Volume 15 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
Wenmei Wu, Xiangyu Qiu, Xiaofan Ye, Zhiliang Zhang, Siguo Xu, Xiuqi Yao, Yinyi Du, Geyan Wu, Rongxin Zhang, Jinrong Zhu. Naringenin: A potential therapeutic agent for modulating angiogenesis and immune response in hepatocellular carcinoma[J]. Journal of Pharmaceutical Analysis, 2025, 15(9): 101254. doi: 10.1016/j.jpha.2025.101254
Citation: Wenmei Wu, Xiangyu Qiu, Xiaofan Ye, Zhiliang Zhang, Siguo Xu, Xiuqi Yao, Yinyi Du, Geyan Wu, Rongxin Zhang, Jinrong Zhu. Naringenin: A potential therapeutic agent for modulating angiogenesis and immune response in hepatocellular carcinoma[J]. Journal of Pharmaceutical Analysis, 2025, 15(9): 101254. doi: 10.1016/j.jpha.2025.101254

Naringenin: A potential therapeutic agent for modulating angiogenesis and immune response in hepatocellular carcinoma

doi: 10.1016/j.jpha.2025.101254
Funds:

This work was supported by National Natural Science Foundation of China (Grant No.: 82103637), Medical Science and Technology Research Foundation of Guangdong Province, China (Grant No.: A2024066), Science and Technology Projects in Guangzhou, China (Grant No.: 2023A04J0862), Discipline Excellence Program of Guangdong Pharmaceutical University, China (Grant No.: 2024QZ06), and Guangzhou Municipal Science and Technology Project, China (Grant Nos.: 2024A04J3475 and 2025A03J3756).

  • Received Date: Sep. 10, 2024
  • Accepted Date: Feb. 27, 2025
  • Rev Recd Date: Feb. 14, 2025
  • Publish Date: Sep. 30, 2025
  • Naringenin (4,5,7-trihydroxyflavonoid) is a naturally occurring bioflavonoid found in citrus fruits, which plays an important role in metabolic syndrome, neurological disorders, and cardiovascular diseases. However, the pharmacological mechanism and biological function of naringenin on anti-angiogenesis and anti-tumor immunity have not yet been elucidated. Our study firstly demonstrates that naringenin inhibits the growth of hepatocellular carcinoma (HCC) cells both in vivo and in vitro. Naringenin diminishes the ability of HCC cells to induce tube formation and migration of human umbilical vein endothelial cells (HUVECs) and suppresses neovascularization in chicken chorioallantoic membrane (CAM) assays. Meanwhile, in vivo results demonstrate that naringenin can significantly upregulate level of CD8+ T cells, subsequently increasing the level of immune-related cytokines in the tumor immune microenvironment. Mechanistically, we found that naringenin facilitate the K48-linked ubiquitination and subsequent protein degradation of vascular endothelial growth factor A (VEGFA) and mesenchymal-epithelial transition factor (c-Met), which reduces the expression of programmed death ligand 1 (PD-L1). Importantly, combination therapy naringenin with PD-L1 antibody or bevacizumab provided better therapeutic effects in liver cancer. Our study reveals that naringenin can effectively inhibit angiogenesis and anti-tumor immunity in liver cancer by degradation of VEGFA and c-Met in a K48-linked ubiquitination manner. This work enlightens the potential effect of naringenin as a promising therapeutic strategy against anti-angiogenesis and anti-tumor immunity in HCC.

  • loading
  • [1]
    J. Zhou, H. Sun, Z. Wang, et al., Guidelines for the diagnosis and treatment of primary liver cancer (2022 edition), Liver Cancer 12 (2023) 405-444.
    [2]
    J.M. Llovet, R. Pinyol, M. Yarchoan, et al., Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma, Nat. Rev. Clin. Oncol. 21 (2024) 294-311.
    [3]
    R. Xing, J. Gao, Q. Cui, et al., Strategies to improve the antitumor effect of immunotherapy for hepatocellular carcinoma, Front. Immunol. 12 (2021), 783236.
    [4]
    C. Yang, H. Zhang, L. Zhang, et al., Evolving therapeutic landscape of advanced hepatocellular carcinoma, Nat. Rev. Gastroenterol. Hepatol. 20 (2023) 203-222.
    [5]
    M.A. Morse, W. Sun, R. Kim, et al., The role of angiogenesis in hepatocellular carcinoma, Clin. Cancer Res. 25 (2019) 912-920.
    [6]
    A.D. Ladd, S. Duarte, I. Sahin, et al., Mechanisms of drug resistance in HCC, Hepatology 79 (2024) 926-940.
    [7]
    Z.-L. Liu, H.-H. Chen, L.-L. Zheng, et al., Angiogenic signaling pathways and anti-angiogenic therapy for cancer, Signal Transduct. Target. Ther. 8 (2023), 198.
    [8]
    L. Perez-Gutierrez, N. Ferrara, Biology and therapeutic targeting of vascular endothelial growth factor A, Nat. Rev. Mol. Cell Biol. 24 (2023) 816-834.
    [9]
    J. Tu, H. Liang, C. Li, et al., The application and research progress of anti-angiogenesis therapy in tumor immunotherapy, Front. Immunol. 14 (2023), 1198972.
    [10]
    N. Wang, Y. Chen, C. Shi, et al., CREB3L4 promotes angiogenesis and tumor progression in gastric cancer through regulating VEGFA expression, Cancer Gene Ther. 29 (2022) 241-252.
    [11]
    J. Wen, L. Xue, Y. Wei, et al., YTHDF2 is a therapeutic target for HCC by suppressing immune evasion and angiogenesis through ETV5/PD-L1/VEGFA axis, Adv. Sci. (Weinh) 11 (2024), e2307242.
    [12]
    Z. Chang, Y. Jia, M. Gao, et al., PHF5A promotes esophageal squamous cell carcinoma progression via stabilizing VEGFA, Biol. Direct 19 (2024), 19.
    [13]
    Q. Wang, J. Gao, W. Di, et al., Anti-angiogenesis therapy overcomes the innate resistance to PD-1/PD-L1 blockade in VEGFA-overexpressed mouse tumor models, Cancer Immunol. Immunother. 69 (2020) 1781-1799.
    [14]
    J. Li, L. Zhang, T. Ge, et al., Understanding sorafenib-induced cardiovascular toxicity: Mechanisms and treatment implications, Drug Des. Devel. Ther. 18 (2024) 829-843.
    [15]
    T. Li, M. Niu, J. Zhou, et al., The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling, Cell Commun. Signal. 22 (2024), 179.
    [16]
    N.S. Patil, B.Y. Nabet, S. Muller, et al., Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer, Cancer Cell 40 (2022) 289-300.e4.
    [17]
    G. Chen, A.C. Huang, W. Zhang, et al., Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response, Nature 560 (2018) 382-386.
    [18]
    K. Pang, Z.-D. Shi, L.-Y. Wei, et al., Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade, Drug Resist. Updat. 66 (2023), 100907.
    [19]
    K. Ucar, Z. Goktas, Biological activities of naringenin: A narrative review based on in vitro and in vivo studies, Nutr. Res. 119 (2023) 43-55.
    [20]
    J. Cai, H. Wen, H. Zhou, et al., Naringenin: A flavanone with anti-inflammatory and anti-infective properties, Biomed. Pharmacother. 164 (2023), 114990.
    [21]
    M. Motallebi, M. Bhia, H.F. Rajani, et al., Naringenin: A potential flavonoid phytochemical for cancer therapy, Life Sci. 305 (2022), 120752.
    [22]
    M. Zhang, J. Lai, Q. Wu, et al., Naringenin induces HepG2 cell apoptosis via ROS-mediated JAK-2/STAT-3 signaling pathways, Molecules 28 (2023), 4506.
    [23]
    M. Maatouk, D. Elgueder, N. Mustapha, et al., Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity, Cell Stress Chaperones 21 (2016) 1101-1109.
    [24]
    Z.Q. Li, B. Yu, Z.Y. Cai, et al., Naringenin inhibits thoracic aortic aneurysm formation in mice with Marfan syndrome, J. Peking Univ. Health Sci. 54 (2022) 896-906.
    [25]
    E. Hernandez -Aquino, P. Muriel, Beneficial effects of naringenin in liver diseases: Molecular mechanisms, World J. Gastroenterol. 24 (2018) 1679-1707.
    [26]
    A. Hermawan, M. Ikawati, R.I. Jenie, et al., Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies, Saudi Pharm. J. 29 (2021) 12-26.
    [27]
    R. Xu, X. Liu, A. Li, et al., c-Met up-regulates the expression of PD-L1 through MAPK/NF-κBp65 pathway, J. Mol. Med. (Berl) 100 (2022) 585-598.
    [28]
    J.J.G. Marin, O. Briz, E. Herraez, et al., Molecular bases of the poor response of liver cancer to chemotherapy, Clin. Res. Hepatol. Gastroenterol. 42 (2018) 182-192.
    [29]
    A. Aboel Dahab, D. El-Hag, G.M. Moutamed, et al., Pharmacokinetic variations in cancer patients with liver dysfunction: Applications and challenges of pharmacometabolomics, Cancer Chemother. Pharmacol. 78 (2016) 465-489.
    [30]
    W. Tang, Z. Chen, W. Zhang, et al., The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects, Signal Transduct. Target. Ther. 5 (2020), 87.
    [31]
    G.-L. Deng, S. Zeng, H. Shen, Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges, World J. Hepatol. 7 (2015) 787-798.
    [32]
    Q. Li, Y. Wang, L. Zhang, et al., Naringenin exerts anti-angiogenic effects in human endothelial cells: Involvement of ERRα/VEGF/KDR signaling pathway, Fitoterapia 111 (2016) 78-86.
    [33]
    J. Choi, D.H. Lee, H. Jang, et al., Naringenin exerts anticancer effects by inducing tumor cell death and inhibiting angiogenesis in malignant melanoma, Int. J. Med. Sci. 17 (2020) 3049-3057.
    [34]
    D. Arul, P. Subramanian, Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells, Pathol. Oncol. Res. 19 (2013) 763-770.
    [35]
    J. Li, Y. Zhang, B. Luo, The programed death-1/programed death ligand-1 axis and its potential as a therapeutic target for virus-associated tumours, Rev. Med. Virol. 34 (2024), e2486.
    [36]
    T. Tu, M.A. Budzinska, A.E. Maczurek, et al., Novel aspects of the liver microenvironment in hepatocellular carcinoma pathogenesis and development, Int. J. Mol. Sci. 15 (2014) 9422-9458.
    [37]
    H. Raskov, A. Orhan, J.P. Christensen, et al., Cytotoxic CD8+ T cells in cancer and cancer immunotherapy, Br. J. Cancer 124 (2021) 359-367.
    [38]
    P. Subramanian, D. Arul, Attenuation of NDEA-induced hepatocarcinogenesis by naringenin in rats, Cell Biochem. Funct. 31 (2013) 511-517.
    [39]
    H.R. Yen, C.J. Liu, C.C. Yeh, Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells, Chem. Biol. Interact. 235 (2015) 1-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (270) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return