 prevents hyperglycemia-induced renal oxidative damage: Possible involvement of O-GlcNAcylation, Biochem. Pharmacol. 220 (2024), 115982.
|
| [91] |
J. Sun, C. Steenbergen, E. Murphy, S-nitrosylation: NO-related redox signaling to protect against oxidative stress, Antioxid. Redox Signal. 8 (2006) 1693-1705.
|
| [92] |
A. Chatterji, D. Banerjee, T.R. Billiar, et al., Understanding the role of S-nitrosylation/nitrosative stress in inflammation and the role of cellular denitrosylases in inflammation modulation: Implications in health and diseases, Free Radic. Biol. Med. 172 (2021) 604-621.
|
| [93] |
H.Y. Lee, G.H. Lee, Y. Yoon, et al., IBF-R regulates IRE1α post-translational modifications and ER stress in high-fat diet-induced obese mice, Nutrients 14 (2022), 217.
|
| [94] |
H. Zhou, R. Zhang, P. Anand, et al., Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury, Nature 565 (2019) 96-100.
|
| [95] |
C.J. Lin, C.Y. Chiu, E.C. Liao, et al., S-nitrosylation of tissue transglutaminase in modulating glycolysis, oxidative stress, and inflammatory responses in normal and indoxyl-sulfate-induced endothelial cells, Int. J. Mol. Sci. 24 (2023), 10935.
|
| [96] |
F. Han, Y. Dong, Q. Liu, et al., S-nitrosylation of peroxiredoxin 2 exacerbates hyperuricemia-induced renal injury through regulation of mitochondrial homeostasis, Free Radic. Biol. Med. 230 (2025) 66-78.
|
| [97] |
Y. Zhong, X. Zhang, X. Cai, et al., Puerarin attenuated early diabetic kidney injury through down-regulation of matrix metalloproteinase 9 in streptozotocin-induced diabetic rats, PLoS One 9 (2014), e85690.
|
| [98] |
S. Gao, R. Yu, X. Zhou, The role of geranylgeranyltransferase I-mediated protein prenylation in the brain, Mol. Neurobiol. 53 (2016) 6925-6937.
|
| [99] |
D. Perez-Sala, Protein isoprenylation in biology and disease: General overview and perspectives from studies with genetically engineered animals, Front. Biosci. 12 (2007) 4456-4472.
|
| [100] |
R.H. Mohamed, D.S. Abdelrahim, N.H.A. Hay, et al., The role of protein prenylation inhibition through targeting FPPS by zoledronic acid in the prevention of renal fibrosis in rats, Sci. Rep. 14 (2024), 18283.
|
| [101] |
S.I. Kim, H.J. Kim, D.C. Han, et al., Effect of lovastatin on small GTP binding proteins and on TGF-beta1 and fibronectin expression, Kidney Int. Suppl. 77 (2000) S88-S92.
|
| [102] |
S.Y. Park, J.S. Lee, Y.J. Ko, et al., Inhibitory effect of simvastatin on the TNF-alpha- and angiotensin II-induced monocyte adhesion to endothelial cells is mediated through the suppression of geranylgeranyl isoprenoid-dependent ROS generation, Arch. Pharm. Res. 31 (2008) 195-204.
|
| [103] |
J. Zhang, B. Zhou, R. Sun, et al., The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8, Cell Res. 31 (2021) 980-997.
|
| [104] |
G.A. Brooks, The science and translation of lactate shuttle theory, Cell Metab. 27 (2018) 757-785.
|
| [105] |
X. Cai, C.P. Ng, O. Jones, et al., Lactate activates the mitochondrial electron transport chain independently of its metabolism, Mol. Cell 83 (2023) 3904-3920.e7.
|
| [106] |
D. Zhang, Z. Tang, H. Huang, et al., Metabolic regulation of gene expression by histone lactylation, Nature 574 (2019) 575-580.
|
| [107] |
Y. Wang, H. Li, S. Jiang, et al., The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation, Kidney Int. 106 (2024) 226-240.
|
| [108] |
Y. Li, X. Min, X. Zhang, et al., HSPA12A promotes c-Myc lactylation-mediated proliferation of tubular epithelial cells to facilitate renal functional recovery from kidney ischemia/reperfusion injury, Cell. Mol. Life Sci. 81 (2024), 404.
|
| [109] |
H. Guan, Y. Guan, Y. Liu, et al., The role of lactate and lactylation in diabetic nephropathy, Mol. Biol. Rep. 52 (2025), 783.
|
| [110] |
M. Tan, H. Luo, S. Lee, et al., Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification, Cell 146 (2011) 1016-1028.
|
| [111] |
J. Wan, H. Liu, J. Chu, et al., Functions and mechanisms of lysine crotonylation, J. Cell. Mol. Med. 23 (2019) 7163-7169.
|
| [112] |
P. Yang, Y. Qin, L. Zeng, et al., Crotonylation and disease: Current progress and future perspectives, Biomed. Pharmacother. 165 (2023), 115108.
|
| [113] |
L. Li, T. Xiang, J. Guo, et al., Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence, Nat. Commun. 15 (2024), 3200.
|
| [114] |
Z. Liu, R. Wang, Y. Wang, et al., Targeting succinylation-mediated metabolic reprogramming as a potential approach for cancer therapy, Biomed. Pharmacother. 168 (2023), 115713.
|
| [115] |
J. Lian, W. Liu, Q. Hu, et al., Succinylation modification: A potential therapeutic target in stroke, Neural Regen. Res. 19 (2024) 781-787.
|
| [116] |
K. Pfister, V. Young, B. Frankel, et al., Succinylation of Park7 activates a protective metabolic response to acute kidney injury, Am. J. Physiol. Renal Physiol. 327 (2024) F128-F136.
|
| [117] |
M. Qu, X. Zhou, X. Wang, et al., Lipid-induced S-palmitoylation as a vital regulator of cell signaling and disease development, Int. J. Biol. Sci. 17 (2021) 4223-4237.
|
| [118] |
M. Gu, H. Jiang, M. Tan, et al., Palmitoyltransferase DHHC9 and acyl protein thioesterase APT1 modulate renal fibrosis through regulating β-catenin palmitoylation, Nat. Commun. 14 (2023), 6682.
|
| [119] |
D. Lu, G. Aji, G. Li, et al., ZDHHC18 promotes renal fibrosis development by regulating HRAS palmitoylation, J. Clin. Invest. 135 (2025), e180242.
|
| [120] |
Q. Xue, Y. Yang, H. Li, et al., Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases, Genes Dis. 10 (2022) 2479-2490.
|
| [121] |
N.J. Butcher, R. Burow, R.F. Minchin, Modulation of human arylamine N-acetyltransferase 1 activity by lysine acetylation: Role of p300/CREB-binding protein and sirtuins 1 and 2, Mol. Pharmacol. 98 (2020) 88-95.
|
| [122] |
R. Liu, J. Wu, H. Guo, et al., Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets, MedComm 4 (2023), e292.
|
| [123] |
Y. Okuda, S. Ito, N. Kashihara, et al., The renoprotective effect of esaxerenone independent of blood pressure lowering: A post hoc mediation analysis of the ESAX-DN trial, Hypertens. Res. 46 (2023) 437-444.
|
| [124] |
B.L. Neuen, H.J.L. Heerspink, P. Vart, et al., Estimated lifetime cardiovascular, kidney, and mortality benefits of combination treatment with SGLT2 inhibitors, GLP-1 receptor agonists, and nonsteroidal MRA compared with conventional care in patients with type 2 diabetes and albuminuria, Circulation 149 (2024) 450-462.
|
| [125] |
L.P. Gregg, S.S. Hedayati, H. Yang, et al., Association of blood pressure variability and diuretics with cardiovascular events in patients with chronic kidney disease stages 1-5, Hypertension 77 (2021) 948-959.
|
| [126] |
S. Wing, J.G. Ray, K. Yau, et al., SGLT2 inhibitors and risk for hyperkalemia among individuals receiving RAAS inhibitors, JAMA Intern. Med. 185 (2025) 827-836.
|
| [127] |
H. Yao, A. Zhang, D. Li, et al., Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: Systematic review and network meta-analysis, BMJ 384 (2024) e076410.
|
| [128] |
L. Du, X. Qian, Y. Li, et al., Sirt1 inhibits renal tubular cell epithelial-mesenchymal transition through YY1 deacetylation in diabetic nephropathy, Acta Pharmacol. Sin. 42 (2021) 242-251.
|
| [129] |
X. Sun, H. Qin, Z. Zhang, et al., Valproate attenuates diabetic nephropathy through inhibition of endoplasmic reticulum stress-induced apoptosis, Mol. Med. Rep. 13 (2016) 661-668.
|
| [130] |
M.A. Reddy, P. Sumanth, L. Lanting, et al., Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice, Kidney Int. 85 (2014) 362-373.
|
| [131] |
K. Tikoo, R.L. Meena, D.G. Kabra, et al., Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy, Br. J. Pharmacol. 153 (2008) 1225-1231.
|
| [132] |
Y. Luo, L. Zhu, Z. Ren, et al., Curcumae Rhizoma: An anti-cancer traditional Chinese medicine, Chin. Herb. Med. 17 (2025) 428-447.
|
| [133] |
Y. Wang, Y. Wang, M. Luo, et al., Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation, Biochim. Biophys. Acta Mol. Basis Dis. 1852 (2015) 34-46.
|
| [134] |
S.G. Sayyed, A.B. Gaikwad, J. Lichtnekert, et al., Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10, Nephrol. Dial. Transplant. 25 (2010) 1811-1817.
|
| [135] |
Q. Li, J. Liao, W. Chen, et al., NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway, Free. Radic. Biol. Med. 187 (2022) 158-170.
|
| [136] |
A.A. Shati, Salidroside ameliorates diabetic nephropathy in rats by activating renal AMPK/SIRT1 signaling pathway, J. Food Biochem. 44 (2020), e13158.
|
| [137] |
A.G. Lazar, M.L. Vlad, A. Manea, et al., Activated histone acetyltransferase p300/CBP-related signalling pathways mediate up-regulation of NADPH oxidase, inflammation, and fibrosis in diabetic kidney, Antioxidants 10 (2021), 1356.
|
| [138] |
J. Chen, Z. Ou, T. Gao, et al., Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to improve diabetic nephropathy, Biomed. Pharmacother. 156 (2022), 113953.
|
| [139] |
S.K. Goru, A.B. Gaikwad, Novel Reno-protective mechanism of Aspirin involves H2AK119 monoubiquitination and Set7 in preventing type 1 diabetic nephropathy, Pharmacol. Rep. 70 (2018) 497-502.
|
| [140] |
X. Wang, Q. Li, B. Sui, et al., Schisandrin a from Schisandra chinensis attenuates ferroptosis and NLRP3 inflammasome-mediated pyroptosis in diabetic nephropathy through mitochondrial damage by AdipoR1 ubiquitination, Oxid. Med. Cell. Longev. 2022 (2022), 5411462.
|
| [141] |
L. Chen, J. Tang, H. Tan, Penehyclidine hydrochloride activates PARK2 and modulates ubiquitination of AIFM1 to rescue renal tubular injury in diabetic kidney disease, J. Pharmacol. Sci. 157 (2025) 45-56.
|
| [142] |
X. Zhang, J. Chen, R. Lin, et al., Lactate drives epithelial-mesenchymal transition in diabetic kidney disease via the H3K14la/KLF5 pathway, Redox Biol. 75 (2024), 103246.
|
| [143] |
J. Chen, J. He, X. Wang, et al., Glis1 inhibits RTEC cellular senescence and renal fibrosis by downregulating histone lactylation in DKD, Life Sci. 361 (2025), 123293.
|
| [144] |
M. Wang, B. Zhang, C. Zhang, et al., Quantitative crotonylome analysis reveals the mechanism of Shenkang injection on diabetic nephropathy, Oxid. Med. Cell. Longev. 2022 (2022), 7767431.
|
| [145] |
Y. Yang, H. Ma, Y. Xiong, et al., PEX11B palmitoylation couples peroxisomal dysfunction with Schwann cells fail in diabetic neuropathy, J. Biomed. Sci. 32 (2025), 20.
|
| [146] |
Y. Wang, X. Zhang, H. Yao, et al., Peroxisome-generated succinate induces lipid accumulation and oxidative stress in the kidneys of diabetic mice, J. Biol. Chem. 298 (2022), 101660.
|
| [147] |
A. Li, B. Yi, H. Han, et al., Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway, Autophagy 18 (2022) 877-890.
|
| [148] |
H. Wang, X. Yu, D. Liu, et al., VDR activation attenuates renal tubular epithelial cell ferroptosis by regulating Nrf2/HO-1 signaling pathway in diabetic nephropathy, Adv. Sci. 11 (2024), 2305563.
|
| [149] |
C. Luo, C. Fang, R. Zou, et al., Hyperglycemia-induced DNA damage response activates DNA-PK complex to promote endothelial ferroptosis in type 2 diabetic cardiomyopathy, Theranostics 15 (2025) 4507-4525.
|
| [150] |
A.F. Lopez-Clavijo, M.P. Barrow, N. Rabbani, et al., Determination of types and binding sites of advanced glycation end products for substance P, Anal. Chem. 84 (2012) 10568-10575.
|