| Citation: | Ke Li, Mingyu Wu, Qiuyu Zhang, Jiabin Wu, Xianyi Ding, Weihua Xiao. PKM2: A Gatekeeper in Macrophage Metabolic Reprogramming[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101564 |
| [1] |
O. Warburg, On the origin of cancer cells, Science 123 (1956) 309-314.
|
| [2] |
M. Alquraishi, D.L. Puckett, D.S. Alani, et al., Pyruvate kinase M2: A simple molecule with complex functions, Free Radic. Biol. Med. 143 (2019) 176-192.
|
| [3] |
S.E. Corcoran, L.A. O'Neill, HIF1α and metabolic reprogramming in inflammation, J. Clin. Invest. 126 (2016) 3699-3707.
|
| [4] |
K. Yang, X. Wang, C. Song, et al., The role of lipid metabolic reprogramming in tumor microenvironment, Theranostics 13 (2023) 1774-1808.
|
| [5] |
L. Yang, Z. Chu, M. Liu, et al., Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy, J. Hematol. Oncol. 16 (2023) 59.
|
| [6] |
T. Hu, C.-H. Liu, M. Lei, et al., Metabolic regulation of the immune system in health and diseases: mechanisms and interventions, Signal Transduct. Target. Ther. 9 (2024) 268.
|
| [7] |
S. Galvan-Pena, L.A. O'Neill, Metabolic reprograming in macrophage polarization, Front. Immunol. 5 (2014) 420.
|
| [8] |
A. Viola, F. Munari, R. Sanchez-Rodriguez, et al., The Metabolic Signature of Macrophage Responses, Front. Immunol. 10 (2019) 1462.
|
| [9] |
D. Vats, L. Mukundan, J.I. Odegaard, et al., Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation, Cell Metab. 4 (2006) 13-24.
|
| [10] |
M. Nomura, J. Liu, I.I. Rovira, et al., Fatty acid oxidation in macrophage polarization, Nat. Immunol. 17 (2016) 216-217.
|
| [11] |
J. van den Bossche, L.A. O'Neill, D. Menon, Macrophage Immunometabolism: Where Are We (Going)?, Trends Immunol. 38 (2017) 395-406.
|
| [12] |
R.J. Arts, B. Novakovic, R. ter Horst, et al., Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity, Cell Metab. 24 (2016) 807-819.
|
| [13] |
L.A. O'Neill, E.J. Pearce, Immunometabolism governs dendritic cell and macrophage function, J. Exp. Med. 213 (2016) 15-23.
|
| [14] |
J.E. Wilson, Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function, J. Exp. Biol. 206 (2003) 2049-2057.
|
| [15] |
W.J. Israelsen, M.G. Vander Heiden, Pyruvate kinase: Function, regulation and role in cancer, Semin. Cell Dev. Biol. 43 (2015) 43-51.
|
| [16] |
Z. Zhang, X. Deng, Y. Liu, et al., PKM2, function and expression and regulation, Cell Biosci. 9 (2019) 52.
|
| [17] |
D.-Q. Chen, J. Han, H. Liu, et al., Targeting pyruvate kinase M2 for the treatment of kidney disease, Front. Pharmacol. 15 (2024) 1376252.
|
| [18] |
Y.-B. Lee, J.K. Min, J.-G. Kim, et al., Multiple functions of pyruvate kinase M2 in various cell types, J. Cell. Physiol. 237 (2022) 128-148.
|
| [19] |
J.D. Dombrauckas, B.D. Santarsiero, A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis, Biochemistry 44 (2005) 9417-9429.
|
| [20] |
B. Chaneton, P. Hillmann, L. Zheng, et al., Serine is a natural ligand and allosteric activator of pyruvate kinase M2, Nature 491 (2012) 458-462.
|
| [21] |
K.E. Keller, I.S. Tan, Y.-S. Lee, SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions, Science 338 (2012) 1069-1072.
|
| [22] |
D. Srivastava, S. Nandi, M. Dey, Mechanistic and Structural Insights into Cysteine-Mediated Inhibition of Pyruvate Kinase Muscle Isoform 2, Biochemistry 58 (2019) 3669-3682.
|
| [23] |
J.A. Macpherson, A. Theisen, L. Masino, et al., Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation, Elife 8 (2019).
|
| [24] |
K. Ashizawa, P. McPhie, K.H. Lin, et al., An in vitro novel mechanism of regulating the activity of pyruvate kinase M2 by thyroid hormone and fructose 1, 6-bisphosphate, Biochemistry 30 (1991) 7105-7111.
|
| [25] |
H.P. Morgan, F.J. O'Reilly, M.A. Wear, et al., M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 5881-5886.
|
| [26] |
M. Singer, C.S. Deutschman, C.W. Seymour, et al., The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), JAMA 315 (2016) 801-810.
|
| [27] |
L. Yang, M. Xie, M. Yang, et al., PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis, Nat. Commun. 5 (2014) 4436.
|
| [28] |
Z. Zhang, W. Deng, R. Kang, et al., Plumbagin Protects Mice from Lethal Sepsis by Modulating Immunometabolism Upstream of PKM2, Mol. Med. 22 (2016) 162-172.
|
| [29] |
L. Pan, L. Hu, L. Zhang, et al., Deoxyelephantopin decreases the release of inflammatory cytokines in macrophage associated with attenuation of aerobic glycolysis via modulation of PKM2, Int. Immunopharmacol. 79 (2020) 106048.
|
| [30] |
L. Pei, Y. Le, H. Chen, et al., Cynaroside prevents macrophage polarization into pro-inflammatory phenotype and alleviates cecal ligation and puncture-induced liver injury by targeting PKM2/HIF-1α axis, Fitoterapia 152 (2021) 104922.
|
| [31] |
D. Li, L. Yang, W. Wang, et al., Eriocitrin attenuates sepsis-induced acute lung injury in mice by regulating MKP1/MAPK pathway mediated-glycolysis, Int. Immunopharmacol. 118 (2023) 110021.
|
| [32] |
J. Lu, L. Zhang, L. Cheng, et al., Xijiao Dihuang decoction improves prognosis of sepsis via inhibition of aerobic glycolysis, Biomed. Pharmacother. 129 (2020) 110501.
|
| [33] |
D. Yu, W. Huang, M. Sheng, et al., Angiotensin-(1-7) Modulates the Warburg Effect to Alleviate Inflammation in LPS-Induced Macrophages and Septic Mice, J. Inflamm. Res. 17 (2024) 469-485.
|
| [34] |
E.M. Palsson-McDermott, A.M. Curtis, G. Goel, et al., Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages, Cell Metab. 21 (2015) 65-80.
|
| [35] |
M. Xie, Y. Yu, R. Kang, et al., PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation, Nat. Commun. 7 (2016) 13280.
|
| [36] |
G.A. Timmons, R.G. Carroll, J.R. O'Siorain, et al., The Circadian Clock Protein BMAL1 Acts as a Metabolic Sensor In Macrophages to Control the Production of Pro IL-1β, Front. Immunol. 12 (2021) 700431.
|
| [37] |
S.-Y. Sang, Y.-J. Wang, T. Liang, et al., Protein 4.1R regulates M1 macrophages polarization via glycolysis, alleviating sepsis-induced liver injury in mice, Int. Immunopharmacol. 128 (2024) 111546.
|
| [38] |
K. Das Gupta, M.R. Shakespear, J.E. Curson, et al., Class IIa Histone Deacetylases Drive Toll-like Receptor-Inducible Glycolysis and Macrophage Inflammatory Responses via Pyruvate Kinase M2, Cell Rep. 30 (2020) 2712-2728.e8.
|
| [39] |
Z. Yi, Y. Wu, W. Zhang, et al., Activator-Mediated Pyruvate Kinase M2 Activation Contributes to Endotoxin Tolerance by Promoting Mitochondrial Biogenesis, Front. Immunol. 11 (2020) 595316.
|
| [40] |
S. Yu, S. Pei, M. Zhang, et al., PKM2-mediated STAT3 phosphorylation promotes acute liver failure via regulating NLRP3-dependent pyroptosis, Commun. Biol. 7 (2024) 1694.
|
| [41] |
T. Bonaldi, F. Talamo, P. Scaffidi, et al., Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion, EMBO J. 22 (2003) 5551-5560.
|
| [42] |
X. Hu, X. Wan, Y. Diao, et al., Fibrinogen-like protein 2 regulates macrophage glycolytic reprogramming by directly targeting PKM2 and exacerbates alcoholic liver injury, Int. Immunopharmacol. 124 (2023) 110957.
|
| [43] |
Z. Miao, W. Wang, Z. Miao, et al., Role of Selenoprotein W in participating in the progression of non-alcoholic fatty liver disease, Redox Biol. 71 (2024) 103114.
|
| [44] |
Y. Inomata, J.-W. Oh, K. Taniguchi, et al., Downregulation of miR-122-5p Activates Glycolysis via PKM2 in Kupffer Cells of Rat and Mouse Models of Non-Alcoholic Steatohepatitis, Int. J. Mol. Sci. 23 (2022).
|
| [45] |
F. Xu, M. Guo, W. Huang, et al., Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH, Redox Biol. 36 (2020) 101634.
|
| [46] |
T. Dong, G. Hu, Z. Fan, et al., Activation of GPR3-β-arrestin2-PKM2 pathway in Kupffer cells stimulates glycolysis and inhibits obesity and liver pathogenesis, Nat. Commun. 15 (2024) 807.
|
| [47] |
Q. Kong, N. Li, H. Cheng, et al., HSPA12A Is a Novel Player in Nonalcoholic Steatohepatitis via Promoting Nuclear PKM2-Mediated M1 Macrophage Polarization, Diabetes 68 (2019) 361-376.
|
| [48] |
J. Rao, H. Wang, M. Ni, et al., FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2, Gut 71 (2022) 2539-2550.
|
| [49] |
N.C. Lee, M.A. Carella, S. Papa, et al., High Expression of Glycolytic Genes in Cirrhosis Correlates With the Risk of Developing Liver Cancer, Front. Cell Dev. Biol. 6 (2018) 138.
|
| [50] |
Y. Liu, H. Wu, Y. Mei, et al., Clinicopathological and prognostic significance of PKM2 protein expression in cirrhotic hepatocellular carcinoma and non-cirrhotic hepatocellular carcinoma, Sci. Rep. 7 (2017) 15294.
|
| [51] |
R. Zhao, L. Li, J. Yang, et al., Overexpression of Pyruvate Kinase M2 in Tumor Tissues Is Associated with Poor Prognosis in Patients with Hepatocellular Carcinoma, Pathol. Oncol. Res. 26 (2020) 853-860.
|
| [52] |
W.-W. Lv, D. Liu, X.-C. Liu, et al., Effects of PKM2 on global metabolic changes and prognosis in hepatocellular carcinoma: from gene expression to drug discovery, BMC Cancer 18 (2018) 1150.
|
| [53] |
L.-G. Lu, Z.-L. Zhou, X.-Y. Wang, et al., PD-L1 blockade liberates intrinsic antitumourigenic properties of glycolytic macrophages in hepatocellular carcinoma, Gut 71 (2022) 2551-2560.
|
| [54] |
C. Verra, M.K. Paulmann, J. Wegener, et al., Spleen tyrosine kinase: a novel pharmacological target for sepsis-induced cardiac dysfunction and multi-organ failure, Front. Immunol. 15 (2024) 1447901.
|
| [55] |
X. Chen, C. Jiang, M. Chen, et al., SYK promotes the formation of neutrophil extracellular traps by inducing PKM2 nuclear translocation and promoting STAT3 phosphorylation to exacerbate hepatic ischemia-reperfusion injury and tumor recurrence, Mol. Med. 30 (2024) 146.
|
| [56] |
X. Zhang, Y. Yang, L. Jing, et al., Pyruvate Kinase M2 Contributes to TLR-Mediated Inflammation and Autoimmunity by Promoting Pyk2 Activation, Front. Immunol. 12 (2021) 680068.
|
| [57] |
J. Tan, J. Zhang, M. Wang, et al., DRAM1 increases the secretion of PKM2-enriched EVs from hepatocytes to promote macrophage activation and disease progression in ALD, Mol. Ther. Nucleic Acids 27 (2022) 375-389.
|
| [58] |
M.-G. Shin, H.-N. Cha, S. Park, et al., Selenoprotein W deficiency does not affect oxidative stress and insulin sensitivity in the skeletal muscle of high-fat diet-fed obese mice, Am. J. Physiol. Cell Physiol. 317 (2019) C1172-C1182.
|
| [59] |
S. Misra, T.-J. Lee, A. Sebastian, et al., Loss of selenoprotein W in murine macrophages alters the hierarchy of selenoprotein expression, redox tone, and mitochondrial functions during inflammation, Redox Biol. 59 (2023) 102571.
|
| [60] |
Y.-Z. Li, Y.-Y. Wang, L. Huang, et al., Annexin A protein family in atherosclerosis, Clin. Chim. Acta 531 (2022) 406-417.
|
| [61] |
O. Cheung, P. Puri, C. Eicken, et al., Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression, Hepatology 48 (2008) 1810-1820.
|
| [62] |
S. Bala, J. Petrasek, S. Mundkur, et al., Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases, Hepatology 56 (2012) 1946-1957.
|
| [63] |
P.-P. Hou, L.-J. Luo, H.-Z. Chen, et al., Ectosomal PKM2 Promotes HCC by Inducing Macrophage Differentiation and Remodeling the Tumor Microenvironment, Mol. Cell 78 (2020) 1192-1206.e10.
|
| [64] |
B. Ruf, B. Heinrich, T.F. Greten, Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells, Cell. Mol. Immunol. 18 (2021) 112-127.
|
| [65] |
W.P. Lafuse, D.J. Wozniak, M.V. Rajaram, Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair, Cells 10 (2020).
|
| [66] |
R. Zaman, S. Epelman, Resident cardiac macrophages: Heterogeneity and function in health and disease, Immunity 55 (2022) 1549-1563.
|
| [67] |
M. Rihan, S.S. Sharma, Role of Pyruvate Kinase M2 (PKM2) in Cardiovascular Diseases, J. Cardiovasc. Transl. Res. 16 (2023) 382-402.
|
| [68] |
B. Saleme, V. Gurtu, Y. Zhang, et al., Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity, Sci. Transl. Med. 11 (2019).
|
| [69] |
L. Hauck, K. Dadson, S. Chauhan, et al., Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI, Cell Death Differ. 28 (2021) 1398-1417.
|
| [70] |
Y. Tang, M. Feng, Y. Su, et al., Jmjd4 Facilitates Pkm2 Degradation in Cardiomyocytes and Is Protective Against Dilated Cardiomyopathy, Circulation 147 (2023) 1684-1704.
|
| [71] |
L. Guo, L. Wang, G. Qin, et al., M-type pyruvate kinase 2 (PKM2) tetramerization alleviates the progression of right ventricle failure by regulating oxidative stress and mitochondrial dynamics, J. Transl. Med. 21 (2023) 888.
|
| [72] |
M. Siragusa, J. Thole, S.-I. Bibli, et al., Nitric oxide maintains endothelial redox homeostasis through PKM2 inhibition, EMBO J. 38 (2019) e100938.
|
| [73] |
F. Yao, G. Yang, Y. Xian, et al., The protective effect of hydroxytyrosol acetate against inflammation of vascular endothelial cells partly through the SIRT6-mediated PKM2 signaling pathway, Food Funct. 10 (2019) 5789-5803.
|
| [74] |
J. Zhu, H. Chen, Y. Le, et al., Salvianolic acid A regulates pyroptosis of endothelial cells via directly targeting PKM2 and ameliorates diabetic atherosclerosis, Front. Pharmacol. 13 (2022) 1009229.
|
| [75] |
Y. Wu, L. Tang, H. Huang, et al., Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence, Nat. Commun. 14 (2023) 1323.
|
| [76] |
T. Shirai, R.R. Nazarewicz, B.B. Wallis, et al., The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease, J. Exp. Med. 213 (2016) 337-354.
|
| [77] |
P. Doddapattar, R. Dev, M. Ghatge, et al., Myeloid Cell PKM2 Deletion Enhances Efferocytosis and Reduces Atherosclerosis, Circ. Res. 130 (2022) 1289-1305.
|
| [78] |
X. Gai, F. Liu, Y. Wu, et al., Overexpressed PKM2 promotes macrophage phagocytosis and atherosclerosis, Animal Model. Exp. Med. 6 (2023) 92-102.
|
| [79] |
S. Lu, J. Deng, H. Liu, et al., PKM2-dependent metabolic reprogramming in CD4(+) T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis, J. Mol. Med. (Berl) 96 (2018) 585-600.
|
| [80] |
S.-L. Lu, G.-H. Dang, J.-C. Deng, et al., Shikonin attenuates hyperhomocysteinemia-induced CD4(+) T cell inflammatory activation and atherosclerosis in ApoE(-/-) mice by metabolic suppression, Acta Pharmacol. Sin. 41 (2020) 47-55.
|
| [81] |
G. Dang, T. Li, D. Yang, et al., T lymphocyte-derived extracellular vesicles aggravate abdominal aortic aneurysm by promoting macrophage lipid peroxidation and migration via pyruvate kinase muscle isozyme 2, Redox Biol. 50 (2022) 102257.
|
| [82] |
Y. Du, J. Li, Z. Dai, et al., Pyruvate kinase M2 sustains cardiac mitochondrial quality surveillance in septic cardiomyopathy by regulating prohibitin 2 abundance via S91 phosphorylation, Cell. Mol. Life Sci. 81 (2024) 254.
|
| [83] |
J. Ren, B. Ren, T. Fu, et al., Pyruvate kinase M2 sustains cardiac mitochondrial integrity in septic cardiomyopathy by regulating PHB2-dependent mitochondrial biogenesis, Int. J. Med. Sci. 21 (2024) 983-993.
|
| [84] |
Le Ni, B. Lin, L. Hu, et al., Pyruvate Kinase M2 Protects Heart from Pressure Overload-Induced Heart Failure by Phosphorylating RAC1, J. Am. Heart Assoc. 11 (2022) e024854.
|
| [85] |
M.A. Lorenzana-Carrillo, K. Gopal, N.J. Byrne, et al., TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and induces P53 in cardiomyocytes to promote heart failure, Sci. Transl. Med. 14 (2022) eabm3565.
|
| [86] |
K.C. Lee, A.L. Williams, A. Hara, et al., Loss of PKM2 dysregulates inflammatory signaling in the infarcted murine heart, Physiol. Rep. 13 (2025) e70193.
|
| [87] |
I. Esen, W.F. Jiemy, Y. van Sleen, et al., Plasma Pyruvate Kinase M2 as a marker of vascular inflammation in giant cell arteritis, Rheumatology (Oxford) 61 (2022) 3060-3070.
|
| [88] |
Q. Li, K. Leng, Y. Liu, et al., The impact of hyperglycaemia on PKM2-mediated NLRP3 inflammasome/stress granule signalling in macrophages and its correlation with plaque vulnerability: an in vivo and in vitro study, Metabolism 107 (2020) 154231.
|
| [89] |
Z.-W. Zhao, Y.-W. Xu, X.-T. Zhang, et al., Elevated plasma pyruvate kinase M2 concentrations are associated with the clinical severity and prognosis of coronary artery disease, Biochem. Med. (Zagreb) 34 (2024) 10704.
|
| [90] |
T.J. Barrett, Macrophages in Atherosclerosis Regression, Arterioscler. Thromb. Vasc. Biol. 40 (2020) 20-33.
|
| [91] |
S.A. O'Rourke, N.G. Neto, E. Devilly, et al., Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages, Atherosclerosis 352 (2022) 35-45.
|
| [92] |
H. Cui, L. Xie, H. Lu, et al., Macrophage junctional adhesion molecule-like (JAML) protein promotes NLRP3 inflammasome activation in the development of atherosclerosis, Cell Death Differ. (2025).
|
| [93] |
J. Yap, J. Irei, J. Lozano-Gerona, et al., Macrophages in cardiac remodelling after myocardial infarction, Nat. Rev. Cardiol. 20 (2023) 373-385.
|
| [94] |
Y. Cheng, Y. Feng, Z. Xia, et al., ω-Alkynyl arachidonic acid promotes anti-inflammatory macrophage M2 polarization against acute myocardial infarction via regulating the cross-talk between PKM2, HIF-1α and iNOS, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862 (2017) 1595-1605.
|
| [95] |
S. Lu, Y. Tian, Y. Luo, et al., Iminostilbene, a novel small-molecule modulator of PKM2, suppresses macrophage inflammation in myocardial ischemia-reperfusion injury, J. Adv. Res. 29 (2021) 83-94.
|
| [96] |
M. Rihan, S.S. Sharma, Inhibition of Pyruvate kinase M2 (PKM2) by shikonin attenuates isoproterenol-induced acute myocardial infarction via reduction in inflammation, hypoxia, apoptosis, and fibrosis, Naunyn Schmiedebergs. Arch. Pharmacol. 397 (2024) 145-159.
|
| [97] |
Y. Zhang, L. Zhu, X. Li, et al., M2 macrophage exosome-derived lncRNA AK083884 protects mice from CVB3-induced viral myocarditis through regulating PKM2/HIF-1α axis mediated metabolic reprogramming of macrophages, Redox Biol. 69 (2024) 103016.
|
| [98] |
Z. Chen, Y. Li, Y. Niu, et al., MEK1/2-PKM2 Pathway Modulates the Immunometabolic Reprogramming of Proinflammatory Allograft-infiltrating Macrophages During Heart Transplant Rejection, Transplantation 108 (2024) 1127-1141.
|
| [99] |
M.E. Long, R.K. Mallampalli, J.C. Horowitz, Pathogenesis of pneumonia and acute lung injury, Clin. Sci. (Lond) 136 (2022) 747-769.
|
| [100] |
V. Kumar, Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury, Front. Immunol. 11 (2020) 1722.
|
| [101] |
W.-J. Zhong, H.-H. Yang, X.-X. Guan, et al., Inhibition of glycolysis alleviates lipopolysaccharide-induced acute lung injury in a mouse model, J. Cell. Physiol. 234 (2019) 4641-4654.
|
| [102] |
Z.-H. Ying, H.-M. Li, W.-Y. Yu, et al., Iridin Prevented Against Lipopolysaccharide-Induced Inflammatory Responses of Macrophages via Inactivation of PKM2-Mediated Glycolytic Pathways, J. Inflamm. Res. 14 (2021) 341-354.
|
| [103] |
H. Wang, C. Fan, X. Chen, et al., Pyruvate Kinase M2 Nuclear Translocation Regulate Ferroptosis-Associated Acute Lung Injury in Cytokine Storm, Inflammation (2024).
|
| [104] |
W. Wang, F. Zheng, C. Lin, et al., Changes in energy metabolism and macrophage polarization: Potential mechanisms of arsenic-induced lung injury, Ecotoxicol. Environ. Saf. 204 (2020) 110948.
|
| [105] |
N. Mao, H. Yang, J. Yin, et al., Glycolytic Reprogramming in Silica-Induced Lung Macrophages and Silicosis Reversed by Ac-SDKP Treatment, Int. J. Mol. Sci. 22 (2021).
|
| [106] |
C. Li, C. Deng, S. Wang, et al., A novel role for the ROS-ATM-Chk2 axis mediated metabolic and cell cycle reprogramming in the M1 macrophage polarization, Redox Biol. 70 (2024) 103059.
|
| [107] |
L.-L. Chen, C. Song, Y. Zhang, et al., Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulation, Eur. J. Pharmacol. 936 (2022) 175352.
|
| [108] |
Q. Chen, X. Shao, Y. He, et al., Norisoboldine Attenuates Sepsis-Induced Acute Lung Injury by Modulating Macrophage Polarization via PKM2/HIF-1α/PGC-1α Pathway, Biol. Pharm. Bull. 44 (2021) 1536-1547.
|
| [109] |
S. He, C. Fan, Y. Ji, et al., SENP3 facilitates M1 macrophage polarization via the HIF-1α/PKM2 axis in lipopolysaccharide-induced acute lung injury, Innate Immun. 29 (2023) 25-34.
|
| [110] |
R.-Y. Pan, L. He, J. Zhang, et al., Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease, Cell Metab. 34 (2022) 634-648.e6.
|
| [111] |
Y. Liu, W. Kwok, H. Yoon, et al., Imbalance in Glucose Metabolism Regulates the Transition of Microglia from Homeostasis to Disease-Associated Microglia Stage 1, J. Neurosci. 44 (2024).
|
| [112] |
J. Gao, M. Yao, W. Zhang, et al., Panax notoginseng saponins alleviates inflammation induced by microglial activation and protects against ischemic brain injury via inhibiting HIF-1α/PKM2/STAT3 signaling, Biomed. Pharmacother. 155 (2022) 113479.
|
| [113] |
X.-Y. Xiong, Y.-J. Liang, X.-X. Zhang, et al., PKM2 Nuclear Translocation Promotes Glial Cell Activation and Aggravates the Brain Injury of Intracerebral Hemorrhage, J. Integr. Neurosci. 22 (2023) 168.
|
| [114] |
J. Gao, R. Liu, J. Tang, et al., Suppressing nuclear translocation of microglial PKM2 confers neuroprotection via downregulation of neuroinflammation after mouse cerebral ischemia-reperfusion injury, Int. Immunopharmacol. 141 (2024) 112880.
|
| [115] |
H. Zhu, H. Zhang, X.-J. Zhao, et al., Tetramerization of PKM2 Alleviates Traumatic Brain Injury by Ameliorating Mitochondrial Damage in Microglia, J. Neuroimmune Pharmacol. 19 (2024) 48.
|
| [116] |
L. Lu, H. Wang, X. Liu, et al., Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway, J. Neuroinflammation 18 (2021) 229.
|
| [117] |
G. Wang, J. Shen, Q. Guan, et al., LncRNA-AC020978 Promotes Metabolic Reprogramming in M1 Microglial Cells in Postoperative Cognitive Disorder via PKM2, Mol. Neurobiol. 61 (2024) 2459-2467.
|
| [118] |
M. Li, H. Lu, X. Wang, et al., Pyruvate kinase M2 (PKM2) interacts with activating transcription factor 2 (ATF2) to bridge glycolysis and pyroptosis in microglia, Mol. Immunol. 140 (2021) 250-266.
|
| [119] |
L. Zhang, T. Lv, P. Hou, et al., Sirt5-mediated polarization and metabolic reprogramming of macrophage sustain brain function following ischemic stroke, Brain Res. 1857 (2025) 149613.
|
| [120] |
Y. Zhang, H. Chen, R. Li, et al., Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future, Signal Transduct. Target. Ther. 8 (2023) 248.
|
| [121] |
Z. Wei, X. Ni, H. Cui, et al., Neurotoxic effects of triclosan in adolescent mice: Pyruvate kinase M2 dimer regulated Signal transducer and activator of transcription 3 phosphorylation mediated microglia activation and neuroinflammation, Sci. Total Environ. 942 (2024) 173739.
|
| [122] |
C. Shu, H. Cui, Y. Peng, et al., Understanding the molecular pathway of triclosan-induced ADHD-like behaviour: Involvement of the hnRNPA1-PKM2-STAT3 feedback loop, Environ. Int. 191 (2024) 108966.
|
| [123] |
H. Qiao, X. He, Q. Zhang, et al., Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis, Int. J. Biol. Macromol. 129 (2019) 601-607.
|
| [124] |
X. Li, R. Zhou, H. Peng, et al., Microglia PKM2 Mediates Neuroinflammation and Neuron Loss in Mice Epilepsy through the Astrocyte C3-Neuron C3R Signaling Pathway, Brain Sci. 13 (2023).
|
| [125] |
E.M. Palsson-McDermott, L.A. O'Neill, The Warburg effect then and now: From cancer to inflammatory diseases, Bioessays 35 (2013) 965-973.
|
| [126] |
C. Xue, Q. Yao, X. Gu, et al., Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer, Signal Transduct. Target. Ther. 8 (2023) 204.
|
| [127] |
P. Ye, Z. Li, H. Jiang, Novel targets for treating neurodegenerative diseases: The PKM2-STAT3-hnRNPA1 feedback loop, Pharmacol. Res. 218 (2025) 107840.
|
| [128] |
C. Guo, J. He, X. Song, et al., Pharmacological properties and derivatives of shikonin-A review in recent years, Pharmacol. Res. 149 (2019) 104463.
|
| [129] |
L. Yuan, Y. Wang, Y. Chen, et al., Shikonin inhibits immune checkpoint PD-L1 expression on macrophage in sepsis by modulating PKM2, Int. Immunopharmacol. 121 (2023) 110401.
|
| [130] |
A. Servillo, P. Scandale, G. Oldoni, et al., Inflammatory choroidal neovascularization: An evidence-based update, Surv. Ophthalmol. 70 (2025) 451-466.
|
| [131] |
Y. Wang, L. Xie, M. Zhu, et al., Shikonin alleviates choroidal neovascularization by inhibiting proangiogenic factor production from infiltrating macrophages, Exp. Eye Res. 213 (2021) 108823.
|
| [132] |
G. Petrocelli, P. Marrazzo, L. Bonsi, et al., Plumbagin, a Natural Compound with Several Biological Effects and Anti-Inflammatory Properties, Life (Basel) 13 (2023).
|
| [133] |
T. Mehmood, C. Muanprasat, Deoxyelephantopin and Its Isomer Isodeoxyelephantopin: Anti-Cancer Natural Products with Multiple Modes of Action, Molecules 27 (2022).
|
| [134] |
H. Lei, Y. Ruan, R. Ding, et al., The role of celastrol in inflammation and diseases, Inflamm. Res. 74 (2025) 23.
|
| [135] |
P. Luo, Q. Zhang, T.-Y. Zhong, et al., Celastrol mitigates inflammation in sepsis by inhibiting the PKM2-dependent Warburg effect, Mil. Med. Res. 9 (2022) 22.
|
| [136] |
N. Wang, X. Zhou, T. Zhang, et al., Capsaicin from chili peppers and its analogues and their valued applications: An updated literature review, Food Res. Int. 208 (2025) 116034.
|
| [137] |
Q. Zhang, P. Luo, F. Xia, et al., Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis, Cell Chem. Biol. 29 (2022) 1248-1259.e6.
|
| [138] |
A. Bouyahya, D. Taha, T. Benali, et al., Natural sources, biological effects, and pharmacological properties of cynaroside, Biomed. Pharmacother. 161 (2023) 114337.
|
| [139] |
Q. Sun, Q. Liu, X. Zhou, et al., Flavonoids regulate tumor-associated macrophages - From structure-activity relationship to clinical potential (Review), Pharmacol. Res. 184 (2022) 106419.
|
| [140] |
Le Zhang, K. Wei, J. Xu, et al., Belamcanda chinensis (L.) DC-An ethnopharmacological, phytochemical and pharmacological review, J. Ethnopharmacol. 186 (2016) 1-13.
|
| [141] |
J. Lu, J. Yan, J. Yan, et al., Network pharmacology based research into the effect and mechanism of Xijiao Dihuang decoction against sepsis, Biomed. Pharmacother. 122 (2020) 109777.
|
| [142] |
X. Liu, Y. Song, F. Zhou, et al., Network and experimental pharmacology on mechanism of Si-Wu-tang improving ovarian function in a mouse model of premature ovarian failure induced by cyclophosphamide, J. Ethnopharmacol. 301 (2023) 115842.
|
| [143] |
Z. Ma, K. Xie, X. Xue, et al., Si-Wu-Tang attenuates hepatocyte PANoptosis and M1 polarization of macrophages in non-alcoholic fatty liver disease by influencing the intercellular transfer of mtDNA, J. Ethnopharmacol. 328 (2024) 118057.
|
| [144] |
Y. Zhang, W. Zhang, Y. Zhao, et al., Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications, Crit. Rev. Food Sci. Nutr. (2024) 1-21.
|
| [145] |
S. Bahiraii, M. Brenner, F. Yan, et al., Sulforaphane diminishes moonlighting of pyruvate kinase M2 and interleukin 1β expression in M1 (LPS) macrophages, Front. Immunol. 13 (2022) 935692.
|
| [146] |
H.-Q. Zhang, C. Sun, N. Xu, et al., The current landscape of the antimicrobial peptide melittin and its therapeutic potential, Front. Immunol. 15 (2024) 1326033.
|
| [147] |
X.-G. Fan, S.-Y. Pei, D. Zhou, et al., Melittin ameliorates inflammation in mouse acute liver failure via inhibition of PKM2-mediated Warburg effect, Acta Pharmacol. Sin. 42 (2021) 1256-1266.
|
| [148] |
F. Jamshed, F. Dashti, X. Ouyang, et al., New uses for an old remedy: Digoxin as a potential treatment for steatohepatitis and other disorders, World J. Gastroenterol. 29 (2023) 1824-1837.
|
| [149] |
X. Ouyang, S.-N. Han, J.-Y. Zhang, et al., Digoxin Suppresses Pyruvate Kinase M2-Promoted HIF-1α Transactivation in Steatohepatitis, Cell Metab. 27 (2018) 339-350.e3.
|
| [150] |
H. Zhang, J. Li, M. Diao, et al., Production and pharmaceutical research of minor saponins in Panax notoginseng (Sanqi): Current status and future prospects, Phytochemistry 223 (2024) 114099.
|