Citation: | Yaolei Li, Zhijian Lin, Hongyu Jin, Feng Wei, Shuangcheng Ma, Bing Zhang. The anti-hyperuricemia potential of bioactive natural products and extracts derived from traditional Chinese medicines: A review and perspective[J]. Journal of Pharmaceutical Analysis, 2025, 15(7): 101183. doi: 10.1016/j.jpha.2024.101183 |
[1] |
K.G. Saag, H. Choi, Epidemiology, risk factors, and lifestyle modifications for gout, Arthritis Res. Ther. 8 (2006), S2.
|
[2] |
N. Dalbeth, A. Phipps-Green, C. Frampton, et al., Relationship between serum urate concentration and clinically evident incident gout: An individual participant data analysis, Ann. Rheum. Dis. 77 (2018) 1048-1052.
|
[3] |
Chinese Society of Endocrinology, Chinese guidelines for the diagnosis and treatment of hyperuricaemia and gout (2019), Chin. J. Endocrinol. Metab. 36 (2020) 1-13.
|
[4] |
B. Alvarez-Lario, J. Macarron-Vicente, Uric acid and evolution, Rheumatology 49 (2010) 2010-2015.
|
[5] |
Y. Tien, M.C. Shih, C.P. Tien, et al., To treat or not to treat? Effect of urate-lowering therapy on renal function, blood pressure and safety in patients with asymptomatic hyperuricemia: A systematic review and network meta-analysis, J. Am. Board Fam. Med. 35 (2022) 140-151.
|
[6] |
Japanese Society of Gout and Uric and Nucleic Acids. Japanese Society of Gout and Uric & Nucleic Acids 2019 guidelines for management of hyperuricemia and gout 3rd edition. Gout Uric Nucleic Acids 44 (2020) 1-40.
|
[7] |
D. Luis-Rodriguez, J. Donate-Correa, E. Martin-Nunez, et al., Serum urate is related to subclinical inflammation in asymptomatic hyperuricaemia, Rheumatology (Oxford) 60 (2021) 371-379.
|
[8] |
National Medical Products Administration (NMPA), The National Medical Products Administration has approved the marketing of innovative traditional Chinese medicines Huzhen Qingfeng capsules and Jieyu Chufan capsules. https://www.nmpa.gov.cn/zhuanti/cxylqx/cxypxx/20211216104517180.html. (Access 28 April 2025).
|
[9] |
K. Sun. Screening and activity study of medicine and food homologous on uric acid-lowering [master’s thesis]. Tai’an: Shandong Agricultural University, 2022.
|
[10] |
S. Feng, S. Wu, F. Xie, et al., Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective, Trends Food Sci. Technol. 123 (2022) 87-102.
|
[11] |
K. Kaneko, Y. Aoyagi, T. Fukuuchi, et al., Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia, Biol. Pharm. Bull. 37 (2014) 709-721.
|
[12] |
K. Kaneko, Y. Kudo, T. Yamanobe, et al., Purine contents of soybean-derived foods and selected Japanese vegetables and mushrooms, Nucleosides Nucleotides Nucleic Acids 27 (2008) 628-630.
|
[13] |
K. Kaneko, F. Takayanagi, T. Fukuuchi, et al., Determination of total purine and purine base content of 80 food products to aid nutritional therapy for gout and hyperuricemia, Nucleosides Nucleotides Nucleic Acids 39 (2020) 1449-1457.
|
[14] |
K. Kaneko, T. Yamanobe, S. Fujimori, Determination of purine contents of alcoholic beverages using high performance liquid chromatography, Biomed. Chromatogr. 23 (2009) 858-864.
|
[15] |
Y. Shinzato, R. Zamami, N. Oshiro, et al., The association of smoking and hyperuricemia with renal arteriolosclerosis in IgA nephropathy, Biomedicines 11 (2023), 2053.
|
[16] |
M. Dehlin, L. Scheepers, A.J. Landgren, et al., Lifestyle factors and comorbidities in gout patients compared to the general population in Western Sweden: Results from a questionnaire study, Scand. J. Rheumatol. 51 (2022) 390-393.
|
[17] |
K. W. Scheele. Examen chemicum calculi urinarii, Opuscula 2 (1776), 73.
|
[18] |
I. Kippen, J.R. Klinenberg, A. Weinberger, et al., Factors affecting urate solubility in vitro, Ann. Rheum. Dis. 33 (1974) 313-317.
|
[19] |
I. Guelcin, M. Oktay, E. Koeksal, et al., Antioxidant and radical scavenging activities of uric acid, Asian J. Chem. 20 (2008) 2079-2090.
|
[20] |
L.E.J.M. Scheepers, L.T.H. Jacobsson, S. Kern, et al., Urate and risk of Alzheimer’s disease and vascular dementia: A population-based study, Alzheimers Dement. 15 (2019) 754-763.
|
[21] |
T. Huang, D. Hao, B. Wu, et al., Uric acid demonstrates neuroprotective effect on Parkinson’s disease mice through Nrf2-ARE signaling pathway, Biochem. Biophys. Res. Commun. 493 (2017) 1443-1449.
|
[22] |
L. Gong, Q. Zhang, N. Zhang, et al., Neuroprotection by urate on 6-OHDA-lesioned rat model of Parkinson’s disease: Linking to Akt/GSK3β signaling pathway, J. Neurochem. 123 (2012) 876-885.
|
[23] |
I.E. Orhan, F.S.S. Deniz, Natural Products and extracts as xantine oxidase inhibitors - a hope for gout disease? Curr. Pharm. Des. 27 (2021) 143-158.
|
[24] |
J. Wu. Design, synthesis, and screening of the anti-gout compounds based on the three-dimensional structure of xanthine oxidase [master’s thesis], Beijing: Chinese Academy of Military Medical Sciences of the People's Liberation Army, 2008.
|
[25] |
A. Fais, B. Era, S. Asthana, et al., Coumarin derivatives as promising xanthine oxidase inhibitors, Int. J. Biol. Macromol. 120 (2018) 1286-1293.
|
[26] |
G.B. Elion, Enzymatic and metabolic studies with allopurinol, Ann. Rheum. Dis. 25 (1966) 608-614.
|
[27] |
J.W. Williams, R.C. Bray, Kinetic and e.p.r. studies on the inhibition of xanthine oxidase by alloxanthine (1 H-pyrazolo [3,4-d] pyrimidine-4,6-diol), Biochem. J. 195 (1981) 753-760.
|
[28] |
K. Okamoto, B.T. Eger, T. Nishino, et al., An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition, J. Biol. Chem. 278 (2003) 1848-1855.
|
[29] |
M. Liu. Study on the structure and function of 5'-nucleotidase YB92 [master’s thesis]. Hefei: Anhui University, 2019.
|
[30] |
E. Gracia, K. Perez-Capote, E. Moreno, et al., A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase, Biochem. J. 435 (2011) 701-709.
|
[31] |
Z. Lin, X. Liu, X. Gao, et al. Characteristics and pathomechanisms of hyperuricemia combined with hypertriglyceridemia and hyperglycemia in a coturnix model induced by high-purine diet, Chin. J. Pathophysiol. 26 (2010) 2458-2460.
|
[32] |
A. Bzowska, E. Kulikowska, D. Shugar, Purine nucleoside phosphorylases: Properties, functions, and clinical aspects, Pharmacol. Ther. 88 (2000) 349-425.
|
[33] |
G. Yuan, J.C. Bin, D.J. McKay, et al., Cloning and characterization of human guanine deaminase. Purification and partial amino acid sequence of the mouse protein, J. Biol. Chem. 274 (1999) 8175-8180.
|
[34] |
S. Huang, Clinical and experimental studies on the uric acid-lowering effect of chicory granules [dissertation], Beijing: Beijing University of Chinese Medicine, 2016.
|
[35] |
A. Enomoto, H. Endou, Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease, Clin. Exp. Nephrol. 9 (2005) 195-205.
|
[36] |
H. Ueo, H. Motohashi, T. Katsura, et al., Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1, Biochem. Pharmacol. 70 (2005) 1104-1113.
|
[37] |
S.K. Nigam, The SLC22 transporter family: A paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease, Annu. Rev. Pharmacol. Toxicol. 58 (2018) 663-687.
|
[38] |
G. Chen, M. Tan, K. Li, et al., Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice, J. Ethnopharmacol. 175 (2015) 14-20.
|
[39] |
A. Enomoto, H. Kimura, A. Chairoungdua, et al., Molecular identification of a renal urate anion exchanger that regulates blood urate levels, Nature 417 (2002) 447-452.
|
[40] |
X. Shi, T. Zhao, J. Zhang, et al. Research progress and medicinal chemistry strategies of URAT1 inhibitors, Acta Pharm. Sin. 57 (2022) 2960-2971.
|
[41] |
J. Sternon, P. Kocheleff, E. Couturier, et al., Hypouricemizing effect of benzbromarone. Study of 24 cases (preliminary results), Acta Clin. Belg. 22 (1967) 285-293.
|
[42] |
S.M. Hoy, Lesinurad: First global approval, Drugs 76 (2016) 509-516.
|
[43] |
T. Zhao, Q. Meng, Z. Sun, et al., Novel human urate transporter 1 inhibitors as hypouricemic drug candidates with favorable druggability, J. Med. Chem. 63 (2020) 10829-10854.
|
[44] |
O.M. Woodward, A. Kottgen, J. Coresh, et al., Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout, Proc. Natl. Acad. Sci. U S A 106 (2009) 10338-10342.
|
[45] |
M.C. Cleophas, L.A. Joosten, L.K. Stamp, et al., ABCG2 polymorphisms in gout: Insights into disease susceptibility and treatment approaches, Pharmgenomics Pers. Med. 10 (2017) 129-142.
|
[46] |
M. Nagura, Y. Tamura, T. Kumagai, et al., Uric acid metabolism of kidney and intestine in a rat model of chronic kidney disease, Nucleosides Nucleotides Nucleic Acids 35 (2016) 550-558.
|
[47] |
K.M. Hoque, E.E. Dixon, R.M. Lewis, et al., The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion, Nat. Commun. 11 (2020), 2767.
|
[48] |
R. Wrigley, A.J. Phipps-Green, R.K. Topless, et al., Pleiotropic effect of the ABCG2 gene in gout: Involvement in serum urate levels and progression from hyperuricemia to gout, Arthritis Res. Ther. 22 (2020), 45.
|
[49] |
F. Sangkop, G. Singh, E. Rodrigues, et al., Uric acid: A modulator of prostate cells and activin sensitivity, Mol. Cell. Biochem. 414 (2016) 187-199.
|
[50] |
T. Kimura, M. Takahashi, K. Yan, et al., Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells, PLoS One 9 (2014), e84996.
|
[51] |
S. Li, S. Sanna, A. Maschio, et al., The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts, PLoS Genet. 3 (2007), e194.
|
[52] |
X. Hu, L. Zhang, Progress in research on uric acid metabolism pathway, J. Clin. Nephro. 19 (2019) 935-937.
|
[53] |
D. Furman, J. Campisi, E. Verdin, et al., Chronic inflammation in the etiology of disease across the life span, Nat. Med. 25 (2019) 1822-1832.
|
[54] |
W. Liu, J. Peng, Y. Wu, et al., Immune and inflammatory mechanisms and therapeutic targets of gout: An update, Int. Immunopharmacol. 121 (2023), 110466.
|
[55] |
X. Zha, B. Yang, G. Xia, et al., Combination of uric acid and pro-inflammatory cytokines in discriminating patients with gout from healthy controls, J. inflamm. Res. 15 (2022) 1413-1420.
|
[56] |
Y. R. Liu, J. Q. Wang, J. Li, Role of NLRP3 in the pathogenesis and treatment of gout arthritis, Front. Immunol. 14 (2023), 1137822.
|
[57] |
GBD 2017 Causes of Death Collaborators, Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980−2017: A systematic analysis for the global burden of disease study 2017, Lancet 392 (2018) 1736-1788.
|
[58] |
D. Furman, J. Chang, L. Lartigue, et al., Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states, Nat. Med. 23 (2017) 174-184.
|
[59] |
R. Agca, S.C. Heslinga, S. Rollefstad, et al., EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update, Ann. Rheum. Dis. 76 (2017) 17-28.
|
[60] |
B.N. Ames, R. Cathcart, E. Schwiers, et al., Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis, Proc. Natl. Acad. Sci. USA 78 (1981) 6858-6862.
|
[61] |
H. Wu, Y. Wang, Z. Ren, et al., Overnutrition-induced gout: An immune response to NLRP3 inflammasome dysregulation by XOD activity increased in quail, Front. Immunol. 13 (2022), 1074867.
|
[62] |
Y. Yan, L. Yu, B. Chen, et al., Mastoparan M suppressed NLRP3 inflammasome activation by inhibiting MAPK/NF-κB and oxidative stress in gouty arthritis, J. Inflamm. Res. 16 (2023) 6179-6193.
|
[63] |
N.G. Cavalcanti, C.D.L. Marques, T.U. Lins e Lins, et al., AB0068 cytokine profile in gout: IL-18 and IL-6 are associated with inflammatory activity, Ann. Rheum. Dis. 74 (2015), 913.
|
[64] |
N.G. Cavalcanti, C.D. Marques, T.U. Lins E Lins, et al., Cytokine profile in gout: Inflammation driven by IL-6 and IL-18? Immunol. Invest. 45 (2016) 383-395.
|
[65] |
V. Kluck, R.C. van Deuren, G. Cavalli, et al., Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout, Ann. Rheum. Dis. 79 (2020) 536-544.
|
[66] |
D.E.W. Pietsch, P. Kubler, P.C. Robinson, The effect of reducing systemic inflammation on serum urate, Rheumatology (Oxford) 59 (2020) 3108-3109.
|
[67] |
Z. Wang, J. Liu, Y. Mou, et al., Anti-inflammatory and uric acid lowering effects of Euodiae fructus on hyperuricemia and gout mice, Front. Pharmacol. 15 (2024), 1296075.
|
[68] |
R. Xu, P. Deng, Y. Ma, et al. Anti-hyperuricemic effects of extracts from Chaenomeles speciosa (Sweet) nakai fruits on hyperuricemic rats, Metabolites 14 (2024), 117.
|
[69] |
Y. Wang, Z. Lin, A. Nie, et al., Effect of Chinese herb chicory extract on expression of renal transporter Glut9 in rats with hyperuricemia, Zhongguo Zhongyao Zazhi 42 (2017) 958-963.
|
[70] |
G.-L. Chen, L.-R. Zhu, S. Na, et al. Effect of total saponin of Dioscorea on chronic hyperuricemia and expression of URAT1 in rats, Zhongguo Zhong Yao Za Zhi 38 (2013) 2348-2353.
|
[71] |
F. Lu, Q. Zhou, Y. Zhang, et al., Regulatory mechanism of total saponins from rhizoma dioscoreae nipponicae based on ABCG2 uric acid transfer in gouty arthritis, Chin. Arch. Tradit. Chin. Med. 34 (2016) 1057-1061.
|
[72] |
Y. Dang, D. Liang, X. Zhou, et al. Protective effect of Mori Cortex on kidney in rats with hyperlipidemia and hyperuricemia based on molecular docking technique, Chin. Tradit. Herb. Drugs 50 (2019) 1175-1181.
|
[73] |
M. Bilal, S. Ahmad, T. Rehman, et al., Anti-hyperuricemic and uricosuric potential of Berberis vulgaris in oxonate-induced hyperuricemic rats, Dose Response 19 (2021), 15593258211040329.
|
[74] |
R. Zhang, S. Zhan, S. Li, et al., Anti-hyperuricemic and nephroprotective effects of extracts from Chaenomeles sinensis (Thouin) Koehne in hyperuricemic mice, Food Funct. 9 (2018) 5778-5790.
|
[75] |
S.J. Hsu, R. Verpoorte, S. Lin, et al., Fast dereplication of xanthine oxidase-inhibiting compounds in alfalfa using comparative metabolomics, Food Res. Int. 141 (2021), 110170.
|
[76] |
A. Mehmood, L. Zhao, M. Ishaq, et al., Anti-hyperuricemic potential of Stevia (Stevia rebaudiana Bertoni) residue extract in hyperuricemic mice, Food Funct. 11 (2020) 6387-6406.
|
[77] |
C. Martins de Sa Muller, G.B. Coelho, M. Carolina de Paula Michel Araujo, et al., Lychnophora pinaster ethanolic extract and its chemical constituents ameliorate hyperuricemia and related inflammation, J. Ethnopharmacol. 242 (2019), 112040.
|
[78] |
N. Chen, R. Wang, H. Li, et al., Flavonoid extract of saffron by-product alleviates hyperuricemia via inhibiting xanthine oxidase and modulating gut microbiota, Phytother. Res. 36 (2022) 4604-4619.
|
[79] |
J. Wang, B. Xu, J. Zeng, et al., Comparative study of plantaginis Semen alcohol extract and acteoside on experimental hyperuricemia mice, Chin. J. New Drugs Clin. Remedies 35 (2016) 653-659.
|
[80] |
H. Sun, S. Wang, J. Zhuang, et al., Inhibiting URAT1 gene expression and reducing blood uric acid level of Chinese Traditional Medicine such as Smilax glabra, Chin. J. Clin. Pharmacol. Ther. 17 (2012) 403-407.
|
[81] |
B.C. de Albuquerque Ugoline, J. de Souza, F.C. Ferrari, et al., The influence of seasonality on the content of goyazensolide and on anti-inflammatory and anti-hyperuricemic effects of the ethanolic extract of Lychnophora passerina (Brazilian Arnica), J. Ethnopharmacol. 198 (2017) 444-450.
|
[82] |
J. Zeng, B. Xu, M. Li, et al., Effect of Lagotis brevituba Maxim. extract in reducing uric acid level in hyperuricemia mice and it’s mechanism, Chin. J. New Drugs 24 (2015) 2489-2493.
|
[83] |
Y. Liu, L. Zheng, L. Cui. Study on the mechanism of anti-hyperuricaemia action of Gentiana scabra in rats, Med. Innov. China 10 (2013) 143−144.
|
[84] |
J. Wang, B. Xu, J. Zeng, et al., Effect of Dendropanaxchevalieri extracts on uric acid level in hyperuricemic mice and the possible mechanism, Chin. J. New Drugs 25 (2016) 334-338.
|
[85] |
S. Zhang, Y. Zhou, Y. Wei, et al., Effect of Poria Cocos on expression of rURAT1, rOAT1and rOCT2 in hyperuricemia rats, Med. J. West China 28 (2016) 1648-1651,1657.
|
[86] |
L. Lan, Observe protective effects and mechanism of Clerodendranthus spicatus on renal damage in hyperuricaemia mice and gouty nephropathy rat [dissertation], Guangzhou: Guangzhou University of Chinese Medicine, 2016.
|
[87] |
T. Liu, Yiren-Mugua Huazhuo decoction decreases the uric acid in hyperuricemia mice [master’s thesis], Guangzhou: Guangdong Pharmaceutical University, 2020.
|
[88] |
X. Zhang, Q. Zhang, R. Dong, et al. Antigout effects of fenugreek extract, Chin. J. Gerontol. 41 (2021) 1297-1300.
|
[89] |
J. Wang, Y. Liu, Z. He, et al. Effect of ethanolic extract of Zea mays on oxazinic acid potassium salt induced hyperuricemia model in rats, Chin. Tradit. Patent Med. 39 (2017) 605-608.
|
[90] |
N. Chen, H. Li, J. Meng, et al., Anti-hyperuricemia activity and its mechanism of flavonoid extract from saffron floral bio-residues, Zhongguo Zhongyao Zazhi 48 (2023) 148-159.
|
[91] |
J. Liu, M. Liu, B. Yang, et al., Effect of Radix Rehmanniae extract on hyperuricemia mice, Chin. J. Drug Appl. Monitor. 12 (2015) 347-350.
|
[92] |
H. Xu, R. Zhou, P. Xie, et al., Screening of 27 Chinese herbs for xanthine oxidase inhibitory activity, Lishizhen Med. Materia Medica Res. 28 (2017) 547-548.
|
[93] |
Y. Zhou, X. Zhang, C. Li, et al., Research on the pharmacodynamics and mechanism of Fraxini Cortex on hyperuricemia based on the regulation of URAT1 and GLUT9, Biomed. Pharmacother. 106 (2018) 434-442.
|
[94] |
L. Zhu, Y. Dong, S. Na, et al., Saponins extracted from Dioscorea collettii rhizomes regulate the expression of urate transporters in chronic hyperuricemia rats, Biomed. Pharmacother. 93 (2017) 88-94.
|
[95] |
C. Fang, L. Chen, M. He, et al., Molecular mechanistic insight into the anti-hyperuricemic effect of Eucommia ulmoides in mice and rats, Pharm. Biol. 57 (2019) 112-119.
|
[96] |
Q. Su, H. Su, Z. Nong, et al., Hypouricemic and nephroprotective effects of an active fraction from Polyrhachis vicina Roger on potassium oxonate-induced hyperuricemia in rats, Kidney Blood Press. Res. 43 (2018) 220-233.
|
[97] |
M. Pang, Y. Fang, S. Chen, et al., Gypenosides inhibits xanthine oxidoreductase and ameliorates urate excretion in hyperuricemic rats induced by high cholesterol and high fat food (lipid emulsion), Med. Sci. Monit. 23 (2017) 1129-1140.
|
[98] |
Y. Tashiro, R. Sakai, T. Hirose-Sugiura, et al., Effects of osthol isolated from Cnidium monnieri fruit on urate transporter 1, Molecules 23 (2018), 2837.
|
[99] |
M. Yan, Y. An, J. Li, et al., Regulatory effect of Leonurus extracts on hyperuricemia in rats, Zhongguo Zhong Yao Za Zhi 39 (2014) 4856-4859.
|
[100] |
S. Di, J. Liu, S. Yu, et al. Effect of Liqingtong Recipe on reducing blood uric acid in hyperuricemic rats and on the rate limiting enzyme of uric acid production and uric acid transporter, Glob. Tradit. Chin. Med. 15 (2022) 1782-1787.
|
[101] |
W. Shi, Z. Li, Z. Gu, et al. Effect of Polygoni Cuspidati Rhizoma et Radix-Cinnamomi Ramulus on chronic hyperuricemia and expressions of renal and intestinal uric acid transporters in rats, Chin. J. Exp. Tradit. Med. Formulae 22 (2016) 107-112.
|
[102] |
B. Li, J. Wang, T. Cai, et al. Effect of Tongfengning serum containing on expression of urate transporter in HK-2 Induced by uric acid, Chin. J. Exp. Tradit. Med. Formulae 25 (2019) 53-59.
|
[103] |
X. Shi, M. Zhu, L. Jie, et al., Effect of compound Tufuling granules on physical and chemical indexes and protein levels in hyperuricemia rats with syndrome of phlegm-dampness, Chin. J. Exp. Tradit. Med. Formulae 22 (2016) 100-105.
|
[104] |
X. Zhang, W. Sun, W. Xu, et al., Study on influence of Xiezhuo chubi decoction on uric acid and URAT1 in hyperuricemia mice, Chin. J. Exp. Tradit. Med. Formulae 18 (2012) 144-147.
|
[105] |
C. Fang, L. Chen, X. Li, et al., Hypouricemic effects of Tibetan medicine Ershiwuwei Ercha Pills and influences on the expressions of uric acid transporters, Chin. Tradit. Pat. Med. 40 (2018) 2374-2379.
|
[106] |
K. Li, C. Yu, Effect of Jisheng Shenqi pill on hyperuricemia in rats and its mechanism, Chin. Arch. Tradit. Chin. Med. 35 (2017) 1882-1885.
|
[107] |
K. Ding, W. Cao, Y. Zhang, et al., Effect of Qushi-Dizhuo decoction on urate transporters in hyperuricemia rats, Chin. J. Pathophysiol. 35(2019) 1514-1520.
|
[108] |
Y. Lv, Q. Huang, X. Wang, et al., Effects of Ermiao Pill water extracts on imbalance of urate levels and its related genes and protein levels in hyperuricemic mice, Chin. Tradit. Herb. Drugs 41 (2010) 418-423.
|
[109] |
X. Wang, C. Wang, Q. Hu, et al., The dual actions of Sanmiao Wan as a hypouricemic agent: Down-regulation of hepatic XOD and renal MURAT1 in hyperuricemic mice, J. Ethnopharmacol. 128 (2010) 107-115.
|
[110] |
Q. Hu, R. Jiao, X. Wang, et al., Simiao pill ameliorates urate underexcretion and renal dysfunction in hyperuricemic mice, J. Ethnopharmacol. 128 (2010) 685-692.
|
[111] |
H. Wang, G. Zhang, Z. Zou, et al., Effects of Si MiaoSanJia WeiFang on the expression of human UAT and URAT1 transporter genes in HK-2 cells, Chin. J. Clin. Pharmacol. Ther. 15 (2010) 972-977.
|
[112] |
H. Wang, G. Zhang, Z. Zou, et al., Heat leakage for people "removing stasis and turbidity tubular epithelial cells UAT and URAT1 gene expression, Guiding J. Tradit. Chin. Med. Pharmacol. 16 (2010) 108-111.
|
[113] |
S. Wu, J. Peng, C. Wan, et al., Study on regulating effect of Jianpi Shenshi formula on urate transporters OAT3 in hyperuricemia model rats, Rheum. Arthritis 2 (2013) 22-25.
|
[114] |
X. Ding, Y. Pan, X. Wang, et al., Wuling San ameliorates urate under-excretion and renal dysfunction in hyperuricemic mice, Chin. J. Nat. Med. 11 (2013) 214-221.
|
[115] |
J. Han, J. Zhang, W. Li, et al., Effect of Zisheng Shenqi Pill on Expressions of IL-6 and NALP2 mRNA in Gouty Rats, Acta Chin. Med. Pharmacol. 49 (2021) 23-28.
|
[116] |
J. Zeng, B. Xu, J. Wang, et al., Hypouricemic effects of acteoside and isoacteoside from Plantaginis Semen on mice with acute hyperuricemia and their possible mechanisms, Chin. Tradit. Patent Med. 38 (2016) 1449-1454.
|
[117] |
Z. Wang, X. Ci, T. Cui, et al., Inhibitory effects of different medicinal ingredients on OAT4 and URAT1 and their effects on blood uric acid levels in mice with acute hyperuricemia, Chin. Tradit. Herb. Drugs 50 (2019) 1157-1163.
|
[118] |
Y. Li, S. Ju, Z. Lin, et al., Bioactive-chemical quality markers revealed: An integrated strategy for quality control of chicory, Front. Nutr. 9 (2022), 934176.
|
[119] |
X. Xu, Y. Niu, L. Gao, et al., Analysis of hypouricemic mechanism of mangiferin based on intestinal urate transporter ABCG2, Chin. J. Exp. Tradit. Med. Formulae 24 (2018) 145-149.
|
[120] |
H. Zhang, Y. Zhang, G. Lu, et al., The puerarin impact on the expression of ABCG2 in human renal proximal tubule epithelial cells, Shanghai J. Tradit. Chin. Med. 50 (2016) 74-77.
|
[121] |
Q. Zhou, X. Zhao, H. Wang, et al., Mechanism and uric acid reducing effects of theaflavin on potassium oxonate-induced hyperuricemia in mice, Chin. J. New Drugs 27 (2018) 1631-1638.
|
[122] |
C. Wang, X. Wang, X. Zhang, et al., Morin improves urate excretion and kidney function through regulation of renal organic ion transporters in hyperuricemic mice, J. Pharm. Pharm. Sci. 13 (2010) 411-427.
|
[123] |
Y. Chen, C. Li, S. Duan, et al., Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice, Biomed. Pharmacother. 118 (2019), 109195.
|
[124] |
W. Bi, C. Zhu, Genistein ameliorates hyperuricemia-associated nephropathy in hyperuricemic mice, Food Agric. Immunol. 32 (2021) 778-797.
|
[125] |
L. Deng, J. Yan, P. Wang, et al., Effects of pachman on the expression of renal tubular transporters rURAT1, rOAT1 and rOCT2 of the rats with hyperuricemia, Western J. Tradit. Chin. Med. 32 (2019) 10-14.
|
[126] |
P. Wang, Study on the efficacy and mechanism of resveratrol against acute gouty arthritis [master’s thesis], Qingdao: Qingdao University, 2014.
|
[127] |
H. Wang, Y. Zhang, Y. Li, et al., Evaluation of dexmedetomidin in general anesthesia undergoing Gastrectomy with remifentanil and propofol in dosage and effect, Acta Univ. Med. Anhui 49 (2014) 88-91.
|
[128] |
G. Wu, H. Wu, H. Jiang, Anti-hyperuricemia effect and mechanism of polydatin in mice, Yao Xue Xue Bao 49 (2014) 1739-1742.
|
[129] |
Q. Hu, J. Zhu, N. Li, et al., Effect of jasminoidin on potassium oxonate-induced hyperuricemia in mice and its mechanism, Central South Pharm. 11 (2013) 721-725.
|
[130] |
F. Wang, X. Zhao, X. Su, et al., Isorhamnetin, the xanthine oxidase inhibitor from Sophora japonica, ameliorates uric acid levels and renal function in hyperuricemic mice, Food Funct. 12 (2021) 12503-12512.
|
[131] |
Z.-R. Sun, H. Liu, D. Hu, et al., Ellagic acid exerts beneficial effects on hyperuricemia by inhibiting xanthine oxidase and NLRP3 inflammasome activation, J. Agric. Food Chem. 69 (2021) 12741-12752.
|
[132] |
F. Cui, L. Xi, G. Zhao, et al., Screening of xanthine oxidase inhibitory peptides by ligand fishing and molecular docking technology, Food Biosci. 50 (2022), 102152.
|
[133] |
Y. Yang, Z. Zhang, Q. Zhou, et al., Hypouricemic effect in hyperuricemic mice and xanthine oxidase inhibitory mechanism of dietary anthocyanins from purple sweet potato (Ipomoea batatas L.), J. Funct. Foods 73 (2020), 104151.
|
[134] |
S.I. Adachi, M. Oyama, S. Kondo, et al., Comparative effects of quercetin, luteolin, apigenin and their related polyphenols on uric acid production in cultured hepatocytes and suppression of purine bodies-induced hyperuricemia by rutin in mice, Cytotechnology 73 (2021) 343-351.
|
[135] |
Q. Hu, X. Zhang, X. Wang, et al., Quercetin regulates organic ion transporter and uromodulin expression and improves renal function in hyperuricemic mice, Eur. J. Nutr. 51 (2012) 593-606.
|
[136] |
Y.H. Chang, Y. Chiang, H.Y. Chen, et al., Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3 inflammasome signaling pathway, Antioxidants (Basel) 10 (2021), 564.
|
[137] |
M. Hu, J. Li, Y. Song, et al., Effect and mechanism study of evodiamine on hyperuricemia model quail, Pharmacol. Clin. Chin. Materia Medica 30 (2014) 38-40.
|
[138] |
X. Liu, Y. Zhao, Y. Zhou, et al., Anti-gout effect of hirudin and its mechanism, Chin. Tradit. Herb. Drugs 49 (2018) 1365-1370.
|
[139] |
Y. Wan, F. Wang, B. Zou, et al., Molecular mechanism underlying the ability of caffeic acid to decrease uric acid levels in hyperuricemia rats, J. Funct. Foods 57 (2019) 150-156.
|
[140] |
Z. Meng, Z. Tang, Y. Yan, et al., Study on the anti-gout activity of chlorogenic acid: Improvement on hyperuricemia and gouty inflammation, Am. J. Chin. Med. 42 (2014) 1471-1483.
|
[141] |
B. Shan, M. Wu, T. Chen, et al., Berberine attenuates hyperuricemia by regulating urate transporters and gut microbiota, Am. J. Chin. Med. 50 (2022) 2199-2221.
|
[142] |
D. Zhang, M. Zhao, Y. Li, et al., Natural xanthine oxidase inhibitor 5- O-caffeoylshikimic acid ameliorates kidney injury caused by hyperuricemia in mice, Molecules 26 (2021), 7307.
|
[143] |
X. Li, Y. Chen, X. Gao, et al., Antihyperuricemic effect of green alga Ulva lactuca ulvan through regulating urate transporters, J. Agric. Food Chem. 69 (2021) 11225-11235.
|
[144] |
N.B. Hlophe, A.R. Opoku, F.O. Osunsanmi, et al., A lanosteryl triterpene (RA-3) exhibits antihyperuricemic and nephroprotective effects in rats, Molecules 25 (2020), 4010.
|
[145] |
Y. Chen, Z. Zhao, Y. Li, et al., Baicalein alleviates hyperuricemia by promoting uric acid excretion and inhibiting xanthine oxidase, Phytomedicine 80 (2021), 153374.
|
[146] |
Y. Li, Z. Zhao, J. Luo, et al., Apigenin ameliorates hyperuricemic nephropathy by inhibiting URAT1 and GLUT9 and relieving renal fibrosis via the Wnt/β-catenin pathway, Phytomedicine 87 (2021), 153585.
|
[147] |
Y. Zeng, S. Li, C. Liu, et al., Soluplus micelles for improving the oral bioavailability of scopoletin and their hypouricemic effect in vivo, Acta Pharmacol. Sin. 38 (2017) 424-433.
|
[148] |
P. Hou, C. Mi, Y. He, et al., Pallidifloside D from Smilax riparia enhanced allopurinol effects in hyperuricemia mice, Fitoterapia 105 (2015) 43-48.
|
[149] |
M. Guo, Study on hypouricemic activities and granules formulation of Glycyrrhiza uralensis polysaccharides [master’s thesis], Zhenjiang: Jiangsu University, 2018.
|
[150] |
Y. Li, T. Ji, M. Torre, et al., Aromatized liposomes for sustained drug delivery, Nat. Commun. 14 (2023), 6659.
|
[151] |
Y. Wang, X. Lu, X. Wu, et al., Chemically modified DNA nanostructures for drug delivery, Innovation (Camb.) 3 (2022), 100217.
|
[152] |
S.R. Alizadeh, M.A. Ebrahimzadeh, O-glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure-activity relationship for drug design, a review, Phytother. Res. 36 (2022) 778-807.
|
[153] |
A. Scanu, R. Luisetto, R. Ramonda, et al., Anti-inflammatory and hypouricemic effect of bioactive compounds: Molecular evidence and potential application in the management of gout, Curr. Issues Mol. Biol. 44 (2022) 5173-5190.
|
[154] |
D.E. Van Hoorn, R.J. Nijveldt, P.A. Van Leeuwen, et al., Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids, Eur. J. Pharmacol. 451 (2002) 111-118.
|
[155] |
S. Lin, G. Zhang, Y. Liao, et al., Dietary flavonoids as xanthine oxidase inhibitors: Structure-affinity and structure-activity relationships, J. Agric. Food Chem. 63 (2015) 7784-7794.
|
[156] |
M. Yuan, Y. Liu, A. Xiao, et al., The interaction of dietary flavonoids with xanthine oxidase in vitro: Molecular property-binding affinity relationship aspects, RSC Adv. 9 (2019) 10781-10788.
|
[157] |
J. Zhao, L. Huang, C. Sun, et al., Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations, Food Chem. 323 (2020), 126807.
|
[158] |
C. Shen, J. Guo, Research progress on the mechanism of action of traditional Chinese medicine compound formulae for the treatment of gout. Rheum. Arthritis 11 (2022) 77-80.
|
[159] |
C. Zhang, R. Wang, G. Zhang, et al., Mechanistic insights into the inhibition of quercetin on xanthine oxidase, Int. J. Biol. Macromol. 112 (2018) 405-412.
|
[160] |
Y. Wan, J. Qian, Y. Li, et al., Inhibitory mechanism of xanthine oxidase activity by caffeoylquinic acids in vitro, Int. J. Biol. Macromol. 184 (2021) 843-856.
|
[161] |
C. Hou, W. Sha, Z. Xu, et al., Culture and establishment of self-renewing human liver 3D organoids with high uric acid for screening antihyperuricemic functional compounds, Food Chem. 374 (2022), 131634.
|
[162] |
C. Hou, Y. Hu, H. Jiang, et al., Establishment of a 3D hyperuricemia model based on cultured human liver organoids, Free Radic. Biol. Med. 178 (2022) 7-17.
|
[163] |
L. Zou, Y. Wang, Z. Jiang, et al., Screening and evaluation of uric acid-lowering active ingredients in traditional Chinese medicine based on renal uric acid transport: the case of chicoric acid, World Chin. Med. 16 (2021) 28-34.
|
[164] |
Y. Wang, Z. Lin, C. Qu, et al., Intestinal-renal uric acid excretion mediated by oxidative stress in hyperuricemic rats, J. Beijing Uni. Tradit. Chin. Med. 43 (2020) 310-316.
|
[165] |
S. Huang, Z. Lin, B. Zhang, et al., Effect of chicory on uric acid and uricopoiesis metabolic enzymes activities of hyperuricemia quail, Tradit. Chin. Drug Res. Clin. Pharmacol. 26 (2015) 9-13.
|
[166] |
L. Li, Study on the mechanism of uric acid-lowering action of chicory based on renal excretion pathway [master’s thesis], Beijing: Beijing University of Chinese Medicine, 2015.
|
[167] |
Y. Wang, Z. Lin, B. Zhang, et al., Chicory (Cichorium intybus L.) inhibits renal reabsorption by regulating expression of urate transporters in fructose-induced hyperuricemia, J. Tradit. Chin. Med. Sci. 6 (2019) 84-94.
|
[168] |
Z. Lin, B. Zhang, X. Liu, et al., Effects of chicory inulin on serum metabolites of uric acid, lipids, glucose, and abdominal fat deposition in quails induced by purine-rich diets, J Med Food 17 (2014) 1214-1221.
|
[169] |
Y. Jin, Z. Lin, B. Zhang, et al., Effects of chicory on serum uric acid, renal function, and GLUT9 expression in hyperuricaemic rats with renal injury and in vitro verification with cells, Evid. Based Complement. Alternat. Med. 2018 (2018), 1764212.
|
[170] |
Y. Wang, Z. Lin, B. Zhang, et al., Cichorium intybus L. promotes intestinal uric acid excretion by modulating ABCG2 in experimental hyperuricemia, Nutr. Metab. 14 (2017), 38.
|
[171] |
Y. Wang, Z. Lin, B. Zhang, et al., Cichorium intybus L. extract suppresses experimental gout by inhibiting the NF-κB and NLRP3 signaling pathways, Int. J. Mol. Sci. 20 (2019), 4921.
|
[172] |
F. Ren, J. Lin, M. Zhu, et al., Polysaccharides from Alpinia oxyphylla fruit prevent hyperuricemia by inhibiting uric acid synthesis, modulating intestinal flora and reducing renal inflammation, Int. J. Biol. Macromol. 278 (2024), 134782.
|
[173] |
G. Huang, The law of TCM treatment of rheumatoid arthritis based on the real world study [dissertation], Chengdu: Chengdu University of Chinese Medicine, 2020.
|
[174] |
H. Zhang, Y. Zhu, Y. Lai, Exploring the therapeutic ideas of numbness on the basis of "not being able to pass through" and "not being kind" in Suwen-Paralysis, Chin. J. Ethnomed. Ethnopharm. 30 (2021) 5-7.
|
[175] |
F. Zhang, S. Zhou, Characteristics of Zhu Danxi's "Ge Zhi Yu Lun" in treating gout from the blood theory, Acta Chin. Med. Pharmacol. 46 (2018) 106-108.
|
[176] |
W. Li, X. Zhang, Z. Lin, Professor Zhang Bing's clinical practice of treating gout disease from both manifestation and root cause under the strategy of "integrated therapy", World Chin. Med. 16 (2021) 8-12.
|
[177] |
L. Chen, Network meta-analysis of the efficacy and safety of four uric acid-lowering drugs [master’s thesis], Dali: Dali University, 2019.
|
[178] |
A. Ives, J. Nomura, F. Martinon, et al., Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation, Nat. Commun. 6 (2015), 6555.
|
[179] |
H. Saito, K. Tanaka, T. Iwasaki, et al., Xanthine oxidase inhibitors are associated with reduced risk of cardiovascular disease, Sci. Rep. 11 (2021), 1380.
|