Volume 14 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
Shengjie Huang, Min Zhang, Xiaoge Li, Jierong Pei, Zhirong Zhou, Peng Lei, Meng Wang, Peng Zhang, Heshui Yu, Guanwei Fan, Lifeng Han, Haiyang Yu, Yuefei Wang, Miaomiao Jiang. Formulation, characterization, and evaluation of curcumin-loaded ginger-derived nanovesicles for anti-colitis activity[J]. Journal of Pharmaceutical Analysis, 2024, 14(12): 101014. doi: 10.1016/j.jpha.2024.101014
Citation: Shengjie Huang, Min Zhang, Xiaoge Li, Jierong Pei, Zhirong Zhou, Peng Lei, Meng Wang, Peng Zhang, Heshui Yu, Guanwei Fan, Lifeng Han, Haiyang Yu, Yuefei Wang, Miaomiao Jiang. Formulation, characterization, and evaluation of curcumin-loaded ginger-derived nanovesicles for anti-colitis activity[J]. Journal of Pharmaceutical Analysis, 2024, 14(12): 101014. doi: 10.1016/j.jpha.2024.101014

Formulation, characterization, and evaluation of curcumin-loaded ginger-derived nanovesicles for anti-colitis activity

doi: 10.1016/j.jpha.2024.101014
Funds:

This study was supported by the Science and Technology Program of Tianjin in China (Grant No.: 23ZYJDSS00030).

  • Received Date: Oct. 29, 2023
  • Accepted Date: May 23, 2024
  • Rev Recd Date: May 19, 2024
  • Publish Date: May 30, 2024
  • Plant-derived nanovesicles have gained attention given their similarity to mammalian exosomes and advantages such as low cost, sustainability, and tissue targeting. Thus, they hold promise for disease treatment and drug delivery. In this study, we proposed a time-efficient method, PEG 8000 combined with sucrose density gradient centrifugation to prepare ginger-derived nanovesicles (GDNVs). Subsequently, curcumin (CUR) was loaded onto GDNV by ultrasonic incubation. The optimum conditions for ginger-derived nanovesicles loaded with curcumin (CG) were ultrasound time of 3 min, a carrier-to-drug ratio (GDNV:CUR) of 1:1. The study achieved a high loading capacity (94.027% ± 0.094%) and encapsulation efficiency (89.300% ± 0.344%). Finally, the drugs' in vivo distribution and anti-colitis activity were investigated in mice. CG was primarily distributed in the colon after oral administration. Compared to CUR and GDNV, CG was superior in improving disease activity, colon length, liver and spleen coefficients, myeloperoxidase activity, and biochemical factor levels in ulcerative colitis (UC) mice. In addition, CG plays a protective role against UC by modulating serum metabolite levels and gut flora. In summary, our study demonstrated that GDNV can be used for CUR delivery with enhanced therapeutic potential.

  • loading
  • [1]
    S. Liu, Y. Cao, L. Ma, et al., Oral antimicrobial peptide-EGCG nanomedicines for synergistic treatment of ulcerative colitis, J. Contr. Release 347 (2022) 544-560.
    [2]
    S. Liu, W. Zhao, P. Lan, et al., The microbiome in inflammatory bowel diseases: from pathogenesis to therapy, Protein Cell. 12 (2021) 331-345.
    [3]
    E. Burri, M.H. Maillard, A.M. Schoepfer, et al., Treatment algorithm for mild and moderate-to-severe ulcerative colitis: an update, Digestion 101 (2020) 2-15.
    [4]
    L. Duan, S. Cheng, L. Li, et al., Natural anti-inflammatory compounds as drug candidates for inflammatory bowel disease, Front. Pharmacol. 12 (2021), 684486.
    [5]
    J. Torres, S. Mehandru, J.F. Colombel, et al., Crohn's disease, Lancet. 389 (2017) 1741-1755.
    [6]
    M.E. Abd El-Hack, M.T. El-Saadony, A.A. Swelum, et al., Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability, J. Sci. Food Agric. 101 (2021) 5747-5762.
    [7]
    Y. Lin, H. Liu, L. Bu, et al., Review of the effects and mechanism of curcumin in the treatment of inflammatory bowel disease, Front. Pharmacol. 13 (2022), 908077.
    [8]
    C. Wei, J.Y. Wang, F. Xiong, et al., Curcumin ameliorates DSS-induced colitis in mice by regulating the treg/th17 signaling pathway, Mol. Med. Rep. 23 (2021), 34.
    [9]
    T. Feng, Y. Wei, R. J. Lee, et al., Liposomal curcumin and its application in cancer, Int. J. Nanomed. 12 (2017) 6027-6044.
    [10]
    N. Ye, P. Zhao, S. Ayue, et al., Folic acid-modified lactoferrin nanoparticles coated with a laminarin layer loaded curcumin with dual-targeting for ulcerative colitis treatment, Int. J. Biol. Macromol. 232 (2023), 123229.
    [11]
    M.A. Oshi, J. Lee, M. Naeem, et al., Curcumin nanocrystal/pH-responsive polyelectrolyte multilayer core-shell nanoparticles for inflammation-targeted alleviation of ulcerative colitis, Biomacromolecules 21 (2020) 3571-3581.
    [12]
    Z. Ma, N. Wang, H. He, et al., Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application, J. Contr. Release 316 (2019) 359-380.
    [13]
    R. Tenchov, J.M. Sasso, X. Wang, et al., Exosomes—Nature's lipid nanoparticles, a rising star in drug delivery and diagnostics, ACS Nano 16 (2022) 17802-17846.
    [14]
    J. Kim, S. Li, S. Zhang, et al., Plant-derived exosome-like nanoparticles and their therapeutic activities, Asian J. Pharm. Sci. 17 (2022) 53-69.
    [15]
    J. Mu, X. Zhuang, Q. Wang, et al., Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles, Mol. Nutr. Food Res. 58 (2014) 1561-1573.
    [16]
    M. Zhang, E. Viennois, M. Prasad, et al., Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer, Biomaterials. 101 (2016) 321-340.
    [17]
    Y. Teng, Y. Ren, M. Sayed, et al., Plant-derived exosomal microRNAs shape the gut microbiota, Cell Host Microbe. 24 (2018) 637-652.
    [18]
    M. Cong, S. Tan, S. Li, et al., Technology insight: plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers? Adv. Drug Deliv. Rev. 182 (2022), 114108.
    [19]
    C. Liu, X. Yan, Y. Zhang, et al., Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy, J. Nanobiotechnol. 20 (2022), 206.
    [20]
    M. Zhang, B. Xiao, H. Wang, et al., Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy, Mol. Ther. 24 (2016) 1783-1796.
    [21]
    W. J. Zhao, Y. P. Bian, Q.H. Wang, et al., Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress, Acta Pharmacol. Sin. 43 (2022) 645-658.
    [22]
    H.A. Dad, T.W. Gu, A.Q. Zhu, et al., Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms, Mol. Ther. 29 (2021) 13-31.
    [23]
    C. Stanly, M. Moubarak, I. Fiume, et al., Membrane transporters in citrus clementina fruit juice-derived nanovesicles, Int. J. Mol. Sci. 20 (2019), 6205.
    [24]
    S. Salarpour, H. Forootanfar, M. Pournamdari, et al., Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques, Daru J. Fac. Pharm. Tehran Univ. Med. Sci. 27 (2019) 533-539.
    [25]
    Y. Gao, Y. Lu, N. Zhang, et al., Preparation, pungency and bioactivity of gingerols from ginger (zingiber officinale Roscoe): a review, Crit. Rev. Food Sci. Nutr. (2022) 1-26.
    [26]
    Y. Sheng, T. Wu, Y. Dai, et al., 6-gingerol alleviates inflammatory injury in dss-induced ulcerative colitis mice by regulating NF-κB signaling, Ann. Palliat. Med. 9 (2020) 1944-1952.
    [27]
    Y. Sheng, T. Wu, Y. Dai, et al., The effect of 6-gingerol on inflammatory response and Th17/Treg balance in DSS-induced ulcerative colitis mice, Ann. Transl. Med. 8 (2020), 442.
    [28]
    K. Sundaram, D.P. Miller, A. Kumar, et al., Plant-derived exosomal nanoparticles inhibit pathogenicity of porphyromonas gingivalis, iScience 21 (2019) 308-327.
    [29]
    V. Garcia-Gonzalez, J.F. Diaz-Villanueva, O. Galindo-Hernandez, et al., Ceramide metabolism balance, a multifaceted factor in critical steps of breast cancer development, Int. J. Mol. Sci. 19 (2018), 2527.
    [30]
    A. Elsherbini, E. Bieberich, Ceramide and exosomes: a novel target in cancer biology and therapy, Adv. Cancer Res. 140 (2018) 121-154.
    [31]
    K. Arai, Y. Mizobuchi, Y. Tokuji, et al., Effects of dietary plant-origin glucosylceramide on bowel inflammation in DSS-treated mice, J. Oleo Sci. 64 (2015) 737-742.
    [32]
    V. Ulivi, M. Lenti, C. Gentili, et al., Anti-inflammatory activity of monogalactosyldiacylglycerol in human articular cartilage in vitro: activation of an anti-inflammatory cyclooxygenase-2 (COX-2) pathway, Arthritis Res. Ther. 13 (2011), R92.
    [33]
    J. Donoso-Quezada, S. Ayala-Mar, J. Gonzalez-Valdez, The role of lipids in exosome biology and intercellular communication: function, analytics and applications, Traffic 22 (2021) 204-220.
    [34]
    X.M. Xi, S.J. Xia, R. Lu, Drug loading techniques for exosome-based drug delivery systems, Pharmazie 76 (2021) 61-67.
    [35]
    A. Karthikeyan, K.N. Young, M. Moniruzzaman, et al., Curcumin and its modified formulations on inflammatory bowel disease (IBD): the story so far and future outlook, Pharmaceutics. 13 (2021) 484.
    [36]
    E.V. Batrakova, M.S. Kim, Using exosomes, naturally-equipped nanocarriers, for drug delivery, J. Contr. Release 219 (2015) 396-405.
    [37]
    X. He, C. Zhang, S. Amirsaadat, et al., Curcumin-loaded mesenchymal stem cell-derived exosomes efficiently attenuate proliferation and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes, Appl. Biochem. Biotechnol. 195 (2023) 51-67.
    [38]
    M.S. Kim, M.J. Haney, Y. Zhao, et al., Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells, Nanomedicine 12 (2016) 655-664.
    [39]
    X. Luan, K. Sansanaphongpricha, I. Myers, et al., Engineering exosomes as refined biological nanoplatforms for drug delivery, Acta. Pharmacol. Sin. 38 (2017) 754-763.
    [40]
    Z. Zhu, L. Liao, H. Qiao. Extracellular vesicle-based drug delivery system boosts phytochemicals' therapeutic effect for neurodegenerative diseases, Acupuncture and Herbal Medicine 2 (2022) 229-239.
    [41]
    J.J. Kim, M.S. Shajib, M.M. Manocha, et al., Investigating intestinal inflammation in DSS-induced model of IBD, J. Vis. Exp. 1 (2012), 3678.
    [42]
    J. Wang, C. Zhang, C. Guo, et al., Chitosan ameliorates dss-induced ulcerative colitis mice by enhancing intestinal barrier function and improving microflora, Int. J. Mol. Sci. 20 (2019), 5751.
    [43]
    S. Liu, H. Shen, J. Li, et al., Loganin inhibits macrophage M1 polarization and modulates sirt1/NF-κB signaling pathway to attenuate ulcerative colitis, Bioengineered. 11 (2020) 628-639.
    [44]
    Y. Qi, M. Wang, L. Chai, et al. Wei Chang an pill alleviates 2,4,6-trinitro-benzenesulfonic acid-induced ulcerative colitis by inhibiting epithelial-mesenchymal transition process, Acupuncture Herbal Med. 3 (2023) 107-115.
    [45]
    Y. Dong, H. Fan, Z. Zhang, et al., Berberine ameliorates DSS-induced intestinal mucosal barrier dysfunction through microbiota-dependence and Wnt/β-catenin pathway, Int. J. Biol. Sci. 18 (2022) 1381-1397.
    [46]
    R. Ungaro, S. Mehandru, P.B. Allen, et al., Ulcerative colitis, Lancet. 389 (2017) 1756-1770.
    [47]
    A.P. Sousa, D.M. Cunha, C. Franco, et al., Which role plays 2-hydroxybutyric acid on insulin resistan? Metabolites 11 (2021), 835.
    [48]
    D. Shi, R. Yan, L. Lv, et al., The serum metabolome of COVID-19 patients is distinctive and predictive, Metab. Clin. Exp. 118 (2021),154739.
    [49]
    R. Lin, M. Piao, Y. Song, et al., Quercetin suppresses AOM/DSS-induced colon carcinogenesis through its anti-inflammation effects in mice, J. Immunol. Res. 2020 (2020), 9242601.
    [50]
    J. Wernerman, F. Hammarqvist, Modulation of endogenous glutathione availability, Curr. Opin. Clin. Nutr. Metab. Care 2 (1999) 487-492.
    [51]
    N.A. Amir Hashim, S. Ab-Rahim, W.Z. Wan Ngah, et al., Global metabolomics profiling of colorectal cancer in Malaysian patients, Bioimpacts. 11 (2021) 33-43.
    [52]
    R.L.S. Goncalves, V.I. Bunik, M.D. Brand., Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex, Free Radic. Biol. Med. 91 (2016) 247-255.
    [53]
    A. Ghulam, M. Kouach, A. Racadot, et al., Quantitative analysis of human serum corticosterone by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry, J. Chromatogr. B Biomed. Sci. Appl. 727 (1999) 227-233.
    [54]
    P.K. Shukla, A.S. Meena, J.F. Pierre, et al., Central role of intestinal epithelial glucocorticoid receptor in alcohol- and corticosterone-induced gut permeability and systemic response, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 36 (2022), e22061.
    [55]
    G. Russell, S. Lightman, The human stress response, Nat. Rev. Endocrinol. 15 (2019) 525-534.
    [56]
    C. Le Morvan de Sequeira, M. Kaeber, S.E. Cekin, et al., The effect of probiotics on quality of life, depression and anxiety in patients with irritable bowel syndrome: a systematic review and meta-analysis, J. Clin. Med. 10 (2021), 3497.
    [57]
    W. Lv, C. Liu, L. Yu, et al., Melatonin alleviates neuroinflammation and metabolic disorder in dss-induced depression rats, Oxid. Med. Cell. Longev. 2020 (2020), 1241894.
    [58]
    F. Zhang, Y. Zhou, H. Chen, et al., Curcumin alleviates DSS-induced anxiety-like behaviors via the microbial-brain-gut axis, Oxid. Med. Cell. Longev. 2022 (2022), 6244757.
    [59]
    M. Hose, A. Gunther, E. Naser, et al., Cell-intrinsic ceramides determine t cell function during melanoma progression, Elife. 11 (2022), e83073.
    [60]
    M. Kashiwagi, T. Mikami, M. Chiba, et al., Occurrence of nonenzymatic n-acetylation of sphinganine with acetyl coenzyme A producing C2-H2-ceramide and its inconvertibility to apoptotic C2-ceramide, Biochem. Mol. Biol. Int. 42 (1997) 1071-1080.
    [61]
    S. Albeituni, J. Stiban, Roles of ceramides and other sphingolipids in immune cell function and inflammation, Adv. Exp. Med. Biol. 1161 (2019) 169-191.
    [62]
    K. El-Hindi, S. Brachtendorf, J.C. Hartel, et al., Ceramide synthase 5 deficiency aggravates dextran sodium sulfate-induced colitis and colon carcinogenesis and impairs T-cell activation, Cancers. 12 (2020), 1753.
    [63]
    M.S. da Rosa, N.T. da Rosa-Junior, B. Parmeggiani, et al., 3-hydroxy-3-methylglutaric acid impairs redox and energy homeostasis, mitochondrial dynamics, and endoplasmic reticulum-mitochondria crosstalk in rat brain, Neurotox. Res. 37 (2020) 314-325.
    [64]
    W. Li, A. Fotinos, Q. Wu, et al., N-acetyl-l-tryptophan delays disease onset and extends survival in an amyotrophic lateral sclerosis transgenic mouse model, Neurobiol. Dis. 80 (2015) 93-103.
    [65]
    G. Li, M. Yang, K. Zhou, et al., Diversity of duodenal and rectal microbiota in biopsy tissues and luminal contents in healthy volunteers, J. Microbiol. Biotechnol. 25 (2015), 1136-1145.
    [66]
    T. Xiong, X. Zheng, K. Zhang, et al., Ganluyin ameliorates dss-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/κB pathway, J. Ethnopharmacol. 289 (2022), 115001.
    [67]
    X. Li, X. Wu, Q. Wang, et al., Sanguinarine ameliorates DSS induced ulcerative colitis by inhibiting NLRP3 inflammasome activation and modulating intestinal microbiota in C57BL/6 mice, Phytomed. Int. J. Phytother. Phytopharm106 (2022), 154321.
    [68]
    M. Ye, M. Hou, Q. Peng, et al., The microbiota and cytokines correlation between the jejunum and colon in Altay sheep, Anim. Open Access J. MDPI 12 (2022), 1564.
    [69]
    M. Ma, T. Fu, Y. Wang, et al., Polysaccharide from edible alga enteromorpha clathrata improves ulcerative colitis in association with increased abundance of parabacteroides spp. in the gut microbiota of dextran sulfate sodium-fed mice, Mar. Drugs 20 (2022), 764.
    [70]
    L. Ma, Y. Ni, Z. Wang, et al., Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice, Gut Microb. 12 (2020) 1-19.
    [71]
    X.Q. He, D. Liu, H.Y. Liu, et al., Prevention of ulcerative colitis in mice by sweet tea (Lithocarpus litseifolius) via the regulation of gut microbiota and butyric-acid-mediated anti-inflammatory signaling, Nutrients. 14 (2022), 2208.
    [72]
    H. Cheng, D. Zhang, J. Wu, et al., Atractylodes macrocephala koidz. Volatile oil relieves acute ulcerative colitis via regulating gut microbiota and gut microbiota metabolism, Front. Immunol. 14 (2023), 1127785.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (194) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return