Ling Zhang, Yue Hu, Elizabeth Galella, Frank P. Tomasella, William P.Fish. Separation of atropisomers by chiral liquid chromatography and thermodynamic analysis of separation mechanism[J]. Journal of Pharmaceutical Analysis, 2017, 7(3): 156-162.
Citation: Ling Zhang, Yue Hu, Elizabeth Galella, Frank P. Tomasella, William P.Fish. Separation of atropisomers by chiral liquid chromatography and thermodynamic analysis of separation mechanism[J]. Journal of Pharmaceutical Analysis, 2017, 7(3): 156-162.

Separation of atropisomers by chiral liquid chromatography and thermodynamic analysis of separation mechanism

  • Publish Date: Jun. 10, 2017
  • In the pharmaceutical industry, the analysis of atropisomers is of considerable interest from both scientific and regulatory perspectives. The compound of interest contains two stereogenic axes due to the hindered rotation around the single bonds connecting the aryl groups, which results in four potential configurational isomers (atropisomers). The separation of the four atropisomers was achieved on a derivatized β-cyclodextrin bonded stationary phase. Further investigation showed that low temperature conditions, including sample preparation (?70 °C), sample storage (?70 °C), and chromatographic separation (6 °C), were critical to preventing interconversion. LC-UV-laser polarimetric analysis identified peaks 1 and 2 as a pair of enantiomers and peaks 3 and 4 as another. Thermodynamic analysis of the retention data indicated that the separation of the pairs of enantiomers is primarily enthalpy controlled as indicated by the positive slope of the van't Huff plot. The difference in absolute Δ (Δ H), ranged from 2.20 kJ/mol to 2.42 kJ/mol.
  • Relative Articles

  • Cited by

    Periodical cited type(21)

    1. Yang, H., Geng, Y., Lin, S. et al. Online SFE-SFC-MS/MS analysis of pyraclostrobin and chiral mefentrifluconazole residues in mango and mango juice. Food Chemistry, 2025, 464: 141731. doi:10.1016/j.foodchem.2024.141731
    2. Ferencz, E., Szabó, Z.-I., Zöldhegyi, A. et al. Possibilities and limitations of computer assisted chiral HPLC method development for ozanimod on polysaccharide based chiral stationary phases. Scientific Reports, 2024, 14(1): 26757. doi:10.1038/s41598-024-78415-1
    3. Papp, L.A., Szabó, Z.I., Hancu, G. et al. Comprehensive Review on Chiral Stationary Phases in Single-Column Simultaneous Chiral–Achiral HPLC Separation Methods. Molecules, 2024, 29(6): 1346. doi:10.3390/molecules29061346
    4. Li, P., Ling, J., Ji, L. et al. Determination of the phase ratio of a dehydroabietic-acid-bonded silica-gel chromatographic stationary phase and its effect on separation thermodynamics. Journal of Chromatography A, 2024, 1715: 464629. doi:10.1016/j.chroma.2024.464629
    5. Karabat, R.R., Hammood, A.J., Abdulrasool, W.A. et al. High-Performance Liquid Chromatography (HPLC): Primary Mechanism and Popular Applications. 2023, 26(4): 1-12. doi:10.22401/ANJS.26.4.01
    6. Yunyaeva, O., Hean, D., Wolf, M.O. Restricted rotation and tunable fluorescence in atropisomeric naphthyl pyridine chromophores. Organic and Biomolecular Chemistry, 2023, 21(48): 9623-9629. doi:10.1039/d3ob01819a
    7. Ferencz, E., Kelemen, É.-K., Obreja, M. et al. The Applicability of Chromatographic Retention Modeling on Chiral Stationary Phases in Reverse-Phase Mode: A Case Study for Ezetimibe and Its Impurities. International Journal of Molecular Sciences, 2023, 24(22): 16097. doi:10.3390/ijms242216097
    8. Tang, L., Chen, Y., Wu, M. et al. Comparative studies of immobilized polysaccharide derivatives chiral stationary phases for enantioseparation of furanocoumarins and dihydroflavones and discussion on chiral recognition mechanism. Journal of Separation Science, 2023, 46(20): 2300318. doi:10.1002/jssc.202300318
    9. Chin, S., Cruz, K., Goyon, A. et al. Two-dimensional reversed phase-normal phase liquid chromatography for simultaneous achiral-chiral analysis to support high-throughput experimentation. Journal of Chromatography A, 2023, 1692: 463820. doi:10.1016/j.chroma.2023.463820
    10. Dmytro, U., Borys, V., Andriy, K. Thermodynamic Functions of Chromatographic Retention of Sodium 2-((4-Amino-5- (thiophen-2-ylmethyl) -4h-1, 2, 4-triazol-3-yl)thio) acetate and its Impurities. Pharmakeftiki, 2023, 35(2): 32-41.
    11. Carlsson, A.-C.C., Karlsson, S., Munday, R.H. et al. Approaches to Synthesis and Isolation of Enantiomerically Pure Biologically Active Atropisomers. Accounts of Chemical Research, 2022, 55(20): 2938-2948. doi:10.1021/acs.accounts.2c00513
    12. Perreault, S., Chandrasekhar, J., Patel, L. Atropisomerism in Drug Discovery: A Medicinal Chemistry Perspective Inspired by Atropisomeric Class i PI3K Inhibitors. Accounts of Chemical Research, 2022, 55(18): 2581-2593. doi:10.1021/acs.accounts.2c00485
    13. Zhang, L., Xie, J., Liu, C. et al. Comparison of percutaneous permeation profiles of flurbiprofen enantiomers. Chirality, 2022, 34(6): 894-900. doi:10.1002/chir.23441
    14. Naghdi, E., Fakhari, A.R. The comparison of some chiral selectors for enantioselective separation of naproxen as a model drug in capillary electrophoresis: Thermodynamic analysis of the separation mechanism. Journal of the Iranian Chemical Society, 2022, 19(5): 1701-1709. doi:10.1007/s13738-021-02408-4
    15. Franzini, R., Pierini, M., Mazzanti, A. et al. Molecular recognition of the hplc whelk-o1 selector towards the conformational enantiomers of nevirapine and oxcarbazepine. International Journal of Molecular Sciences, 2021, 22(1): 1-14. doi:10.3390/ijms22010144
    16. He, B.L., Kleinsorge, N.G., Zhang, L. et al. Advancing stereoisomeric separation of an atropisomeric Bruton's tyrosine kinase inhibitor by using sub-2 µm immobilized polysaccharide-based chiral columns in supercritical fluid chromatography. Journal of Chromatography A, 2020, 1626: 461320. doi:10.1016/j.chroma.2020.461320
    17. Liu, H., Ding, W. Enantiomeric separation of prothioconazole and prothioconazole-desthio on chiral stationary phases. Chirality, 2019, 31(3): 219-229. doi:10.1002/chir.23050
    18. Pályi, G.. Biological chirality. Biological Chirality, 2019. doi:10.1016/C2016-0-01416-X
    19. Wang, Y., Liu, D., Zhang, Y. et al. Synthesis of a novel chiral stationary phase by (R)-1, 1'-Binaphthol and the study on mechanism of chiral recognition. Symmetry, 2018, 10(12): 704. doi:10.3390/sym10120704
    20. Piazzolla, F., Siciliano, C., Minuti, L. et al. Exploration of synthetic strategies for the stereoselective preparation of novel tetrahydrofuran-containing biaryls: A high-pressure promoted Diels-Alder approach. Tetrahedron, 2018, 74(45): 6534-6543. doi:10.1016/j.tet.2018.09.032
    21. Glunz, P.W.. Recent encounters with atropisomerism in drug discovery. Bioorganic and Medicinal Chemistry Letters, 2018, 28(2): 53-60. doi:10.1016/j.bmcl.2017.11.050

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.6 %FULLTEXT: 32.6 %META: 66.9 %META: 66.9 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area DistributionChina: 65.1 %China: 65.1 %Japan: 1.7 %Japan: 1.7 %United States: 33.1 %United States: 33.1 %ChinaJapanUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (116) PDF downloads(1) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return