Turn off MathJax
Article Contents
Luanbiao Sun, Li Wang, Dongbin Guo, Xinyao Liu, Bingemei Wang, Yicheng Zhao, Shuohui Gao. Cucurbitacin B mitigates Staphylococcus aureus pathogenicity and reprograms macrophage responses to restore host defense[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101557
Citation: Luanbiao Sun, Li Wang, Dongbin Guo, Xinyao Liu, Bingemei Wang, Yicheng Zhao, Shuohui Gao. Cucurbitacin B mitigates Staphylococcus aureus pathogenicity and reprograms macrophage responses to restore host defense[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101557

Cucurbitacin B mitigates Staphylococcus aureus pathogenicity and reprograms macrophage responses to restore host defense

doi: 10.1016/j.jpha.2026.101557
Funds:

This work was supported by the Jilin Provincial Department of Science and Technology Excellence Talent Program for Young and Middle-aged Science and Technology Innovation and Entrepreneurship, China (Grant No.: 20240601013RC). The authors would like to thank all the reviewers and editors for their valuable comments and assistance in revising this article. We would like to express our gratitude for the drawing materials provided by BioRender.com.

  • Received Date: Sep. 08, 2025
  • Accepted Date: Jan. 16, 2026
  • Rev Recd Date: Jan. 15, 2026
  • Available Online: Jan. 20, 2026
  • Methicillin-resistant Staphylococcus aureus (MRSA) remains a major health threat with limited therapeutic options. We identified cucurbitacin B (CuB), a plant-derived triterpenoid, as a concurrent, complementary adjunct that attenuates bacterial virulence while modulating host responses. Structure-guided docking together with electrophoretic mobility shift assay (EMSA) and lysate-based cellular thermal shift assay (CETSA) supported the engagement of the Staphylococcus exoprotein expression protein response regulator (SaeR) at the α4/β5 pocket, lowering SaeR-regulated toxins and immune responses factors at nonbactericidal exposures. In cell models, CuB improved intracellular bacterial control, alleviated MRSA-induced oxidative stress, restored the mitochondrial membrane potential, and shifted macrophages toward an anti-inflammatory, M2-like phenotype consistent with nuclear factor kappaB (NF-κB) modulation. Drug-pairing studies revealed class-selective, concentration-dependent synergy with glycopeptides (vancomycin (Van) and dalbavancin) and additivity with linezolid, indicating complementation rather than broad sensitization. Under repeated sub-minimum inhibitory concentration (MIC) exposure across forty passages, CuB alone maintained a stable MIC, whereas CuB combined with Van attenuated Van resistance trajectories; head-to-head competition between passage-zero and passage-forty lineages revealed no fitness advantage after passaging with CuB. In murine peritonitis, catheter-associated biofilm, and infected wound models, CuB lowered the bacterial burden, reduced inflammatory injury, and facilitated wound closure by controlling infection and inflammation, and tissue immunofluorescence via CD86 and CD206 provided spatial corroboration. On-target support came from the minimal incremental benefit of CuB in infections caused by a SaeR-deficient strain. Together, these findings position CuB as a SaeR-focused antivirulence-immunomodulatory adjunct that complements Van therapy and may improve outcomes while tempering resistance development, with claims limited to concurrent pathogen- and host-side activities rather than a mechanistically integrated dual mechanism.
  • loading
  • [1]
    G.Y.C. Cheung, J.S. Bae, M. Otto, Pathogenicity and virulence of Staphylococcus aureus, Virulence 12 (2021) 547-569.
    [2]
    F.D. Lowy, Staphylococcus aureus Infections, N Engl J. Med. 339 (1998) 520-532.
    [3]
    T.J. Hatlen, L.G. Miller, Staphylococcal skin and soft tissue infections, Infect. Dis. Clin. N Am 35 (2021) 81-105.
    [4]
    A. Tabah, K.B. Laupland, Update on Staphylococcus aureus bacteraemia, Curr. Opin. Crit. Care 28 (2022) 495-504.
    [5]
    J.S. Davis, N. Petersiel, S.Y.C. Tong, How I manage a patient with MRSA bacteraemia, Clin. Microbiol. Infect. 28 (2022) 190-194.
    [6]
    J. Davies, D. Davies, Origins and evolution of antibiotic resistance, Microbiol. Mol. Biol. Rev. 74 (2010) 417-433.
    [7]
    T.J. Foster, J.A. Geoghegan, V.K. Ganesh, et al., Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus, Nat. Rev. Microbiol. 12 (2014) 49-62.
    [8]
    N. Ahmad-Mansour, P. Loubet, C. Pouget, et al., Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments, Toxins 13 (2021), 677.
    [9]
    J.H. Jiang, D.R. Cameron, C. Nethercott, et al., Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages, Clin. Microbiol. Rev. 36 (2023) e00148-e00122 .
    [10]
    D. Oliveira, A. Borges, M. Simoes, Staphylococcus aureus toxins and their molecular activity in infectious diseases, Toxins 10 (2018), 252.
    [11]
    Q. Liu, W.S. Yeo, T. Bae, The SaeRS two-component system of Staphylococcus aureus, Genes 7 (2016), 81.
    [12]
    P. Gao, Y. Wei, S. Hou, et al., SaeR as a novel target for antivirulence therapy against Staphylococcus aureus, Emerg. Microbes Infect. 12 (2023), 2254415.
    [13]
    M.E. Olson, T.K. Nygaard, L. Ackermann, et al., Staphylococcus aureus nuclease is an SaeRS-dependent virulence factor, Infect. Immun. 81 (2013) 1316-1324.
    [14]
    L. Rao, Y. Xu, L. Shen, et al., Small-molecule compound SYG-180-2-2 attenuates Staphylococcus aureus virulence by inhibiting hemolysin and staphyloxanthin production, Front. Cell. Infect. Microbiol. 12 (2022), 1008289.
    [15]
    R.C. Hsieh, R. Liu, D.J. Burgin, et al., Understanding mechanisms of virulence in MRSA: Implications for antivirulence treatment strategies, Expert Rev. Anti Infect. Ther. 21 (2023) 911-928.
    [16]
    C.A. Ford, I.M. Hurford, J.E. Cassat, Antivirulence strategies for the treatment of Staphylococcus aureus infections: A mini review, Front. Microbiol. 11 (2021) 632706.
    [17]
    F. Jiang, Y. Chen, J. Yu, et al., Repurposed fenoprofen targeting SaeR attenuates Staphylococcus aureus virulence in implant-associated infections, ACS Cent. Sci. 9 (2023) 1354-1373.
    [18]
    B.A. Pettygrove, T.K. Nygaard, T.R. Borgogna, et al., Staphylococcus aureus SaeR/S-regulated factors overcome human complement-mediated inhibition of aggregation to evade neutrophil killing, Proc. Natl. Acad. Sci. U. S. A. 122 (2025), e2412447122.
    [19]
    M. Li, B. Wang, J. Chen, et al., Staphylococcus aureus SaeRS impairs macrophage immune functions through bacterial clumps formation in the early stage of infection, npj Biofilms Microbiomes 10 (2024), 102.
    [20]
    E.E. Zwack, Z. Chen, J.C. Devlin, et al., Staphylococcus aureus induces a muted host response in human blood that blunts the recruitment of neutrophils, Proc. Natl. Acad. Sci. U. S. A 119 (2022), e2123017119.
    [21]
    A. Viola, F. Munari, R. Sanchez-Rodriguez, et al., The metabolic signature of macrophage responses, Front. Immunol. 10 (2019), 1462.
    [22]
    A. Sica, A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest. 122 (2012) 787-795.
    [23]
    S. Dai, C. Wang, X. Zhao, et al., Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics, Pharmacol. Res. 187 (2023), 106587.
    [24]
    W. Nie, Y. Wang, X. Tian, et al., Cucurbitacin B and its derivatives: A review of progress in biological activities, Molecules 29 (2024),4193.
    [25]
    A.R.M. Coates, Y. Hu, J. Holt, et al., Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction, Expert Rev. Anti Infect. Ther. 18 (2020) 5-15.
    [26]
    R. Peters, M. Farias, R. Ribeiro-do-Valle, Anti-inflammatory and analgesic effects of cucurbitacins from Wilbrandia ebracteata, Planta Med. 63 (1997) 525-528.
    [27]
    Q. Li, Y. Chen, Q. Liu, et al., Cucurbitacin B suppresses hepatocellular carcinoma progression through inducing DNA damage-dependent cell cycle arrest, Phytomedicine 126 (2024), 155177.
    [28]
    M. Yang, X. Chen, C. Cheng, et al., Cucurbitacin B induces ferroptosis in oral leukoplakia via the SLC7A11/mitochondrial oxidative stress pathway, Phytomedicine 129 (2024), 155548.
    [29]
    M. Sahu, T. Paliwal, S. Jain, et al., Multifaceted therapeutic impacts of cucurbitacin B: Recent evidences from preclinical studies, Phytother. Res. 39 (2025) 1966-1995.
    [30]
    C. Lou, Y. Fang, Y. Mei, et al., Cucurbitacin B attenuates osteoarthritis development by inhibiting NLRP3 inflammasome activation and pyroptosis through activating Nrf2/HO-1 pathway, Phytother. Res. 38 (2024) 3352-3369.
    [31]
    M.M. Jaghoori, B. Bleijlevens, S.D. Olabarriaga, 1001 Ways to run AutoDock Vina for virtual screening, J. Comput. Aided. Mol. Des. 30 (2016) 237-249.
    [32]
    M. Kim, S.Y. Park, M. Jin, et al., Cucurbitacin B inhibits immunomodulatory function and the inflammatory response in macrophages, Immunopharmacol. Immunotoxicol. 37 (2015) 473-480.
    [33]
    J.S. Ayres, Host-encoded antivirulence defenses: host physiologies teach pathogens to play nice, Curr. Opin. Immunol. 91 (2024), 102472.
    [34]
    Y. Lin, Y. Zhang, D. Wang, et al., Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine, Phytomedicine 107 (2022), 154481.
    [35]
    A. Olaru, C. Bala, N. Jaffrezic-Renault, et al., Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis, Crit. Rev. Anal. Chem. 45 (2015) 97-105.
    [36]
    M. Naghavi, S.E. Vollset, K.S. Ikuta, et al., Global burden of bacterial antimicrobial resistance 1990-2021: A systematic analysis with forecasts to 2050, Lancet 404 (2024) 1199-1226.
    [37]
    S.W. Dickey, G.Y.C. Cheung, M. Otto, Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance, Nat. Rev. Drug Discov. 16 (2017) 457-471.
    [38]
    M. Totsika, Disarming pathogens: Benefits and challenges of antimicrobials that target bacterial virulence instead of growth and viability, Future Med. Chem. 9 (2017) 267-269.
    [39]
    Y. Xu, L. Wang, D. Guo, et al., Baohuoside I targets SaeR as an antivirulence strategy to disrupt MRSA biofilm formation and pathogenicity, npj Biofilms Microbiomes 11 (2025), 45.
    [40]
    T. Geiger, C. Goerke, M. Mainiero, et al., The virulence regulator sae of Staphylococcus aureus: Promoter activities and response to phagocytosis-related signals, J. Bacteriol. 190 (2008) 3419-3428.
    [41]
    A. Venkatasubramaniam, T. Kanipakala, N. Ganjbaksh, et al., A critical role for HlgA in Staphylococcus aureus pathogenesis revealed by a switch in the SaeRS two-component regulatory system, Toxins 10 (2018), 377.
    [42]
    Q. Wang, N. Nurxat, L. Zhang, et al., Diabetes mellitus promotes the nasal colonization of high virulent Staphylococcus aureus through the regulation of SaeRS two-component system, Emerg. Microbes Infect. 12 (2023), 2276335.
    [43]
    M. Huemer, S. Mairpady Shambat, S.D. Brugger, et al., Antibiotic resistance and persistence: Implications for human health and treatment perspectives, EMBO Rep. 21 (2020),EMBR202051034 .
    [44]
    E.K. Sully, N. Malachowa, B.O. Elmore, et al., Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance, PLoS Pathog. 10 (2014), e1004174.
    [45]
    J.J. Hilliard, V. Datta, C. Tkaczyk, et al., Anti-alpha-toxin monoclonal antibody and antibiotic combination therapy improves disease outcome and accelerates healing in a Staphylococcus aureus dermonecrosis model, Antimicrob. Agents Chemother. 59 (2015) 299-309.
    [46]
    M. Greenberg, D. Kuo, E. Jankowsky, et al., Small-molecule AgrA inhibitors F12 and F19 act as antivirulence agents against Gram-positive pathogens, Sci. Rep. 8 (2018), 14578.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (28) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return