Volume 15 Issue 3
Apr.  2025
Turn off MathJax
Article Contents
Runan Zuo, Xinyi Guo, Xinhao Song, Xiuge Gao, Junren Zhang, Shanxiang Jiang, Vojtech Adam, Kamil Kuca, Wenda Wu, Dawei Guo. New uses of halofuginone to treat cancer[J]. Journal of Pharmaceutical Analysis, 2025, 15(3): 101080. doi: 10.1016/j.jpha.2024.101080
Citation: Runan Zuo, Xinyi Guo, Xinhao Song, Xiuge Gao, Junren Zhang, Shanxiang Jiang, Vojtech Adam, Kamil Kuca, Wenda Wu, Dawei Guo. New uses of halofuginone to treat cancer[J]. Journal of Pharmaceutical Analysis, 2025, 15(3): 101080. doi: 10.1016/j.jpha.2024.101080

New uses of halofuginone to treat cancer

doi: 10.1016/j.jpha.2024.101080
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No.: 32172918), the project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, China, and the Key Projects of Natural Science Foundation of Anhui Provincial Department of Education, China (Grant No.: 2023AH051017) and the Anhui Agricultural University Talent Research Grant Project (Project No.: RC393302).

  • Received Date: May 23, 2024
  • Accepted Date: Aug. 21, 2024
  • Rev Recd Date: Aug. 09, 2024
  • Publish Date: Aug. 24, 2024
  • The small-molecule alkaloid halofuginone (HF) is obtained from febrifugine. Recent studies on HF have aroused widespread attention owing to its universal range of noteworthy biological activities and therapeutic functions, which range from parasite infections and fibrosis to autoimmune diseases. In particular, HF is believed to play an excellent anticancer role by suppressing the proliferation, adhesion, metastasis, and invasion of cancers. This review supports the goal of demonstrating various anticancer effects and molecular mechanisms of HF. In the studies covered in this review, the anticancer molecular mechanisms of HF mainly included transforming growth factor-β (TGF-β)/Smad-3/nuclear factor erythroid 2-related factor 2 (Nrf2), serine/threonine kinase proteins (Akt)/mechanistic target of rapamycin complex 1(mTORC1)/wingless/integrated (Wnt)/β-catenin, the exosomal microRNA-31 (miR-31)/histone deacetylase 2 (HDAC2) signaling pathway, and the interaction of the extracellular matrix (ECM) and immune cells. Notably, HF, as a novel type of adenosine triphosphate (ATP)-dependent inhibitor that is often combined with prolyl transfer RNA synthetase (ProRS) and amino acid starvation therapy (AAS) to suppress the formation of ribosome, further exerts a significant effect on the tumor microenvironment (TME). Additionally, the combination of HF with other drugs or therapies obtained universal attention. Our results showed that HF has significant potential for clinical cancer treatment.

  • loading
  • [1]
    L.H. Lan, B.B. Sun, B.X.Z. Zuo, et al., Prevalence and drug resistance of avian Eimeria species in broiler chicken farms of Zhejiang province, China, Poult. Sci. 96 (2017) 2104-2109.
    [2]
    D. Zhang, B. Sun, Y. Yue, et al., Anticoccidial effect of halofuginone hydrobromide against Eimeria tenella with associated histology, Parasitol. Res. 111 (2012) 695-701.
    [3]
    X. Xia, L. Wang, X. Zhang, et al., Halofuginone-induced autophagy suppresses the migration and invasion of MCF-7 cells via regulation of STMN1 and p53, J. Cell. Biochem. 119 (2018) 4009-4020.
    [4]
    M.J.A. de Jonge, H. Dumez, J. Verweij, et al., Phase I and pharmacokinetic study of halofuginone, an oral quinazolinone derivative in patients with advanced solid tumours, Eur. J. Cancer 42 (2006) 1768-1774.
    [5]
    H. Li, Y. Zhang, X. Lan, et al., Halofuginone sensitizes lung cancer organoids to cisplatin via suppressing PI3K/AKT and MAPK signaling pathways, Front. Cell Dev. Biol. 9 (2021), 773048.
    [6]
    J. Guo, S. Zhang, J. Wang, et al., Hinokiflavone inhibits growth of esophageal squamous cancer by inducing apoptosis via regulation of the PI3K/AKT/mTOR signaling pathway, Front. Oncol. 12 (2022), 833719.
    [7]
    L.L. de Figueiredo-Pontes, P.A. Assis, B.A.A. Santana-Lemos, et al., Halofuginone has anti-proliferative effects in acute promyelocytic leukemia by modulating the transforming growth factor beta signaling pathway, PLoS One 6 (2011), e26713.
    [8]
    L. Mi, J. Liu, Y. Zhang, et al., The EPRS-ATF4-COLI pathway axis is a potential target for anaplastic thyroid carcinoma therapy, Phytomedicine 129 (2024), 155670.
    [9]
    H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin 71 (2021) 209-249.
    [10]
    G.S. Karagiannis, J.M. Pastoriza, Y. Wang, et al., Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism, Sci. Transl. Med. 9 (2017), eaan0026.
    [11]
    Y.S. Chang, S.P. Jalgaonkar, J.D. Middleton, et al., Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis, Proc. Natl. Acad. Sci. U S A 114 (2017)E7159-7168.
    [12]
    R. Zuo, J. Zhang, X. Song, et al., Encapsulating halofuginone hydrobromide in TPGS polymeric micelles enhances efficacy against triple-negative breast cancer cells, Int. J. Nanomed. 16 (2021) 1587-1600.
    [13]
    M. Elkin, I. Ariel, H.Q. Miao, et al., Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone, Cancer Res. 59 (1999) 4111-4118.
    [14]
    D. Taras, J.F. Blanc, A. Rullier, et al., Halofuginone suppresses the lung metastasis of chemically induced hepatocellular carcinoma in rats through MMP inhibition, Neoplasia 8 (2006) 312-318.
    [15]
    R. Abramovitch, H. Dafni, M. Neeman, et al., Inhibition of neovascularization and tumor growth, and facilitation of wound repair, by halofuginone, an inhibitor of collagen type I synthesis, Neoplasia 1 (1999) 321-329.
    [16]
    K.O. Yee, C.M. Connolly, M. Pines, et al., Halofuginone inhibits tumor growth in the polyoma middle T antigen mouse via a thrombospondin-1 independent mechanism, Cancer Biol. Ther. 5 (2006) 218-224.
    [17]
    R. Abramovitch, A. Itzik, H. Harel, et al., Halofuginone inhibits angiogenesis and growth in implanted metastatic rat brain tumor model: An MRI study, Neoplasia 6 (2004) 480-489.
    [18]
    D.J. Gross, I. Reibstein, L. Weiss, et al., Treatment with halofuginone results in marked growth inhibition of a von Hippel-Lindau pheochromocytoma in vivo, Clin. Cancer Res. 9 (2003) 3788-3793.
    [19]
    A. Nagler, M. Ohana, O. Shibolet, et al., Suppression of hepatocellular carcinoma growth in mice by the alkaloid coccidiostat halofuginone, Eur. J. Cancer 40 (2004) 1397-1403.
    [20]
    J.H. Pinthus, Y. Sheffer, A. Nagler, et al., Inhibition of Wilms tumor xenograft progression by halofuginone is accompanied by activation of WT-1 gene expression, J. Urol. 174 (2005) 1527-1531.
    [21]
    Z. Gavish, J.H. Pinthus, V. Barak, et al., Growth inhibition of prostate cancer xenografts by halofuginone, Prostate 51 (2002) 73-83.
    [22]
    I. Spector, H. Honig, N. Kawada, et al., Inhibition of pancreatic stellate cell activation by halofuginone prevents pancreatic xenograft tumor development, Pancreas 39 (2010) 1008-1015.
    [23]
    J.A. Cook, R. Choudhuri, W. Degraff, et al., Halofuginone enhances the radiation sensitivity of human tumor cell lines, Cancer. Lett. 289 (2010) 119-126.
    [24]
    K. Tsuchida, T. Tsujita, M. Hayashi, et al., Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation, Free. Radic. Biol. Med. 103 (2017) 236-247.
    [25]
    A. Demiroglu-Zergeroglu, G. Turhal, H. Topal, et al., Anticarcinogenic effects of halofuginone on lung-derived cancer cells, Cell Biol. Int. 44 (2020) 1934-1944.
    [26]
    Y. Chen, W. Liu, P. Wang, et al., Halofuginone inhibits radiotherapy-induced epithelial-mesenchymal transition in lung cancer, Oncotarget 7 (2016) 71341-71352.
    [27]
    K.C. Flanders, Smad3 as a mediator of the fibrotic response, Int. J. Exp. Pathol. 85 (2004) 47-64.
    [28]
    R. Lin, S. Yi, L. Gong, et al., Inhibition of TGF-β signaling with halofuginone can enhance the antitumor effect of irradiation in Lewis lung cancer, OncoTargets Ther. 8 (2015) 3549-3559.
    [29]
    K. Ando, M.F. Heymann, V. Stresing, et al., Current therapeutic strategies and novel approaches in osteosarcoma, Cancers 5 (2013) 591-616.
    [30]
    A. Lamora, M. Mullard, J. Amiaud, et al., Anticancer activity of halofuginone in a preclinical model of osteosarcoma: Inhibition of tumor growth and lung metastases, Oncotarget 6 (2015) 14413-14427.
    [31]
    P. Juarez, K.S. Mohammad, J.J. Yin, et al., Halofuginone inhibits the establishment and progression of melanoma bone metastases, Cancer Res. 72 (2012) 6247-6256.
    [32]
    M. Pines, Targeting TGFβ signaling to inhibit fibroblast activation as a therapy for fibrosis and cancer: Effect of halofuginone, Expert Opin. Drug Discov. 3 (2008) 11-20.
    [33]
    R. Matsumoto, S. Hamada, Y. Tanaka, et al., Nuclear factor erythroid 2-related factor 2 depletion sensitizes pancreatic cancer cells to gemcitabine via aldehyde dehydrogenase 3a1 repression, J. Pharmacol. Exp. Ther. 379 (2021) 33-40.
    [34]
    N. Mizushima, T. Yoshimori, B. Levine, Methods in mammalian autophagy research, Cell 140 (2010) 313-326.
    [35]
    Z. Zhang, R. Singh, M. Aschner, Methods for the detection of autophagy in mammalian cells. Curr. Protoc. Toxicol. 69 (2016) 21-26.
    [36]
    E. White, Deconvoluting thecontext-dependentrole for autophagy in cancer, Nat. Rev. Cancer. 12 (2012) 401-410.
    [37]
    A.C. Kimmelman, The dynamic nature of autophagy in cancer, Genes. Dev. 25 (2011) 1999-2010.
    [38]
    G. Chen, R. Gong, D. Yang, et al., Halofuginone dually regulates autophagic flux through nutrient-sensing pathways in colorectal cancer, Cell Death Dis. 8 (2017), e2789.
    [39]
    Y. Hu, R.K. Le Leu, G.P. Young, Sulindac corrects defective apoptosis and suppresses azoxymethane-induced colonic oncogenesis in p53 knockout mice, Int. J. Cancer 116 (2005) 870-875.
    [40]
    S.S. Knox, From ‘omics’ to complex disease: A systems biology approach to gene-environment interactions in cancer, Cancer Cell Int. 10 (2010), 11.
    [41]
    L. Huang, F. Li, J. Sheng, et al., DrugComboRanker: Drug combination discovery based on target network analysis, Bioinformatics 30 (2014) i228-i236.
    [42]
    H.X. Zhan, Y. Wang, C. Li, et al., LincRNA-ROR promotes invasion, metastasis and tumor growth in pancreatic cancer through activating ZEB1 pathway, Cancer Lett. 374 (2016) 261-271.
    [43]
    X. Wang, G. Luo, K. Zhang, et al., Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis, Cancer Res. 78 (2018) 4586-4598.
    [44]
    L. Mincheva-Nilsson, V. Baranov, Cancer exosomes and NKG2D receptor-ligand interactions: Impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance, Semin. Cancer Biol. 28 (2014) 24-30.
    [45]
    H. Hardin, H. Helein, K. Meyer, et al., Thyroid cancer stem-like cell exosomes: Regulation of EMT via transfer of lncRNAs, Lab. Invest. 98 (2018) 1133-1142.
    [46]
    M.C. Boelens, T.J. Wu, B.Y. Nabet, et al., Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways, Cell 159 (2014) 499-513.
    [47]
    E. Hergenreider, S. Heydt, K. Treguer, et al., Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs, Nat. Cell Biol. 14 (2012) 249-256.
    [48]
    J. Halkein, S.P. Tabruyn, M. Ricke-Hoch, et al., microRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy, J. Clin. Invest. 123 (2013) 2143-2154.
    [49]
    M. Mittelbrunn, C. Gutierrez-Vazquez, C. Villarroya-Beltri, et al., Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells, Nat. Commun. 2 (2011), 282.
    [50]
    X. Xia, X. Wang, S. Zhang, et al., miR-31 shuttled by halofuginone-induced exosomes suppresses MFC-7 cell proliferation by modulating the HDAC2/cell cycle signaling axis, J. Cell. Physiol. 234 (2019) 18970-18984.
    [51]
    I. Spector, Y. Zilberstein, A. Lavy, et al., Involvement of host stroma cells and tissue fibrosis in pancreatic tumor development in transgenic mice, PLoS One 7 (2012), e41833.
    [52]
    J. Lin, X. Wu, Halofuginone inhibits cell proliferation and AKT/mTORC1 signaling in uterine leiomyoma cells, Growth. Factors 40 (2022) 212-220.
    [53]
    S.A. Machado, J.M. Bahr, D.B. Hales, et al., Validation of the aging hen (Gallus gallus domesticus) as an animal model for uterine leiomyomas, Biol. Reprod. 87 (2012), 86.
    [54]
    A.S. Azmi, Z. Wang, P.A. Philip, et al., Proof of concept: Network and systems biology approaches aid in the discovery of potent anticancer drug combinations, Mol. Cancer Ther. 9 (2010) 3137-3144.
    [55]
    Y. Sun, Z. Sheng, C. Ma, et al., Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer, Nat. Commun. 6 (2015), 8481.
    [56]
    M. Betti, A. Aspesi, M. Sculco, et al., Genetic predisposition for malignant mesothelioma: A concise review, Mutat. Res. Rev. Mutat. Res. 781 (2019) 1-10.
    [57]
    T. Okusaka, J. Furuse, Recent advances in chemotherapy for pancreatic cancer: Evidence from Japan and recommendations in guidelines, J. Gastroenterol. 55 (2020) 369-382.
    [58]
    A. Shin, K.W. Jung, Y.J. Won, Colorectal cancer mortality in Hong Kong of China, Japan, South Korea, and Singapore, World J. Gastroenterol. 19 (2013) 979-983.
    [59]
    S.D. Markowitz, M.M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer, N. Engl. J. Med. 361 (2009) 2449-2460.
    [60]
    M. Abotaleb, P. Kubatka, M. Caprnda, et al., Chemotherapeutic agents for the treatment of metastatic breast cancer: An update, Biomedecine Pharmacother. 101 (2018) 458-477.
    [61]
    Y. Wei, M. Li, S. Cui, et al., Shikonin inhibits the proliferation of human breast cancer cells by reducing tumor-derived exosomes, Molecules 21 (2016), 777.
    [62]
    Y. Yin, X. Cai, X. Chen, et al., Tumor-secreted miR-214 induces regulatory T cells: A major link between immune evasion and tumor growth, Cell Res. 24 (2014) 1164-1180.
    [63]
    H.S. Panitch, R.L. Hirsch, A.S. Haley, et al., Exacerbations of multiple sclerosis in patients treated with gamma interferon, Lancet 1 (1987) 893-895.
    [64]
    U. Boehm, T. Klamp, M. Groot, et al., Cellular responses to interferon-gamma, Annu. Rev. Immunol. 15 (1997) 749-795.
    [65]
    S.G. Maher, A.L. Romero-Weaver, A.J. Scarzello, et al., Interferon: Cellular executioner or white knight? Curr. Med. Chem. 14 (2007) 1279-1289.
    [66]
    M.L. Jin, S.Y. Park, Y.H. Kim, et al., Halofuginone induces the apoptosis of breast cancer cells and inhibits migration via downregulation of matrix metalloproteinase-9, Int. J. Oncol. 44 (2014) 309-318.
    [67]
    P. Juarez, P.G.J. Fournier, K.S. Mohammad, et al., Halofuginone inhibits TGF-β/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis, Oncotarget 8 (2017) 86447-86462.
    [68]
    L. Alby, R. Auerbach, Differential adhesion of tumor cells to capillary endothelial cells in vitro, Proc. Natl. Acad. Sci. U S A 81 (1984) 5739-5743.
    [69]
    G.L. Nicolson, Cancer metastasis: Tumor cell and host organ properties important in metastasis to specific secondary sites, Biochim. Biophys. Acta 948 (1988) 175-224.
    [70]
    G. Chen, C. Tang, X. Shi, et al., Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism, Oncotarget 6 (2015) 24148-24162.
    [71]
    B.U. Pauli, C.L. Lee, Organ preference of metastasis. The role of organ-specifically modulated endothelial cells, Lab. Invest. 58 (1988) 379-387.
    [72]
    V.C. Ramani, C.A. Lemaire, M. Triboulet, et al., Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer, Breast Cancer Res. 21 (2019), 98.
    [73]
    Q. Liu, J. Hodge, J. Wang, et al., Emodin reduces Breast Cancer Lung Metastasis by suppressing Macrophage-induced Breast Cancer Cell Epithelial-mesenchymal transition and Cancer Stem Cell formation, Theranostics 10 (2020) 8365-8381.
    [74]
    Y. Xiao, M. Cong, J. Li, et al., Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation, Cancer Cell 39 (2021) 423-437.e7.
    [75]
    L. Jin, B. Han, E. Siegel, et al., Breast cancer lung metastasis: Molecular biology and therapeutic implications, Cancer Biol. Ther. 19 (2018) 858-868.
    [76]
    C. Phillips, R. Jeffree, M. Khasraw, Management of breast cancer brain metastases: A practical review, Breast Edinb. Scotl. 31 (2017) 90-98.
    [77]
    K. Altundag, Characteristics of breast cancer patients with brain metastases who live longer than 18 months, Breast Edinb. Scotl. 34 (2017) 132-133.
    [78]
    N. Izutsu, M. Kinoshita, T. Ozaki, et al., Cerebellar preference of luminal A and B type and basal ganglial preference of HER2-positive type breast cancer-derived brain metastases, Mol. Clin. Oncol. 15 (2021), 175.
    [79]
    N. Kotecki, F. Lefranc, D. Devriendt, et al., Therapy of breast cancer brain metastases: Challenges, emerging treatments and perspectives, Ther. Adv. Med. Oncol. 10 (2018), 1758835918780312.
    [80]
    P. Boix-Montesinos, P.M. Soriano-Teruel, A. Arminan, et al., The past, present, and future of breast cancer models for nanomedicine development, Adv. Drug Deliv. Rev. 173 (2021) 306-330.
    [81]
    G. Ottaviani, N. Jaffe, The epidemiology of osteosarcoma, Cancer Treat. Res. 152 (2009) 3-13.
    [82]
    C.R. Dass, E.T. Ek, K.G. Contreras, et al., A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma, Clin. Exp. Metastasis 23 (2006) 367-380.
    [83]
    M. Geyer, L.-M. Gaul, S.L. D Agosto, et al., The tumor stroma influences immune cell distribution and recruitment in a PDAC-on-a-chip model, Front. Immunol. 14 (2023), 1155085.
    [84]
    H. Kalra, G.P.C. Drummen, S. Mathivanan, Focus on extracellular vesicles: Introducing the next small big thing, Int. J. Mol. Sci. 17 (2016), 170.
    [85]
    M. Tkach, C. Thery, Communication by extracellular vesicles: Where we are and where we need to go, Cell 164 (2016) 1226-1232.
    [86]
    J. Kowal, M. Tkach, C. Thery, Biogenesis and secretion of exosomes, Curr. Opin. Cell Biol. 29 (2014) 116-125.
    [87]
    C. Thery, L. Zitvogel, S. Amigorena, Exosomes: Composition, biogenesis and function, Nat. Rev. Immunol. 2 (2002) 569-579.
    [88]
    N.M. Mahaweni, M.E. Kaijen-Lambers, J. Dekkers, et al., Tumour-derived exosomes as antigen delivery carriers in dendritic cell-based immunotherapy for malignant mesothelioma, J. Extracell. Vesicles 2 (2013), 22492.
    [89]
    J. Wolfers, A. Lozier, G. Raposo, et al., Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming, Nat. Med. 7 (2001) 297-303.
    [90]
    F. Andre, N.E.C. Schartz, N. Chaput, et al., Tumor-derived exosomes: A new source of tumor rejection antigens, Vaccine 20 (2002) A28-A31.
    [91]
    A. Clayton, M.D. Mason, Exosomes in tumour immunity, Curr. Oncol. 16 (2009) 46-49.
    [92]
    M. Cordonnier, G. Chanteloup, N. Isambert, et al., Exosomes in cancer theranostic: Diamonds in the rough, Cell Adh. Migr. 11 (2017) 151-163.
    [93]
    G.J. Prud’homme, Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations, Lab. Invest. 87 (2007) 1077-1091.
    [94]
    F.M. Barros, F. Carneiro, J.C. Machado, et al., Exosomes and immune response in cancer: Friends or foes? Front. Immunol. 9 (2018), 730.
    [95]
    R. Xu, D.W. Greening, H. Zhu, et al., Extracellular vesicle isolation and characterization: Toward clinical application, J. Clin. Invest. 126 (2016) 1152-1162.
    [96]
    D.S. Choi, D.K. Kim, Y.K. Kim, et al., Proteomics, transcriptomics and lipidomics of exosomes and ectosomes, Proteomics 13 (2013) 1554-1571.
    [97]
    C. Hewson, K.V. Morris, Form and function of exosome-associated long non-coding RNAs in cancer, Curr. Top. Microbiol. Immunol. 394 (2016) 41-56.
    [98]
    S. Tan, L. Xia, P. Yi, et al., Exosomal miRNAs in tumor microenvironment, J. Exp. Clin. Cancer Res. 39 (2020), 67.
    [99]
    C. Kahlert, R. Kalluri, Exosomes in tumor microenvironment influence cancer progression and metastasis, J. Mol. Med. 91 (2013) 431-437.
    [100]
    P. Kucharzewska, M. Belting, Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress, J. Extracell. Vesicles 2 (2013), 20304.
    [101]
    J. Webber, R. Steadman, M.D. Mason, et al., Cancer exosomes trigger fibroblast to myofibroblast differentiation, Cancer Res. 70 (2010) 9621-9630.
    [102]
    G. Zhuang, X. Wu, Z. Jiang, et al., Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway, EMBO J. 31 (2012) 3513-3523.
    [103]
    A.P. Pitera, M. Szaruga, S.Y. Peak-Chew, et al., Cellular responses to halofuginone reveal a vulnerability of the GCN2 branch of the integrated stress response, EMBO J. 41 (2022), e109985.
    [104]
    K. Kurata, A. James-Bott, M.A. Tye, et al., Prolyl-tRNA synthetase as a novel therapeutic target in multiple myeloma, Blood Cancer J. 13 (2023), 12.
    [105]
    Y. Chen, S. Hu, Y. Shu, et al., Antifibrotic therapy augments the antitumor effects of vesicular stomatitis virus via reprogramming tumor microenvironment, Hum. Gene Ther. 33 (2022) 237-249.
    [106]
    D. Wang, M. Tian, Y. Fu, et al., Halofuginone inhibits tumor migration and invasion by affecting cancer-associated fibroblasts in oral squamous cell carcinoma, Front. Pharmacol. 13 (2022), 1056337.
    [107]
    L. Baird, M. Yamamoto, Immunoediting of KEAP1-NRF2 mutant tumours is required to circumvent NRF2-mediated immune surveillance, Redox. Biol. 67 (2023), 102904.
    [108]
    K.Y. Elahi-Gedwillo, M. Carlson, J. Zettervall, et al., Antifibrotic therapy disrupts stromal barriers and modulates the immune landscape in pancreatic ductal adenocarcinoma, Cancer Res. 79 (2019) 372-386.
    [109]
    H. Huang, R.A. Brekken, The next wave of stroma-targeting therapy in pancreatic cancer, Cancer Res. 79 (2019) 328-330.
    [110]
    F. Koohestani, W. Qiang, A.L. MacNeill, et al., Halofuginone suppresses growth of human uterine leiomyoma cells in a mouse xenograft model, Hum. Reprod. 31 (2016) 1540-1551.
    [111]
    L. Wang, G. Zhou, P. Liu, et al., Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia, Proc. Natl. Acad. Sci. USA 105 (2008) 4826-4831.
    [112]
    H. Yang, D. Shen, H. Xu, et al., A new strategy in drug design of Chinese medicine: Theory, method and techniques, Chin. J. Integr. Med. 18 (2012) 803-806.
    [113]
    T. Lv, J. Huang, M. Wu, et al., Halofuginone enhances the anti-tumor effect of ALA-PDT by suppressing NRF2 signaling in cSCC, Photodiagn. Photodyn. Ther. 37 (2022), 102572.
    [114]
    G. Chen, R. Gong, X. Shi, et al., Halofuginone and artemisinin synergistically arrest cancer cells at the G1/G0 phase by upregulating p21Cip1 and p27Kip1, Oncotarget 7 (2016) 50302-50314.
    [115]
    R. Gong, D. Yang, H.Y. Kwan, et al., Cell death mechanisms induced by synergistic effects of halofuginone and artemisinin in colorectal cancer cells, Int. J. Med. Sci. 19 (2022) 175-185.
    [116]
    M. Leiba, J. Jakubikova, S. Klippel, et al., Halofuginone inhibits multiple myeloma growth in vitro and in vivo and enhances cytotoxicity of conventional and novel agents, Br. J. Haematol. 157 (2012) 718-731.
    [117]
    L. Mi, Y. Zhang, A. Su, et al., Halofuginone for cancer treatment: A systematic review of efficacy and molecular mechanisms, J. Func. Foods. 98 (2022), 105237.
    [118]
    K.P. Stecklair, D.R. Hamburger, M.J. Egorin, et al., Pharmacokinetics and tissue distribution of halofuginone (NSC 713205) in CD2F1 mice and Fischer 344 rats, Cancer Chemother. Pharmacol. 48 (2001) 375-382.
    [119]
    X. Gong, J. Li, X. Xu, et al., Microvesicle-inspired oxygen-delivering nanosystem potentiates radiotherapy-mediated modulation of tumor stroma and antitumor immunity, Biomaterials 290 (2022), 121855.
    [120]
    N. Yu, X. Zhang, H. Zhong, et al., Stromal homeostasis-restoring nanomedicine enhances pancreatic cancer chemotherapy, Nano Lett. 22 (2022) 8744-8754.
    [121]
    J. Zhang, Z. Xu, Y. Li, et al., Theranostic mesoporous platinum nanoplatform delivers halofuginone to remodel extracellular matrix of breast cancer without systematic toxicity, Bioeng. Transl. Med. 8 (2022), e10427.
    [122]
    H. Panda, M. Suzuki, M. Naito, et al., Halofuginone micelle nanoparticles eradicate Nrf2-activated lung adenocarcinoma without systemic toxicity, Free. Radic. Biol. Med. 187 (2022) 92-104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (334) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return