Sara Carillo, Raquel Pérez-Robles, Craig Jakes, Meire Ribeiro da Silva, Silvia Millán Martín, Amy Farrell, Natalia Navas, Jonathan Bones. Comparing different domains of analysis for the characterisation of N-glycans on monoclonal antibodies[J]. Journal of Pharmaceutical Analysis, 2020, 10(1): 23-34.
Citation: Sara Carillo, Raquel Pérez-Robles, Craig Jakes, Meire Ribeiro da Silva, Silvia Millán Martín, Amy Farrell, Natalia Navas, Jonathan Bones. Comparing different domains of analysis for the characterisation of N-glycans on monoclonal antibodies[J]. Journal of Pharmaceutical Analysis, 2020, 10(1): 23-34.

Comparing different domains of analysis for the characterisation of N-glycans on monoclonal antibodies

  • Publish Date: Feb. 15, 2020
  • With the size of the biopharmaceutical market exponentially increasing, there is an aligned growth in the importance of data-rich analyses, not only to assess drug product safety but also to assist drug development driven by the deeper understanding of structure/function relationships. In monoclonal antibodies, many functions are regulated by N-glycans present in the constant region of the heavy chains and their mechanisms of action are not completely known. The importance of their function focuses analytical research efforts on the development of robust, accurate and fast methods to support drug development and quality control. Released N-glycan analysis is considered as the gold standard for glycosylation characterisation;however, it is not the only method for quantitative analysis of glycoform heterogeneity. In this study, ten different analytical workflows for N-glycan analysis were compared using four monoclonal antibodies. While observing good comparability between the quantitative results generated, it was possible to appreciate the advantages and disadvantages of each technique and to summarise all the observations to guide the choice of the most appropriate analytical workflow ac-cording to application and the desired depth of data generated.
  • Relative Articles

  • Cited by

    Periodical cited type(34)

    1. Füssl, F., Coleman, K., Bones, J. Anion exchange chromatography coupled to mass spectrometry for deciphering the complexity of a highly glycosylated fusion protein (“protein HGF”). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2025, 1254: 124484. doi:10.1016/j.jchromb.2025.124484
    2. Allen, N.R., Jeet, K., Ogunsanya, T. et al. Ionization Characteristics of Glycan Homologues in Various Modes of Electrospray. Journal of the American Society for Mass Spectrometry, 2025, 36(2): 346-354. doi:10.1021/jasms.4c00425
    3. Böttinger, K., Regl, C., Schäpertöns, V. et al. “Small is beautiful” – Examining reliable determination of low-abundant therapeutic antibody glycovariants. Journal of Pharmaceutical Analysis, 2024, 14(10): 100982. doi:10.1016/j.jpha.2024.100982
    4. Mesonzhnik, N., Belushenko, A., Novikova, P. et al. Enhanced N-Glycan Profiling of Therapeutic Monoclonal Antibodies through the Application of Upper-Hinge Middle-Up Level LC-HRMS Analysis. Antibodies, 2024, 13(3): 66. doi:10.3390/antib13030066
    5. Torres-García, A., Torrente-López, A., Hermosilla, J. et al. Comprehensive Analysis of Cetuximab Critical Quality Attributes: Impact of Handling on Antigen-Antibody Binding. Pharmaceutics, 2024, 16(9): 1222. doi:10.3390/pharmaceutics16091222
    6. Jin, X., Chu, J., He, B. Comparison of Four Rapid N-Glycan Analytical Methods and Great Application Potential in Cell Line Development. Applied Sciences (Switzerland), 2024, 14(16): 7320. doi:10.3390/app14167320
    7. Limpikirati, P.K., Mongkoltipparat, S., Denchaipradit, T. et al. Basic regulatory science behind drug substance and drug product specifications of monoclonal antibodies and other protein therapeutics. Journal of Pharmaceutical Analysis, 2024, 14(6): 100916. doi:10.1016/j.jpha.2023.12.006
    8. Fan, W., Zhen, L., Zhu, X. et al. Strong cation-exchange combined with mass spectrometry reveals the glycoform heterogeneity of sialylated glycoproteins. Analytical Methods, 2024, 16(22): 3475-3485. doi:10.1039/d4ay00486h
    9. Yang, J., Ostafe, R., Bruening, M.L. In-Membrane Enrichment and Peptic Digestion to Facilitate Analysis of Monoclonal Antibody Glycosylation. Analytical Chemistry, 2024, 96(16): 6347-6355. doi:10.1021/acs.analchem.4c00030
    10. Pérez-Robles, R., Fekete, S., Kormány, R. et al. Improved sample introduction approach in hydrophilic interaction liquid chromatography to avoid breakthrough of proteins. Journal of Chromatography A, 2024, 1713: 464498. doi:10.1016/j.chroma.2023.464498
    11. von Horsten, H.H.. Artificial Intelligence Applications for Producing Glycosylated Biopharmaceutical Drug Modalities. Management for Professionals, 2024, Part F2525: 45-59. doi:10.1007/978-3-031-47768-3_4
    12. Torrente-López, A., Hermosilla, J., Salmerón-García, A. et al. Comprehensive physicochemical and functional analysis of pembrolizumab based on controlled degradation studies: Impact on antigen–antibody binding. European Journal of Pharmaceutics and Biopharmaceutics, 2024, 194: 131-147. doi:10.1016/j.ejpb.2023.12.005
    13. Füssl, F., Millán-Martín, S., Bones, J. et al. Cation exchange chromatography on a monodisperse 3 µm particle enables extensive analytical similarity assessment of biosimilars. Journal of Pharmaceutical and Biomedical Analysis, 2023, 234: 115534. doi:10.1016/j.jpba.2023.115534
    14. Shipman, J., Sommers, C., Keire, D.A. et al. Comprehensive N-Glycan Mapping using Parallel Reaction Monitoring LC–MS/MS. Pharmaceutical Research, 2023, 40(6): 1399-1410. doi:10.1007/s11095-022-03453-1
    15. Wu, G., Yu, C., Wang, W. et al. Mass Spectrometry-Based Charge Heterogeneity Characterization of Therapeutic mAbs with Imaged Capillary Isoelectric Focusing and Ion-Exchange Chromatography as Separation Techniques. Analytical Chemistry, 2023, 95(4): 2548-2560. doi:10.1021/acs.analchem.2c05071
    16. Torrente-López, A., Hermosilla, J., Pérez-Robles, R. et al. Combined use of UV and MS data for ICH Stability-Indication Method: Quantification and isoforms identification of intact nivolumab. Microchemical Journal, 2022, 182: 107896. doi:10.1016/j.microc.2022.107896
    17. Pérez-Robles, R., Salmerón-García, A., Clemente-Bautista, S. et al. Method for identification and quantification of intact teduglutide peptide using (RP)UHPLC-UV-(HESI/ORBITRAP)MS. Analytical Methods, 2022, 14(43): 4359-4369. doi:10.1039/d2ay01254e
    18. Carillo, S., Criscuolo, A., Füssl, F. et al. Intact multi-attribute method (iMAM): A flexible tool for the analysis of monoclonal antibodies. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 177: 241-248. doi:10.1016/j.ejpb.2022.07.005
    19. Martínez-Ortega, A., Herrera, A., Salmerón-García, A. et al. Degradation and in-use stability study of five marketed therapeutic monoclonal antibodies by generic weak cation exchange liquid chromatographic method ((WCX)HPLC/DAD). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1203: 123295. doi:10.1016/j.jchromb.2022.123295
    20. Marbiah, M., Kotidis, P., Donini, R. et al. Rapid Antibody Glycoengineering in Chinese Hamster Ovary Cells. Journal of Visualized Experiments, 2022, 2022(184): e63872. doi:10.3791/63872
    21. Edwards, E., Livanos, M., Krueger, A. et al. Strategies to control therapeutic antibody glycosylation during bioprocessing: Synthesis and separation. Biotechnology and Bioengineering, 2022, 119(6): 1343-1358. doi:10.1002/bit.28066
    22. Shrivastava, A., Joshi, S., Guttman, A. et al. N-Glycosylation of monoclonal antibody therapeutics: A comprehensive review on significance and characterization. Analytica Chimica Acta, 2022, 1209: 339828. doi:10.1016/j.aca.2022.339828
    23. Nainwal, N., Chirmade, T., Gani, K. et al. Understanding unfolding and refolding of the antibody fragments (Fab). II. Mapping intra and inter-chain disulfide bonds using mass spectrometry. Biochemical Engineering Journal, 2022, 182: 108439. doi:10.1016/j.bej.2022.108439
    24. Torrente-López, A., Hermosilla, J., Salmerón-García, A. et al. Comprehensive Analysis of Nivolumab, A Therapeutic Anti-Pd-1 Monoclonal Antibody: Impact of Handling and Stress. Pharmaceutics, 2022, 14(4): 692. doi:10.3390/pharmaceutics14040692
    25. Rathore, A., Malani, H. Need for a risk-based control strategy for managing glycosylation profile for biosimilar products. Expert Opinion on Biological Therapy, 2022, 22(2): 123-131. doi:10.1080/14712598.2021.1973425
    26. Vimer, S., Ben-Nissan, G., Marty, M. et al. Direct-MS analysis of antibody-antigen complexes. Proteomics, 2021, 21(21-22): 2000300. doi:10.1002/pmic.202000300
    27. Jakes, C., Füssl, F., Zaborowska, I. et al. Rapid Analysis of Biotherapeutics Using Protein A Chromatography Coupled to Orbitrap Mass Spectrometry. Analytical Chemistry, 2021, 93(40): 13505-13512. doi:10.1021/acs.analchem.1c02365
    28. Nichols, A.C., Kil, Y.J., Mahan, A. et al. Orthogonal Comparison of Analytical Methods by Theoretical Reconstruction from Bottom-up Assay Data. Journal of the American Society for Mass Spectrometry, 2021, 32(8): 2013-2018. doi:10.1021/jasms.0c00433
    29. Kaur, H.. Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Critical Reviews in Biotechnology, 2021, 41(2): 300-315. doi:10.1080/07388551.2020.1869684
    30. Amez-Martín, M., Wuhrer, M., Falck, D. Immunoglobulin G Glycoprofiles are Unaffected by Common Bottom-Up Sample Processing. Journal of Proteome Research, 2020, 19(10): 4158-4162. doi:10.1021/acs.jproteome.0c00656
    31. He, K., Zeng, S., Qian, L. Recent progress in the molecular imaging of therapeutic monoclonal antibodies. Journal of Pharmaceutical Analysis, 2020, 10(5): 397-413. doi:10.1016/j.jpha.2020.07.006
    32. Tawfiq, Z., Caiazza, N.C., Kambourakis, S. et al. Synthesis and Biological Evaluation of Antibody Drug Conjugates Based on an Antibody Expression System: Conamax. ACS Omega, 2020, 5(13): 7193-7200. doi:10.1021/acsomega.9b03628
    33. Borza, B., Hajba, L., Guttman, A. N-glycan analysis in molecular medicine: Innovator and biosimilar protein therapeutics. Current Molecular Medicine, 2020, 20(10): 828-839. doi:10.2174/1566524020999201203212352
    34. Schilling, M., Feng, P., Sosic, Z. et al. Development and validation of a platform reduced intact mass method for process monitoring of monoclonal antibody glycosylation during routine manufacturing. Bioengineered, 2020, 11(1): 1301-1312. doi:10.1080/21655979.2020.1842651

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.4 %FULLTEXT: 32.4 %META: 65.9 %META: 65.9 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %China: 52.0 %China: 52.0 %Norway: 1.2 %Norway: 1.2 %Spain: 1.7 %Spain: 1.7 %Turkey: 2.3 %Turkey: 2.3 %United States: 38.7 %United States: 38.7 %其他ChinaNorwaySpainTurkeyUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads(3) Cited by(36)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return