| Citation: | Luanbiao Sun, Li Wang, Dongbin Guo, Xinyao Liu, Bingemei Wang, Yicheng Zhao, Shuohui Gao. Cucurbitacin B mitigates Staphylococcus aureus pathogenicity and reprograms macrophage responses to restore host defense[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101557 |
| [1] |
G.Y.C. Cheung, J.S. Bae, M. Otto, Pathogenicity and virulence of Staphylococcus aureus, Virulence 12 (2021) 547-569.
|
| [2] |
F.D. Lowy, Staphylococcus aureus Infections, N Engl J. Med. 339 (1998) 520-532.
|
| [3] |
T.J. Hatlen, L.G. Miller, Staphylococcal skin and soft tissue infections, Infect. Dis. Clin. N Am 35 (2021) 81-105.
|
| [4] |
A. Tabah, K.B. Laupland, Update on Staphylococcus aureus bacteraemia, Curr. Opin. Crit. Care 28 (2022) 495-504.
|
| [5] |
J.S. Davis, N. Petersiel, S.Y.C. Tong, How I manage a patient with MRSA bacteraemia, Clin. Microbiol. Infect. 28 (2022) 190-194.
|
| [6] |
J. Davies, D. Davies, Origins and evolution of antibiotic resistance, Microbiol. Mol. Biol. Rev. 74 (2010) 417-433.
|
| [7] |
T.J. Foster, J.A. Geoghegan, V.K. Ganesh, et al., Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus, Nat. Rev. Microbiol. 12 (2014) 49-62.
|
| [8] |
N. Ahmad-Mansour, P. Loubet, C. Pouget, et al., Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments, Toxins 13 (2021), 677.
|
| [9] |
J.H. Jiang, D.R. Cameron, C. Nethercott, et al., Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages, Clin. Microbiol. Rev. 36 (2023) e00148-e00122 .
|
| [10] |
D. Oliveira, A. Borges, M. Simoes, Staphylococcus aureus toxins and their molecular activity in infectious diseases, Toxins 10 (2018), 252.
|
| [11] |
Q. Liu, W.S. Yeo, T. Bae, The SaeRS two-component system of Staphylococcus aureus, Genes 7 (2016), 81.
|
| [12] |
P. Gao, Y. Wei, S. Hou, et al., SaeR as a novel target for antivirulence therapy against Staphylococcus aureus, Emerg. Microbes Infect. 12 (2023), 2254415.
|
| [13] |
M.E. Olson, T.K. Nygaard, L. Ackermann, et al., Staphylococcus aureus nuclease is an SaeRS-dependent virulence factor, Infect. Immun. 81 (2013) 1316-1324.
|
| [14] |
L. Rao, Y. Xu, L. Shen, et al., Small-molecule compound SYG-180-2-2 attenuates Staphylococcus aureus virulence by inhibiting hemolysin and staphyloxanthin production, Front. Cell. Infect. Microbiol. 12 (2022), 1008289.
|
| [15] |
R.C. Hsieh, R. Liu, D.J. Burgin, et al., Understanding mechanisms of virulence in MRSA: Implications for antivirulence treatment strategies, Expert Rev. Anti Infect. Ther. 21 (2023) 911-928.
|
| [16] |
C.A. Ford, I.M. Hurford, J.E. Cassat, Antivirulence strategies for the treatment of Staphylococcus aureus infections: A mini review, Front. Microbiol. 11 (2021) 632706.
|
| [17] |
F. Jiang, Y. Chen, J. Yu, et al., Repurposed fenoprofen targeting SaeR attenuates Staphylococcus aureus virulence in implant-associated infections, ACS Cent. Sci. 9 (2023) 1354-1373.
|
| [18] |
B.A. Pettygrove, T.K. Nygaard, T.R. Borgogna, et al., Staphylococcus aureus SaeR/S-regulated factors overcome human complement-mediated inhibition of aggregation to evade neutrophil killing, Proc. Natl. Acad. Sci. U. S. A. 122 (2025), e2412447122.
|
| [19] |
M. Li, B. Wang, J. Chen, et al., Staphylococcus aureus SaeRS impairs macrophage immune functions through bacterial clumps formation in the early stage of infection, npj Biofilms Microbiomes 10 (2024), 102.
|
| [20] |
E.E. Zwack, Z. Chen, J.C. Devlin, et al., Staphylococcus aureus induces a muted host response in human blood that blunts the recruitment of neutrophils, Proc. Natl. Acad. Sci. U. S. A 119 (2022), e2123017119.
|
| [21] |
A. Viola, F. Munari, R. Sanchez-Rodriguez, et al., The metabolic signature of macrophage responses, Front. Immunol. 10 (2019), 1462.
|
| [22] |
A. Sica, A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest. 122 (2012) 787-795.
|
| [23] |
S. Dai, C. Wang, X. Zhao, et al., Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics, Pharmacol. Res. 187 (2023), 106587.
|
| [24] |
W. Nie, Y. Wang, X. Tian, et al., Cucurbitacin B and its derivatives: A review of progress in biological activities, Molecules 29 (2024),4193.
|
| [25] |
A.R.M. Coates, Y. Hu, J. Holt, et al., Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction, Expert Rev. Anti Infect. Ther. 18 (2020) 5-15.
|
| [26] |
R. Peters, M. Farias, R. Ribeiro-do-Valle, Anti-inflammatory and analgesic effects of cucurbitacins from Wilbrandia ebracteata, Planta Med. 63 (1997) 525-528.
|
| [27] |
Q. Li, Y. Chen, Q. Liu, et al., Cucurbitacin B suppresses hepatocellular carcinoma progression through inducing DNA damage-dependent cell cycle arrest, Phytomedicine 126 (2024), 155177.
|
| [28] |
M. Yang, X. Chen, C. Cheng, et al., Cucurbitacin B induces ferroptosis in oral leukoplakia via the SLC7A11/mitochondrial oxidative stress pathway, Phytomedicine 129 (2024), 155548.
|
| [29] |
M. Sahu, T. Paliwal, S. Jain, et al., Multifaceted therapeutic impacts of cucurbitacin B: Recent evidences from preclinical studies, Phytother. Res. 39 (2025) 1966-1995.
|
| [30] |
C. Lou, Y. Fang, Y. Mei, et al., Cucurbitacin B attenuates osteoarthritis development by inhibiting NLRP3 inflammasome activation and pyroptosis through activating Nrf2/HO-1 pathway, Phytother. Res. 38 (2024) 3352-3369.
|
| [31] |
M.M. Jaghoori, B. Bleijlevens, S.D. Olabarriaga, 1001 Ways to run AutoDock Vina for virtual screening, J. Comput. Aided. Mol. Des. 30 (2016) 237-249.
|
| [32] |
M. Kim, S.Y. Park, M. Jin, et al., Cucurbitacin B inhibits immunomodulatory function and the inflammatory response in macrophages, Immunopharmacol. Immunotoxicol. 37 (2015) 473-480.
|
| [33] |
J.S. Ayres, Host-encoded antivirulence defenses: host physiologies teach pathogens to play nice, Curr. Opin. Immunol. 91 (2024), 102472.
|
| [34] |
Y. Lin, Y. Zhang, D. Wang, et al., Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine, Phytomedicine 107 (2022), 154481.
|
| [35] |
A. Olaru, C. Bala, N. Jaffrezic-Renault, et al., Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis, Crit. Rev. Anal. Chem. 45 (2015) 97-105.
|
| [36] |
M. Naghavi, S.E. Vollset, K.S. Ikuta, et al., Global burden of bacterial antimicrobial resistance 1990-2021: A systematic analysis with forecasts to 2050, Lancet 404 (2024) 1199-1226.
|
| [37] |
S.W. Dickey, G.Y.C. Cheung, M. Otto, Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance, Nat. Rev. Drug Discov. 16 (2017) 457-471.
|
| [38] |
M. Totsika, Disarming pathogens: Benefits and challenges of antimicrobials that target bacterial virulence instead of growth and viability, Future Med. Chem. 9 (2017) 267-269.
|
| [39] |
Y. Xu, L. Wang, D. Guo, et al., Baohuoside I targets SaeR as an antivirulence strategy to disrupt MRSA biofilm formation and pathogenicity, npj Biofilms Microbiomes 11 (2025), 45.
|
| [40] |
T. Geiger, C. Goerke, M. Mainiero, et al., The virulence regulator sae of Staphylococcus aureus: Promoter activities and response to phagocytosis-related signals, J. Bacteriol. 190 (2008) 3419-3428.
|
| [41] |
A. Venkatasubramaniam, T. Kanipakala, N. Ganjbaksh, et al., A critical role for HlgA in Staphylococcus aureus pathogenesis revealed by a switch in the SaeRS two-component regulatory system, Toxins 10 (2018), 377.
|
| [42] |
Q. Wang, N. Nurxat, L. Zhang, et al., Diabetes mellitus promotes the nasal colonization of high virulent Staphylococcus aureus through the regulation of SaeRS two-component system, Emerg. Microbes Infect. 12 (2023), 2276335.
|
| [43] |
M. Huemer, S. Mairpady Shambat, S.D. Brugger, et al., Antibiotic resistance and persistence: Implications for human health and treatment perspectives, EMBO Rep. 21 (2020),EMBR202051034 .
|
| [44] |
E.K. Sully, N. Malachowa, B.O. Elmore, et al., Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance, PLoS Pathog. 10 (2014), e1004174.
|
| [45] |
J.J. Hilliard, V. Datta, C. Tkaczyk, et al., Anti-alpha-toxin monoclonal antibody and antibiotic combination therapy improves disease outcome and accelerates healing in a Staphylococcus aureus dermonecrosis model, Antimicrob. Agents Chemother. 59 (2015) 299-309.
|
| [46] |
M. Greenberg, D. Kuo, E. Jankowsky, et al., Small-molecule AgrA inhibitors F12 and F19 act as antivirulence agents against Gram-positive pathogens, Sci. Rep. 8 (2018), 14578.
|