1. | Liu, Y., Jiao, Y., Xiong, L. et al. Sensitive fluorescent detection of protamine and trypsin activity based on a perylene-3, 4, 9, 10-tetracarboxylic probe. Journal of Photochemistry and Photobiology A: Chemistry, 2024. doi:10.1016/j.jphotochem.2024.115901 | |
2. | Chen, Y., Huang, Y., Zhang, S. et al. A photoelectrochemical biosensor based on self-calibration platform of carbon-rich plasmonic probe with near-infrared driving signal amplification. Biosensors and Bioelectronics, 2024. doi:10.1016/j.bios.2024.116274 | |
3. | Liu, Y., Xiong, L., Zhao, L. et al. Rapid and highly sensitive fluorescent detection of protamine and trypsin activity with Eosin B. Journal of Photochemistry and Photobiology A: Chemistry, 2024. doi:10.1016/j.jphotochem.2024.115495 | |
4. | Zhou, Y., Zhang, C., Bai, S. et al. Photoelectrochemical quenching-recovery biosensor based on NSCQDs/Fe2O3@Bi2S3 for the detection of trypsin. Analytica Chimica Acta, 2024. doi:10.1016/j.aca.2024.342361 | |
5. | Gong, X., Wu, J., Zhang, J. et al. A Robust N-Terminal Pro-Brain Natriuretic Peptide Assay for Clinical Diagnosis of Heart Failure in Elderly Patients. Journal of Analysis and Testing, 2024, 8(1): 74-82. doi:10.1007/s41664-023-00270-2 | |
6. | Fasogbon, I.V., Ondari, E.N., Deusdedit, T. et al. Point-of-care potentials of lateral flow-based field screening for Mycoplasma bovis infections: a literature review. Biology Methods and Protocols, 2024, 9(1): bpae034. doi:10.1093/biomethods/bpae034 | |
7. | Zhang, M., Wang, J., Li, C. et al. Cathelicidin AS-12W Derived from the Alligator sinensis and Its Antimicrobial Activity Against Drug-Resistant Gram-Negative Bacteria In Vitro and In Vivo. Probiotics and Antimicrobial Proteins, 2024. doi:10.1007/s12602-024-10250-2 | |
8. | Arora, A., Sharma, K., Tripathi, S.K. Impact of luminescent MoSe2 quantum dots on activity of trypsin under different pH environment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023. doi:10.1016/j.saa.2023.122958 | |
9. | Liu, L., Zhang, Y., Li, X. et al. Microenvironment of pancreatic inflammation: calling for nanotechnology for diagnosis and treatment. Journal of Nanobiotechnology, 2023, 21(1): 443. doi:10.1186/s12951-023-02200-x | |
10. | Yin, J., Cui, T., Yang, Y. et al. Sensing of Digestive Enzymes—Diagnosis and Monitoring of Pancreatitis. Chemosensors, 2023, 11(9): 469. doi:10.3390/chemosensors11090469 | |
11. | Du, Y., Yu, D.-G., Yi, T. Electrospun Nanofibers as Chemosensors for Detecting Environmental Pollutants: A Review. Chemosensors, 2023, 11(4): 208. doi:10.3390/chemosensors11040208 | |
12. | Na, Y., Zhang, J., Zhang, S. et al. Fluorescence Sensor for Zearalenone Detection Based on Oxidized Single-walled Carbon Nanohorns/N-doped Carbon Quantum Dots-aptamer. Journal of Fluorescence, 2023. doi:10.1007/s10895-023-03466-y | |
13. | Cai, Y., Dong, T., Zhang, X. et al. Morphology and Enzyme-Mimicking Activity of Copper Nanoassemblies Regulated by Peptide: Mechanism, Ultrasensitive Assaying of Trypsin, and Screening of Trypsin Inhibitors. Analytical Chemistry, 2022, 94(51): 18099-18106. doi:10.1021/acs.analchem.2c04767 | |
14. | Ning, X., Mao, C., Zhang, J. et al. Fluorescence sensing of chloramphenicol based on oxidized single-walled carbon nanohorn/silicon quantum dots- aptamers. Journal of Molecular Structure, 2022. doi:10.1016/j.molstruc.2022.133829 | |
15. | Soni, G.K., Saima, Manhas, P., Sharma, R.K. Peptide-based optical biosensors: A promising approach for early-stage cancer detection. Biosensors and Bioelectronics: X, 2022. doi:10.1016/j.biosx.2022.100259 | |
16. | Ashraf, G., Chen, W., Asif, M. et al. Topical advancements in electrochemical and optical signal amplification for biomolecules detection: A comparison. Materials Today Chemistry, 2022. doi:10.1016/j.mtchem.2022.101119 | |
17. | Zeng, Z., Zhou, R., Sun, R. et al. Nonlinear hybridization chain reaction-based flow cytometric immunoassay for the detection of prostate specific antigen. Analytica Chimica Acta, 2022. doi:10.1016/j.aca.2022.340048 | |
18. | Jia, W., Xu, L., Xu, W. et al. Application of nanotechnology in the diagnosis and treatment of acute pancreatitis. Nanoscale Advances, 2022, 4(8): 3183-3200. doi:10.1039/d2na00020b | |
19. | Wang, M., Li, L., Zhang, L. et al. Peptide-Derived Biosensors and Their Applications in Tumor Immunology-Related Detection. Analytical Chemistry, 2022, 94(1): 431-441. doi:10.1021/acs.analchem.1c04461 | |
20. | Wang, J., Wang, M., Guo, J. et al. Preparation of AgInS2 quantum dots and their application for trypsin detection. Journal of Materials Science: Materials in Electronics, 2021, 32(22): 26490-26502. doi:10.1007/s10854-021-07026-7 | |
21. | Xiong, Y., Shi, C., Li, L. et al. A review on recent advances in amino acid and peptide-based fluorescence and its potential applications. New Journal of Chemistry, 2021, 45(34): 15180-15194. doi:10.1039/d1nj02230j | |
22. | Zhang, J., Feng, T., Zhang, J. et al. Fluorescence assay for the sensitive detection of fipronil based on an "on-off" oxidized SWCNH/aptamer sensor. Analytical Methods, 2021, 13(29): 3282-3291. doi:10.1039/d1ay00769f | |
23. | Tertis, M., Hosu, O., Feier, B. et al. Electrochemical peptide-based sensors for foodborne pathogens detection. Molecules, 2021, 26(11): 3200. doi:10.3390/molecules26113200 | |
24. | Piovarci, I., Melikishvili, S., Tatarko, M. et al. Detection of sub-nanomolar concentration of trypsin by thickness-shear mode acoustic biosensor and spectrophotometry. Biosensors, 2021, 11(4): 117. doi:10.3390/bios11040117 | |