Volume 15 Issue 5
Jun.  2025
Turn off MathJax
Article Contents
Caiyu Jiang, Shenglong Xie, Kegang Jia, Gang Feng, Xudong Ren, Youyu Wang. Exploring cellular plasticity and resistance mechanisms in lung cancer: Innovations and emerging therapies[J]. Journal of Pharmaceutical Analysis, 2025, 15(5): 101179. doi: 10.1016/j.jpha.2024.101179
Citation: Caiyu Jiang, Shenglong Xie, Kegang Jia, Gang Feng, Xudong Ren, Youyu Wang. Exploring cellular plasticity and resistance mechanisms in lung cancer: Innovations and emerging therapies[J]. Journal of Pharmaceutical Analysis, 2025, 15(5): 101179. doi: 10.1016/j.jpha.2024.101179

Exploring cellular plasticity and resistance mechanisms in lung cancer: Innovations and emerging therapies

doi: 10.1016/j.jpha.2024.101179
  • Received Date: Aug. 12, 2024
  • Accepted Date: Dec. 29, 2024
  • Rev Recd Date: Dec. 08, 2024
  • Publish Date: Jan. 03, 2025
  • Non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer cases and remains the leading cause of cancer-related mortality worldwide. Firstly, this review explores the limitations of conventional therapies, chemotherapy, radiotherapy, and surgery, focusing on the development of drug resistance and significant toxicity that often hinder their efficacy. Thereafter, advancements in targeted therapies, such as immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs), are discussed, highlighting their impact on improving outcomes for patients with specific genetic mutations, including c-ros oncogene 1 receptor tyrosine kinase (ROS1), anaplastic lymphoma kinase (ALK), and epidermal growth factor receptor (EGFR). Additionally, the emergence of novel immunotherapies and phytochemicals is examined, emphasizing their potential to overcome therapeutic resistance, particularly in advanced-stage diseases. The review also delves into the role of next-generation sequencing (NGS) in enabling personalized treatment approaches and explores the clinical potential of innovative agents, such as bispecific T-cell engagers (BiTEs) and antibody-drug conjugates (ADCs). Finally, we address the socioeconomic barriers that limit the accessibility of these therapies in low-resource settings and propose future research directions aimed at improving the long-term efficacy and accessibility of these treatments.

  • loading
  • [1]
    A. Risch, C. Plass, Lung cancer epigenetics and genetics, Int. J. Cancer 123 (2008) 1-7.
    [2]
    A. Stefani, G. Piro, F. Schietroma, et al., Unweaving the mitotic spindle: A focus on Aurora kinase inhibitors in lung cancer, Front. Oncol. 12 (2022), 1026020.
    [3]
    H.M. Abdelaziz, M. Gaber, M.M. Abd-Elwakil, et al., Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates, J. Control. Release 269 (2018) 374-392.
    [4]
    H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (2021) 209-249.
    [5]
    M. Ashrafizadeh, M. Najafi, P. Makvandi, et al., Versatile role of curcumin and its derivatives in lung cancer therapy, J. Cell. Physiol. 235 (2020) 9241-9268.
    [6]
    M. Ashrafizadeh, A. Zarrabi, K. Hushmandi, et al., Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: Role of microRNAs and upstream mediators, Cell. Signal. 78 (2021), 109871.
    [7]
    A.J. Abadi, A. Zarrabi, M.H. Gholami, et al., Small in size, but large in action: microRNAs as potential modulators of PTEN in breast and lung cancers, Biomolecules 11 (2021), 304.
    [8]
    M. Entezari, M. Ghanbarirad, A. Taheriazam, et al., Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling, Biomed. Pharmacother. 150 (2022), 112963.
    [9]
    Z. Yang, S. Jiang, C. Lu, et al., SOX11: Friend or foe in tumor prevention and carcinogenesis? Ther. Adv. Med. Oncol. 11 (2019), 1758835919853449.
    [10]
    W. Hu, Y. Yang, C. Fan, et al., Clinical and pathological significance of N-Myc downstream-regulated gene 2 (NDRG2) in diverse human cancers, Apoptosis 21 (2016) 675-682.
    [11]
    M. Cao, W. Chen, Epidemiology of lung cancer in China, Thorac. Cancer 10 (2019) 3-7.
    [12]
    J. Li, W.X. Li, C. Bai, et al., Particulate matter-induced epigenetic changes and lung cancer, Clin. Respir. J. 11 (2017) 539-546.
    [13]
    J.M. Samet, E. Avila-Tang, P. Boffetta, et al., Lung cancer in never smokers: Clinical epidemiology and environmental risk factors, Clin. Cancer Res. 15 (2009) 5626-5645.
    [14]
    Eapen MS, Hansbro PM, Larsson-Callerfelt AK, et al, Chronic obstructive pulmonary disease (COPD) and its association with lung cancer: Molecular mechanism and therapeutic targets, Austin J. Pulm. Respir. Med. 8 (2021), 1074.
    [15]
    World Health Organization. WHO global report on trends in prevalence of tobacco smoking 2000-2025, 2nd ed. Geneva: World Health Organization. https://iris.who.int/handle/10665/272694. (Accessed 29 May 2018).
    [16]
    M.C. Turner, Z.J. Andersen, A. Baccarelli, et al., Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations, CA Cancer J. Clin. 70 (2020) 460-479.
    [17]
    M. Thun, R. Peto, J. Boreham, et al., Stages of the cigarette epidemic on entering its second century, Tob. Control 21 (2012) 96-101.
    [18]
    J. Lortet-Tieulent, E. Renteria, L. Sharp, et al., Convergence of decreasing male and increasing female incidence rates in major tobacco-related cancers in Europe in 1988-2010, Eur. J. Cancer 51 (2015) 1144-1163.
    [19]
    E.C. Naylor, Adjuvant therapy for stage I and II non-small cell lung cancer, Surg. Oncol. Clin. N. Am. 25 (2016) 585-599.
    [20]
    L.N. Mathieu, E. Larkins, A.K. Sinha, et al., FDA approval summary: Atezolizumab as adjuvant treatment following surgical resection and platinum-based chemotherapy for stage II to IIIA NSCLC, Clin. Cancer Res. 29 (2023) 2973-2978.
    [21]
    N. Wathoni, L.E. Puluhulawa, I.M. Joni, et al., Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer, Drug Deliv. 29 (2022) 2959-2970.
    [22]
    X. Zhu, Z. Yu, L. Feng, et al., Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer, Carbohydr. Polym. 268 (2021), 118237.
    [23]
    Q. Wang, C. Su, C. Zhou, Recent advances in immunotherapy for lung cancer, Cancer Innov. 2 (2023) 18-24.
    [24]
    P. Saggese, C.A. Martinez, L.M. Tran, et al., Genotoxic treatment enhances immune response in a genetic model of lung cancer, Cancers (Basel) 13 (2021), 3595.
    [25]
    M. Nagasaka, S.M. Gadgeel, Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer, Expert Rev. Anticancer Ther. 18 (2018) 63-70.
    [26]
    C. Pottier, M. Fresnais, M. Gilon, et al., Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy, Cancers (Basel) 12 (2020), 731.
    [27]
    L. Crino, W. Weder, J. van Meerbeeck, et al., Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol. 21 (2010) v103-v115.
    [28]
    Z. Tang, H. Dong, T. Li, et al., The synergistic reducing drug resistance effect of cisplatin and ursolic acid on osteosarcoma through a multistep mechanism involving ferritinophagy, Oxid. Med. Cell. Longev. 2021 (2021), 5192271.
    [29]
    E.N. Imyanitov, A.G. Iyevleva, E.V. Levchenko, Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives, Crit. Rev. Oncol. Hematol. 157 (2021), 103194.
    [30]
    M. Yuan, L. Huang, J. Chen, et al., The emerging treatment landscape of targeted therapy in non-small-cell lung cancer, Signal Transduct. Target. Ther. 4 (2019), 61.
    [31]
    L. Osmani, F. Askin, E. Gabrielson, et al., Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy, Semin. Cancer Biol. 52 (2018) 103-109.
    [32]
    J.N. McCutcheon, G. Giaccone, Next-generation sequencing: Targeting targeted therapies, Clin. Cancer Res. 21 (2015) 3584-3585.
    [33]
    B. Muthusamy, P.D. Patil, N.A. Pennell, Perioperative systemic therapy for resectable non-small cell lung cancer, J. Natl. Compr. Canc. Netw. 20 (2022) 953-961.
    [34]
    J.K. Sabari, F. Santini, I. Bergagnini, et al., Changing the therapeutic landscape in non-small cell lung cancers: The evolution of comprehensive molecular profiling improves access to therapy, Curr. Oncol. Rep. 19 (2017), 24.
    [35]
    K. Politi, R.S. Herbst, Lung cancer in the era of precision medicine, Clin. Cancer Res. 21 (2015) 2213-2220.
    [36]
    A. Fernandez-Medarde, E. Santos, Ras in cancer and developmental diseases, Genes Cancer 2 (2011) 344-358.
    [37]
    J. Timar, The clinical relevance of KRAS gene mutation in non-small-cell lung cancer, Curr. Opin. Oncol. 26 (2014) 138-144.
    [38]
    P.M.K. Westcott, M.D. To, The genetics and biology of KRAS in lung cancer, Chin. J. Cancer 32 (2013) 63-70.
    [39]
    P.A. Janne, G.J. Riely, S.M. Gadgeel, et al., Adagrasib in non-small-cell lung cancer harboring a KRASG12C mutation, N. Engl. J. Med. 387 (2022) 120-131.
    [40]
    G. Palma, F. Khurshid, K. Lu, et al., Selective KRAS G12C inhibitors in non-small cell lung cancer: Chemistry, concurrent pathway alterations, and clinical outcomes, NPJ Precis. Oncol. 5 (2021), 98.
    [41]
    S. Ceddia, L. Landi, F. Cappuzzo, KRAS-mutant non-small-cell lung cancer: From past efforts to future challenges, Int. J. Mol. Sci. 23 (2022), 9391.
    [42]
    X. Jia, M. Liu, Z. Cheng, Sotorasib as first-line therapy in patients with advanced non-small cell lung cancer with KRAS gene mutations combined with brain metastases: A case report, AME Case Rep. 8 (2024), 48.
    [43]
    S. Khan, J. Wiegand, P. Zhang, et al., BCL-XL PROTAC degrader DT2216 synergizes with sotorasib in preclinical models of KRASG12C-mutated cancers, J. Hematol. Oncol. 15 (2022), 23.
    [44]
    A. Inno, F. Marchetti, M. Valerio, et al., Activity of sotorasib against brain metastases from NSCLC harboring KRAS p.G12C mutation: A case report, Drug Target Insights 17 (2023) 90-91.
    [45]
    E. O’Sullivan, A. Keogh, B. Henderson, et al., Treatment strategies for KRAS-mutated non-small-cell lung cancer, Cancers (Basel) 15 (2023), 1635.
    [46]
    C. Lee, J. Yi, J. Park, et al., Hedgehog signalling is involved in acquired resistance to KRASG12C inhibitors in lung cancer cells, Cell Death Dis. 15 (2024), 56.
    [47]
    M. Bungaro, S. Novello, F. Passiglia, Targeting KRASp.G12C mutation in advanced non-small cell lung cancer: A new era has begun, Curr. Treat. Options Oncol. 23 (2022) 1699-1720.
    [48]
    P. Cascetta, A. Marinello, C. Lazzari, et al., KRAS in NSCLC: State of the art and future perspectives, Cancers (Basel) 14 (2022), 5430.
    [49]
    M. Santarpia, G. Ciappina, C.C. Spagnolo, et al., Targeted therapies for KRAS-mutant non-small cell lung cancer: From preclinical studies to clinical development-a narrative review, Transl. Lung Cancer Res. 12 (2023) 346-368.
    [50]
    P.C. Balduzzi, M.F. Notter, H.R. Morgan, et al., Some biological properties of two new avian sarcoma viruses, J. Virol. 40 (1981) 268-275.
    [51]
    A. Charest, E.W. Wilker, M.E. McLaughlin, et al., ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice, Cancer Res. 66 (2006) 7473-7481.
    [52]
    A. D’Angelo, N. Sobhani, R. Chapman, et al., Focus on ROS1-positive non-small cell lung cancer (NSCLC): Crizotinib, resistance mechanisms and the newer generation of targeted therapies, Cancers (Basel) 12 (2020), 3293.
    [53]
    K. Sehgal, R. Patell, D. Rangachari, et al., Targeting ROS1 rearrangements in non-small cell lung cancer with crizotinib and other kinase inhibitors, Transl. Cancer Res. 7 (2018) S779-S786.
    [54]
    M. Cargnelutti, S. Corso, M. Pergolizzi, et al., Activation of RAS family members confers resistance to ROS1 targeting drugs, Oncotarget 6 (2015) 5182-5194.
    [55]
    H. Ogura, Y. Nagatake-Kobayashi, J. Adachi, et al., TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity, Sci. Rep. 7 (2017), 5519.
    [56]
    H.Y. Zou, Q. Li, L.D. Engstrom, et al., PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations, Proc. Natl. Acad. Sci. USA 112 (2015) 3493-3498.
    [57]
    Y. Kato, K. Ninomiya, K. Ohashi, et al., Combined effect of cabozantinib and gefitinib in crizotinib-resistant lung tumors harboring ROS1 fusions, Cancer Sci. 109 (2018) 3149-3158.
    [58]
    M. Duruisseaux, Lorlatinib: A new treatment option for ROS1-positive lung cancer, Lancet Oncol. 20 (2019) 1622-1623.
    [59]
    A. Ullrich, J. Schlessinger, Signal transduction by receptors with tyrosine kinase activity, Cell 61 (1990) 203-212.
    [60]
    M. Soda, Y.L. Choi, M. Enomoto, et al., Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer, Nature 448 (2007) 561-566.
    [61]
    A.T. Shaw, B.Y. Yeap, M. Mino-Kenudson, et al., Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK, J. Clin. Oncol. 27 (2009) 4247-4253.
    [62]
    D.R. Camidge, Y.J. Bang, E.L. Kwak, et al., Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: Updated results from a phase 1 study, Lancet Oncol. 13 (2012) 1011-1019.
    [63]
    Y.L. Choi, M. Soda, Y. Yamashita, et al., EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors, N. Engl. J. Med. 363 (2010) 1734-1739.
    [64]
    G.A. Otterson, G.J. Riely, A.T. Shaw, et al., Clinical characteristics of ALK+ NSCLC patients (pts) treated with crizotinib beyond disease progression (PD): Potential implications for management, J. Clin. Oncol. 30 (2012), 7600.
    [65]
    Y. Yamamoto, I. Okamoto, K. Otsubo, et al., Severe acute interstitial lung disease in a patient with anaplastic lymphoma kinase rearrangement-positive non-small cell lung cancer treated with alectinib, Invest. New Drugs 33 (2015) 1148-1150.
    [66]
    M. Chahin, N. Krishnan, T. Matthews-Hew, et al., Metastatic anaplastic lymphoma kinase rearrangement-positive adenocarcinoma of occult primary mimicking ovarian cancer, Cureus 12 (2020), e9437.
    [67]
    T. Nitawaki, Y. Sakata, K. Kawamura, et al., Case report: Continued treatment with alectinib is possible for patients with lung adenocarcinoma with drug-induced interstitial lung disease, BMC Pulm. Med. 17 (2017), 173.
    [68]
    T. Tani, H. Yasuda, J. Hamamoto, et al., Activation of EGFR bypass signaling by TGFα overexpression induces acquired resistance to alectinib in ALK-translocated lung cancer cells, Mol. Cancer Ther. 15 (2016) 162-171.
    [69]
    H. Yoshida, Y.H. Kim, H. Ozasa, et al., Efficacy of ceritinib after alectinib for ALK-positive non-small cell lung cancer, In Vivo 32 (2018) 1587-1590.
    [70]
    R. Gu, Z. Shi, T. Duan, et al., Feasibility and safety of neoadjuvant alectinib in pulmonary invasive mucinous adenocarcinoma with ALK rearrangement: Case report and literature review, Onco Targets Ther. 14 (2021) 5107-5113.
    [71]
    D.R. Camidge, H.R. Kim, M.J. Ahn, et al., Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer, N. Engl. J. Med. 379 (2018) 2027-2039.
    [72]
    K. Misawa, S. Nakamichi, H. Iida, et al., Alectinib-induced severe hemolytic Anemia in a patient with ALK-positive non-small cell lung cancer: A case report, Onco Targets Ther. 16 (2023) 65-69.
    [73]
    M. Sivignon, R. Monnier, B. Tehard, et al., Cost-effectiveness of alectinib compared to crizotinib for the treatment of first-line ALK+ advanced non-small-cell lung cancer in France, PLoS One 15 (2020), e0226196.
    [74]
    E. Iwama, Y. Goto, H. Murakami, et al., Survival analysis for patients with ALK rearrangement-positive non-small cell lung cancer and a poor performance status treated with alectinib: Updated results of lung oncology group in Kyushu 1401, Oncologist 25 (2020) 306-e618.
    [75]
    A. Spagnuolo, P. Maione, C. Gridelli, Evolution in the treatment landscape of non-small cell lung cancer with ALK gene alterations: From the first- to third-generation of ALK inhibitors, Expert Opin. Emerg. Drugs 23 (2018) 231-241.
    [76]
    R.K. Jain, H. Chen, Spotlight on brigatinib and its potential in the treatment of patients with metastatic ALK-positive non-small cell lung cancer who are resistant or intolerant to crizotinib, Lung Cancer (Auckl) 8 (2017) 169-177.
    [77]
    R. Ali, J. Arshad, S. Palacio, et al., Brigatinib for ALK-positive metastatic non-small-cell lung cancer: Design, development and place in therapy, Drug Des. Devel. Ther. 13 (2019) 569-580.
    [78]
    Y. Xia, R. Jin, M. Li, et al., Potent antitumor activity of ensartinib in MET exon 14 skipping-mutated non-small cell lung cancer, Cancer Lett. 561 (2023), 216140.
    [79]
    B. Zhang, T. Qiao, C. Gao, Effects and mechanism of ensartinib (X-396) on the adhesion and metastasis of non-small cell lung cancer cells, Pharmazie 74 (2019) 543-546.
    [80]
    L. Horn, J.R. Infante, K.L. Reckamp, et al., Ensartinib (X-396) in ALK-positive non-small cell lung cancer: Results from a first-in-human phase I/II, multicenter study, Clin. Cancer Res. 24 (2018) 2771-2779.
    [81]
    Y. Yang, J. Zhou, J. Zhou, et al., Efficacy, safety, and biomarker analysis of ensartinib in crizotinib-resistant, ALK-positive non-small-cell lung cancer: A multicentre, phase 2 trial, Lancet Respir. Med. 8 (2020) 45-53.
    [82]
    S.N. Waqar, D. Morgensztern, Lorlatinib: A new-generation drug for ALK-positive NSCLC, Lancet Oncol. 19 (2018) 1555-1557.
    [83]
    H. El Darsa, O. Abdel-Rahman, R. Sangha, Pharmacological and clinical properties of lorlatinib in the treatment of ALK-rearranged advanced non-small cell lung cancer, Expert Opin. Pharmacother. 21 (2020) 1547-1554.
    [84]
    M. Nagasaka, S.I. Ou, Lorlatinib should be considered as the preferred first-line option in patients with advanced ALK-rearranged NSCLC, J. Thorac. Oncol. 16 (2021) 532-536.
    [85]
    A. Zebisch, J. Troppmair, Back to the roots: The remarkable RAF oncogene story, Cell. Mol. Life Sci. 63 (2006) 1314-1330.
    [86]
    M. Malumbres, M. Barbacid, RAS oncogenes: The first 30 years, Nat. Rev. Cancer 3 (2003) 459-465.
    [87]
    J. Avruch, A. Khokhlatchev, J.M. Kyriakis, et al., Ras activation of the raf kinase: Tyrosine kinase recruitment of the MAP kinase cascade, Recent Prog. Horm. Res. 56 (2001) 127-155.
    [88]
    T. Ota, A. Okabayashi, M. Fukuoka, Rapid and dramatic responses to dabrafenib and trametinib in BRAF V600E-mutated lung adenocarcinoma, Respirol. Case Rep. 9 (2021), e0841.
    [89]
    J.E. Shin, H.J. An, H.S. Park, et al., Efficacy of dabrafenib/trametinib in pancreatic ductal adenocarcinoma with BRAF NVTAP deletion: A case report, Front. Oncol. 12 (2022), 976450.
    [90]
    H. Ding, Z. Zhuang, J. Xie, et al., Durable clinical response of advanced lung adenocarcinoma harboring EGFR-19del/T790M/BRAFV600E mutations after treating with osimertinib and dabrafenib plus trametinib: A case report, Onco Targets Ther. 13 (2020) 7933-7939.
    [91]
    G.M. Frampton, S.M. Ali, M. Rosenzweig, et al., Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors, Cancer Discov. 5 (2015) 850-859.
    [92]
    J. Remon, L.E.L. Hendriks, G. Mountzios, et al., MET alterations in NSCLC-current perspectives and future challenges, J. Thorac. Oncol. 18 (2023) 419-435.
    [93]
    M.A. Socinski, N.A. Pennell, K.D. Davies, MET exon 14 skipping mutations in non-small-cell lung cancer: An overview of biology, clinical outcomes, and testing considerations, JCO Precis. Oncol. 5 (2021), PO.20.00516.
    [94]
    L.N. Mathieu, E. Larkins, O. Akinboro, et al., FDA approval summary: Capmatinib and tepotinib for the treatment of metastatic NSCLC harboring MET exon 14 skipping mutations or alterations, Clin. Cancer Res. 28 (2022) 249-254.
    [95]
    E. Grande, M. Giovannini, E. Marriere, et al., Effect of capmatinib on the pharmacokinetics of digoxin and rosuvastatin administered as a 2-drug cocktail in patients with MET-dysregulated advanced solid tumours: A phase I, multicentre, open-label, single-sequence drug-drug interaction study, Br. J. Clin. Pharmacol. 87 (2021) 2867-2878.
    [96]
    W. Choi, S.Y. Park, Y. Lee, et al., The clinical impact of capmatinib in the treatment of advanced non-small cell lung cancer with MET exon 14 skipping mutation or gene amplification, Cancer Res. Treat. 53 (2021) 1024-1032.
    [97]
    G.S. Falchook, R. Kurzrock, H.M. Amin, et al., First-in-man phase I trial of the selective MET inhibitor tepotinib in patients with advanced solid tumors, Clin. Cancer Res. 26 (2020) 1237-1246.
    [98]
    X. Le, L.G. Paz-Ares, J. Van Meerbeeck, et al., Tepotinib in patients (pts) with advanced non-small cell lung cancer (NSCLC) with MET amplification (METamp), J. Clin. Oncol. 39 (2021), 9021.
    [99]
    M. Grodkiewicz, P. Koziel, I. Chmielewska, et al., Optimizing treatment strategies for a MET exon 14 skipping mutation in non-small-cell lung cancer: A case report of sequential immunotherapy and targeted therapy and literature review, Oncol. Clin. Pract. 19 (2023) 448-453.
    [100]
    R.S. Herbst, J.V. Heymach, S.M. Lippman, Lung cancer, N. Engl. J. Med. 359 (2008) 1367-1380.
    [101]
    N.E. Hynes, H.A. Lane, Correction: ERBB receptors and cancer: The complexity of targeted inhibitors, Nat. Rev. Cancer 5 (2005), 580.
    [102]
    G. Recondo, F. Facchinetti, K.A. Olaussen, et al., Making the first move in EGFR-driven or ALK-driven NSCLC: First-generation or next-generation TKI? Nat. Rev. Clin. Oncol. 15 (2018) 694-708.
    [103]
    K. Konduri, J.N. Gallant, Y.K. Chae, et al., EGFR fusions as novel therapeutic targets in lung cancer, Cancer Discov. 6 (2016) 601-611.
    [104]
    L.V. Sequist, J.C. Yang, N. Yamamoto, et al., Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations, J. Clin. Oncol. 31 (2013) 3327-3334.
    [105]
    D. Planchard, S. Popat, K. Kerr, et al., Correction to: “metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up”, Ann. Oncol. 30 (2019) 863-870.
    [106]
    Y.-L. Wu, Y. Cheng, X. Zhou, et al., Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial, Lancet Oncol. 18 (2017) 1454-1466.
    [107]
    M.J. Hochmair, A. Morabito, D. Hao, et al., Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer: Final analysis of the GioTag study, Future Oncol. 16 (2020) 2799-2808.
    [108]
    F. Morgillo, C.M. Della Corte, M. Fasano, et al., Mechanisms of resistance to EGFR-targeted drugs: Lung cancer, ESMO Open 1 (2016), e000060.
    [109]
    R. Motta-Guerrero, A. Leon Garrido-Lecca, V.E. Failoc-Rojas, et al., Effectiveness and safety of the bevacizumab and erlotinib combination versus erlotinib alone in EGFR mutant metastatic non-small-cell lung cancer: Systematic review and meta-analysis, Front. Oncol. 13 (2024), 1335373.
    [110]
    P. Sakharkar, S. Kurup, Comparing efficacy of erlotinib and bevacizumab combination with erlotinib monotherapy in patients with advanced non-small cell lung cancer (NSCLC): A systematic review and meta-analysis, Diseases 11 (2023), 146.
    [111]
    N.A. Pennell, T.J. Jr Lynch, Combined inhibition of the VEGFR and EGFR signaling pathways in the treatment of NSCLC, Oncologist 14 (2009) 399-411.
    [112]
    National Institutes of Health (NIH). Clinical trials. https://clinicaltrials.gov/ (Accessed 17 Mar. 2020).
    [113]
    N. Zhang, C. Liang, W. Song, et al., Antitumor activity of histone deacetylase inhibitor chidamide alone or in combination with epidermal growth factor receptor tyrosine kinase inhibitor icotinib in NSCLC, J. Cancer 10 (2019) 1275-1287.
    [114]
    Z. Yang, K.Y. Tam, Combination strategies using EGFR-TKi in NSCLC therapy: Learning from the gap between pre-clinical results and clinical outcomes, Int. J. Biol. Sci. 14 (2018) 204-216.
    [115]
    H.U. Citra Wahyudin, A. Afriani, F. Anggrainy, et al., Immunotherapy in lung cancer: A narrative literature review, Biosci. Med. J. Biomed. Transl. Res. 7 (2023) 3024-3030.
    [116]
    C. Song, W. Liu, Y. Wan, et al., Editorial: Immunotherapy and multimodality therapy for lung cancer, Front. Immunol. 15 (2024), 1372513.
    [117]
    N. Mohindra, Current state of immunotherapy: Chipping away at the tip of the iceberg, J. Cancer Immunol. Ther. 1 (2018): 1-2.
    [118]
    W. Guo, T. Qiao, T. Li, The role of stem cells in small-cell lung cancer: Evidence from chemoresistance to immunotherapy, Semin. Cancer Biol. 87 (2022) 160-169.
    [119]
    L. MacDonagh, S.G. Gray, E. Breen, et al., Lung cancer stem cells: The root of resistance, Cancer Lett. 372 (2016) 147-156.
    [120]
    J.H. Cho, Immunotherapy for non-small-cell lung cancer: Current status and future obstacles, Immune Netw. 17 (2017) 378-391.
    [121]
    Y. Akazawa, A. Yoshikawa, M. Kanazu, et al., Non-small cell lung cancer with tumor proportion score > 90% could increase the risk of severe immune-related adverse events in first-line treatments with immune checkpoint inhibitors: A retrospective single-center study, Thorac. Cancer 13 (2022) 2450-2458.
    [122]
    L. Belluomini, F. Fiorica, A. Frassoldati, Immune checkpoint inhibitors and radiotherapy in NSCLC patients: Not just a fluke, Oncol. Ther. 7 (2019) 83-91.
    [123]
    T. Nakamura, Y. Takeyasu, T. Yoshida, et al., End-of-life impact of concurrent diabetes mellitus and adrenal insufficiency as immune-related adverse events in an advanced non-small cell lung cancer patient, Thorac. Cancer 13 (2022) 3073-3075.
    [124]
    M. Niki, A. Nakaya, T. Kurata, et al., Pembrolizumab-induced autoimmune encephalitis in a patient with advanced non-small cell lung cancer: A case report, Mol. Clin. Oncol. 10 (2019) 267-269.
    [125]
    S.A. Weiss, J.D. Wolchok, M. Sznol, Immunotherapy of melanoma: Facts and hopes, Clin. Cancer Res. 25 (2019) 5191-5201.
    [126]
    J. Wang, R. Yuan, W. Song, et al., PD-1, PD-L1 (B7-H1) and tumor-site immune modulation therapy: The historical perspective, J. Hematol. Oncol. 10 (2017), 34.
    [127]
    F. Ekinci, A.P. Erdogan, S. Yildirim, et al., Inflammatory prognostic index in metastatic renal carcinoma treated with nivolumab, J. Coll. Physicians Surg. Pak. 32 (2022) 1288-1294.
    [128]
    F. Facchinetti, M. Veneziani, S. Buti, et al., Clinical and hematologic parameters address the outcomes of non-small-cell lung cancer patients treated with nivolumab, Immunotherapy 10 (2018) 681-694.
    [129]
    J.D. Wolchok, H.M. Kluger, M.K. Callahan, et al., Safety and clinical activity of nivolumab (anti-PD-1, BMS-936558, ONO-4538) in combination with ipilimumab in patients (pts) with advanced melanoma (MEL), J. Clin. Oncol. 31 (2013), 9012.
    [130]
    A. Wilkins, F. McDonald, K. Harrington, et al., Radiotherapy enhances responses of lung cancer to CTLA-4 blockade, J. Immunother. Cancer 7 (2019), 64.
    [131]
    B. Zhang, J. Dang, D. Ba, et al., Potential function of CTLA-4 in the tumourigenic capacity of melanoma stem cells, Oncol. Lett. 16 (2018) 6163-6170.
    [132]
    X. Zhang, S. Yu, X. Li, et al., Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol. Res. 191 (2023), 106777.
    [133]
    L. Paz-Ares, A. Luft, D. Vicente, et al., Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer, N. Engl. J. Med. 379 (2018) 2040-2051.
    [134]
    P.M. Challita-Eid, D. Satpayev, P. Yang, et al., Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models, Cancer Res. 76 (2016) 3003-3013.
    [135]
    M. Yamaguchi, S. Hirai, T. Sumi, et al., Angiotensin-converting enzyme 2 is a potential therapeutic target for EGFR-mutant lung adenocarcinoma, Biochem. Biophys. Res. Commun. 487 (2017) 613-618.
    [136]
    X. Kang, L. Zhou, Y. Jian, et al., Effectiveness of antibody-drug conjugate (ADC): Results of in vitro and in vivo studies, Med. Sci. Monit. 24 (2018) 1408-1416.
    [137]
    G. Merle, A. Friedlaender, A. Desai, et al., Antibody drug conjugates in lung cancer, Cancer J. 28 (2022) 429-435.
    [138]
    T.M. Cardillo, M.B. Zalath, R. Arrojo, et al., Sacituzumab govitecan plus platinum-based chemotherapy mediates significant antitumor effects in triple-negative breast, urinary bladder, and small-cell lung carcinomas, Oncotarget 15 (2024) 144-158.
    [139]
    H. Xie, A.A. Adjei, Antibody-drug conjugates for the therapy of thoracic malignancies, J. Thorac. Oncol. 14 (2019) 358-376.
    [140]
    Z. Tian, M. Liu, Y. Zhang, et al., Bispecific T cell engagers: An emerging therapy for management of hematologic malignancies, J. Hematol. Oncol. 14 (2021), 75.
    [141]
    N. Mohan, S. Ayinde, H. Peng, et al., Structural and functional characterization of IgG- and non-IgG-based T-cell-engaging bispecific antibodies, Front. Immunol. 15 (2024), 1376096.
    [142]
    L. Paz-Ares, S. Champiat, W.V. Lai, et al., Tarlatamab, a first-in-class DLL3-targeted bispecific T-cell engager, in recurrent small-cell lung cancer: An open-label, phase I study, J. Clin. Oncol. 41 (2023) 2893-2903.
    [143]
    M.J. Giffin, K. Cooke, E.K. Lobenhofer, et al., AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer, Clin. Cancer Res. 27 (2021) 1526-1537.
    [144]
    K. Alhallak, J. Sun, K. Wasden, et al., Nanoparticle T-cell engagers as a modular platform for cancer immunotherapy, Leukemia 35 (2021) 2346-2357.
    [145]
    L.A. Diaz Jr, A. Bardelli, Liquid biopsies: Genotyping circulating tumor DNA, J. Clin. Oncol. 32 (2014) 579-586.
    [146]
    M. Araghi, R. Mannani, A. Heidarnejad Maleki, et al., Recent advances in non-small cell lung cancer targeted therapy; an update review, Cancer Cell Int. 23 (2023), 162.
    [147]
    U. Majeed, R. Manochakian, Y. Zhao, et al., Targeted therapy in advanced non-small cell lung cancer: Current advances and future trends, J. Hematol. Oncol. 14 (2021), 108.
    [148]
    M. Alam, S. Ali, G.M. Ashraf, et al., Epigallocatechin 3-gallate: From green tea to cancer therapeutics, Food Chem. 379 (2022), 132135.
    [149]
    D. Koche, R. Shirsat, M. Kawale, An overview of major classes of phytochemicals: their types and role in disease prevention, Hislopia J. 9 (2016) 1-11.
    [150]
    J. Iqbal, B.A. Abbasi, T. Mahmood, et al., Plant-derived anticancer agents: A green anticancer approach, Asian Pac. J. Trop. Biomed. 7 (2017) 1129-1150.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (67) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return