Turn off MathJax
Article Contents
Ke Li, Mingyu Wu, Qiuyu Zhang, Jiabin Wu, Xianyi Ding, Weihua Xiao. PKM2: A Gatekeeper in Macrophage Metabolic Reprogramming[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101564
Citation: Ke Li, Mingyu Wu, Qiuyu Zhang, Jiabin Wu, Xianyi Ding, Weihua Xiao. PKM2: A Gatekeeper in Macrophage Metabolic Reprogramming[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101564

PKM2: A Gatekeeper in Macrophage Metabolic Reprogramming

doi: 10.1016/j.jpha.2026.101564
  • Received Date: Aug. 13, 2025
  • Accepted Date: Jan. 27, 2026
  • Rev Recd Date: Jan. 26, 2026
  • Available Online: Jan. 30, 2026
  • Metabolic reprogramming serves as a core adaptive mechanism for cells to respond to microenvironmental changes and plays a decisive role in macrophage functional polarization. Pyruvate kinase M2 (PKM2), recognized for its dynamic allosteric regulation, acts as a critical molecular hub linking metabolic reprogramming with immune responses. Despite numerous studies affirming the pivotal role of PKM2 in tumor metabolism, its complex regulatory mechanisms within the immune metabolic network remain inadequately defined, significantly hindering the advancement of targeted therapeutic strategies for metabolic reprogramming. This review meticulously analyzes and highlights the significance of PKM2-mediated metabolic reprogramming in macrophages across several organ disorders. We subsequently examined various PKM2 inhibitors and activators, along with natural compounds that modulate PKM2, as research evidence for therapeutic approaches to diseases, particularly with the metabolic reprogramming of macrophages. This study comprehensively examines the theoretical foundation, research evidence, and intervention strategies regarding PKM2 as a crucial regulatory element of macrophages, offering novel perspectives on therapeutic approaches for macrophage metabolic reprogramming.
  • loading
  • [1]
    O. Warburg, On the origin of cancer cells, Science 123 (1956) 309-314.
    [2]
    M. Alquraishi, D.L. Puckett, D.S. Alani, et al., Pyruvate kinase M2: A simple molecule with complex functions, Free Radic. Biol. Med. 143 (2019) 176-192.
    [3]
    S.E. Corcoran, L.A. O'Neill, HIF1α and metabolic reprogramming in inflammation, J. Clin. Invest. 126 (2016) 3699-3707.
    [4]
    K. Yang, X. Wang, C. Song, et al., The role of lipid metabolic reprogramming in tumor microenvironment, Theranostics 13 (2023) 1774-1808.
    [5]
    L. Yang, Z. Chu, M. Liu, et al., Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy, J. Hematol. Oncol. 16 (2023) 59.
    [6]
    T. Hu, C.-H. Liu, M. Lei, et al., Metabolic regulation of the immune system in health and diseases: mechanisms and interventions, Signal Transduct. Target. Ther. 9 (2024) 268.
    [7]
    S. Galvan-Pena, L.A. O'Neill, Metabolic reprograming in macrophage polarization, Front. Immunol. 5 (2014) 420.
    [8]
    A. Viola, F. Munari, R. Sanchez-Rodriguez, et al., The Metabolic Signature of Macrophage Responses, Front. Immunol. 10 (2019) 1462.
    [9]
    D. Vats, L. Mukundan, J.I. Odegaard, et al., Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation, Cell Metab. 4 (2006) 13-24.
    [10]
    M. Nomura, J. Liu, I.I. Rovira, et al., Fatty acid oxidation in macrophage polarization, Nat. Immunol. 17 (2016) 216-217.
    [11]
    J. van den Bossche, L.A. O'Neill, D. Menon, Macrophage Immunometabolism: Where Are We (Going)?, Trends Immunol. 38 (2017) 395-406.
    [12]
    R.J. Arts, B. Novakovic, R. ter Horst, et al., Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity, Cell Metab. 24 (2016) 807-819.
    [13]
    L.A. O'Neill, E.J. Pearce, Immunometabolism governs dendritic cell and macrophage function, J. Exp. Med. 213 (2016) 15-23.
    [14]
    J.E. Wilson, Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function, J. Exp. Biol. 206 (2003) 2049-2057.
    [15]
    W.J. Israelsen, M.G. Vander Heiden, Pyruvate kinase: Function, regulation and role in cancer, Semin. Cell Dev. Biol. 43 (2015) 43-51.
    [16]
    Z. Zhang, X. Deng, Y. Liu, et al., PKM2, function and expression and regulation, Cell Biosci. 9 (2019) 52.
    [17]
    D.-Q. Chen, J. Han, H. Liu, et al., Targeting pyruvate kinase M2 for the treatment of kidney disease, Front. Pharmacol. 15 (2024) 1376252.
    [18]
    Y.-B. Lee, J.K. Min, J.-G. Kim, et al., Multiple functions of pyruvate kinase M2 in various cell types, J. Cell. Physiol. 237 (2022) 128-148.
    [19]
    J.D. Dombrauckas, B.D. Santarsiero, A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis, Biochemistry 44 (2005) 9417-9429.
    [20]
    B. Chaneton, P. Hillmann, L. Zheng, et al., Serine is a natural ligand and allosteric activator of pyruvate kinase M2, Nature 491 (2012) 458-462.
    [21]
    K.E. Keller, I.S. Tan, Y.-S. Lee, SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions, Science 338 (2012) 1069-1072.
    [22]
    D. Srivastava, S. Nandi, M. Dey, Mechanistic and Structural Insights into Cysteine-Mediated Inhibition of Pyruvate Kinase Muscle Isoform 2, Biochemistry 58 (2019) 3669-3682.
    [23]
    J.A. Macpherson, A. Theisen, L. Masino, et al., Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation, Elife 8 (2019).
    [24]
    K. Ashizawa, P. McPhie, K.H. Lin, et al., An in vitro novel mechanism of regulating the activity of pyruvate kinase M2 by thyroid hormone and fructose 1, 6-bisphosphate, Biochemistry 30 (1991) 7105-7111.
    [25]
    H.P. Morgan, F.J. O'Reilly, M.A. Wear, et al., M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 5881-5886.
    [26]
    M. Singer, C.S. Deutschman, C.W. Seymour, et al., The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), JAMA 315 (2016) 801-810.
    [27]
    L. Yang, M. Xie, M. Yang, et al., PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis, Nat. Commun. 5 (2014) 4436.
    [28]
    Z. Zhang, W. Deng, R. Kang, et al., Plumbagin Protects Mice from Lethal Sepsis by Modulating Immunometabolism Upstream of PKM2, Mol. Med. 22 (2016) 162-172.
    [29]
    L. Pan, L. Hu, L. Zhang, et al., Deoxyelephantopin decreases the release of inflammatory cytokines in macrophage associated with attenuation of aerobic glycolysis via modulation of PKM2, Int. Immunopharmacol. 79 (2020) 106048.
    [30]
    L. Pei, Y. Le, H. Chen, et al., Cynaroside prevents macrophage polarization into pro-inflammatory phenotype and alleviates cecal ligation and puncture-induced liver injury by targeting PKM2/HIF-1α axis, Fitoterapia 152 (2021) 104922.
    [31]
    D. Li, L. Yang, W. Wang, et al., Eriocitrin attenuates sepsis-induced acute lung injury in mice by regulating MKP1/MAPK pathway mediated-glycolysis, Int. Immunopharmacol. 118 (2023) 110021.
    [32]
    J. Lu, L. Zhang, L. Cheng, et al., Xijiao Dihuang decoction improves prognosis of sepsis via inhibition of aerobic glycolysis, Biomed. Pharmacother. 129 (2020) 110501.
    [33]
    D. Yu, W. Huang, M. Sheng, et al., Angiotensin-(1-7) Modulates the Warburg Effect to Alleviate Inflammation in LPS-Induced Macrophages and Septic Mice, J. Inflamm. Res. 17 (2024) 469-485.
    [34]
    E.M. Palsson-McDermott, A.M. Curtis, G. Goel, et al., Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages, Cell Metab. 21 (2015) 65-80.
    [35]
    M. Xie, Y. Yu, R. Kang, et al., PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation, Nat. Commun. 7 (2016) 13280.
    [36]
    G.A. Timmons, R.G. Carroll, J.R. O'Siorain, et al., The Circadian Clock Protein BMAL1 Acts as a Metabolic Sensor In Macrophages to Control the Production of Pro IL-1β, Front. Immunol. 12 (2021) 700431.
    [37]
    S.-Y. Sang, Y.-J. Wang, T. Liang, et al., Protein 4.1R regulates M1 macrophages polarization via glycolysis, alleviating sepsis-induced liver injury in mice, Int. Immunopharmacol. 128 (2024) 111546.
    [38]
    K. Das Gupta, M.R. Shakespear, J.E. Curson, et al., Class IIa Histone Deacetylases Drive Toll-like Receptor-Inducible Glycolysis and Macrophage Inflammatory Responses via Pyruvate Kinase M2, Cell Rep. 30 (2020) 2712-2728.e8.
    [39]
    Z. Yi, Y. Wu, W. Zhang, et al., Activator-Mediated Pyruvate Kinase M2 Activation Contributes to Endotoxin Tolerance by Promoting Mitochondrial Biogenesis, Front. Immunol. 11 (2020) 595316.
    [40]
    S. Yu, S. Pei, M. Zhang, et al., PKM2-mediated STAT3 phosphorylation promotes acute liver failure via regulating NLRP3-dependent pyroptosis, Commun. Biol. 7 (2024) 1694.
    [41]
    T. Bonaldi, F. Talamo, P. Scaffidi, et al., Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion, EMBO J. 22 (2003) 5551-5560.
    [42]
    X. Hu, X. Wan, Y. Diao, et al., Fibrinogen-like protein 2 regulates macrophage glycolytic reprogramming by directly targeting PKM2 and exacerbates alcoholic liver injury, Int. Immunopharmacol. 124 (2023) 110957.
    [43]
    Z. Miao, W. Wang, Z. Miao, et al., Role of Selenoprotein W in participating in the progression of non-alcoholic fatty liver disease, Redox Biol. 71 (2024) 103114.
    [44]
    Y. Inomata, J.-W. Oh, K. Taniguchi, et al., Downregulation of miR-122-5p Activates Glycolysis via PKM2 in Kupffer Cells of Rat and Mouse Models of Non-Alcoholic Steatohepatitis, Int. J. Mol. Sci. 23 (2022).
    [45]
    F. Xu, M. Guo, W. Huang, et al., Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH, Redox Biol. 36 (2020) 101634.
    [46]
    T. Dong, G. Hu, Z. Fan, et al., Activation of GPR3-β-arrestin2-PKM2 pathway in Kupffer cells stimulates glycolysis and inhibits obesity and liver pathogenesis, Nat. Commun. 15 (2024) 807.
    [47]
    Q. Kong, N. Li, H. Cheng, et al., HSPA12A Is a Novel Player in Nonalcoholic Steatohepatitis via Promoting Nuclear PKM2-Mediated M1 Macrophage Polarization, Diabetes 68 (2019) 361-376.
    [48]
    J. Rao, H. Wang, M. Ni, et al., FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2, Gut 71 (2022) 2539-2550.
    [49]
    N.C. Lee, M.A. Carella, S. Papa, et al., High Expression of Glycolytic Genes in Cirrhosis Correlates With the Risk of Developing Liver Cancer, Front. Cell Dev. Biol. 6 (2018) 138.
    [50]
    Y. Liu, H. Wu, Y. Mei, et al., Clinicopathological and prognostic significance of PKM2 protein expression in cirrhotic hepatocellular carcinoma and non-cirrhotic hepatocellular carcinoma, Sci. Rep. 7 (2017) 15294.
    [51]
    R. Zhao, L. Li, J. Yang, et al., Overexpression of Pyruvate Kinase M2 in Tumor Tissues Is Associated with Poor Prognosis in Patients with Hepatocellular Carcinoma, Pathol. Oncol. Res. 26 (2020) 853-860.
    [52]
    W.-W. Lv, D. Liu, X.-C. Liu, et al., Effects of PKM2 on global metabolic changes and prognosis in hepatocellular carcinoma: from gene expression to drug discovery, BMC Cancer 18 (2018) 1150.
    [53]
    L.-G. Lu, Z.-L. Zhou, X.-Y. Wang, et al., PD-L1 blockade liberates intrinsic antitumourigenic properties of glycolytic macrophages in hepatocellular carcinoma, Gut 71 (2022) 2551-2560.
    [54]
    C. Verra, M.K. Paulmann, J. Wegener, et al., Spleen tyrosine kinase: a novel pharmacological target for sepsis-induced cardiac dysfunction and multi-organ failure, Front. Immunol. 15 (2024) 1447901.
    [55]
    X. Chen, C. Jiang, M. Chen, et al., SYK promotes the formation of neutrophil extracellular traps by inducing PKM2 nuclear translocation and promoting STAT3 phosphorylation to exacerbate hepatic ischemia-reperfusion injury and tumor recurrence, Mol. Med. 30 (2024) 146.
    [56]
    X. Zhang, Y. Yang, L. Jing, et al., Pyruvate Kinase M2 Contributes to TLR-Mediated Inflammation and Autoimmunity by Promoting Pyk2 Activation, Front. Immunol. 12 (2021) 680068.
    [57]
    J. Tan, J. Zhang, M. Wang, et al., DRAM1 increases the secretion of PKM2-enriched EVs from hepatocytes to promote macrophage activation and disease progression in ALD, Mol. Ther. Nucleic Acids 27 (2022) 375-389.
    [58]
    M.-G. Shin, H.-N. Cha, S. Park, et al., Selenoprotein W deficiency does not affect oxidative stress and insulin sensitivity in the skeletal muscle of high-fat diet-fed obese mice, Am. J. Physiol. Cell Physiol. 317 (2019) C1172-C1182.
    [59]
    S. Misra, T.-J. Lee, A. Sebastian, et al., Loss of selenoprotein W in murine macrophages alters the hierarchy of selenoprotein expression, redox tone, and mitochondrial functions during inflammation, Redox Biol. 59 (2023) 102571.
    [60]
    Y.-Z. Li, Y.-Y. Wang, L. Huang, et al., Annexin A protein family in atherosclerosis, Clin. Chim. Acta 531 (2022) 406-417.
    [61]
    O. Cheung, P. Puri, C. Eicken, et al., Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression, Hepatology 48 (2008) 1810-1820.
    [62]
    S. Bala, J. Petrasek, S. Mundkur, et al., Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases, Hepatology 56 (2012) 1946-1957.
    [63]
    P.-P. Hou, L.-J. Luo, H.-Z. Chen, et al., Ectosomal PKM2 Promotes HCC by Inducing Macrophage Differentiation and Remodeling the Tumor Microenvironment, Mol. Cell 78 (2020) 1192-1206.e10.
    [64]
    B. Ruf, B. Heinrich, T.F. Greten, Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells, Cell. Mol. Immunol. 18 (2021) 112-127.
    [65]
    W.P. Lafuse, D.J. Wozniak, M.V. Rajaram, Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair, Cells 10 (2020).
    [66]
    R. Zaman, S. Epelman, Resident cardiac macrophages: Heterogeneity and function in health and disease, Immunity 55 (2022) 1549-1563.
    [67]
    M. Rihan, S.S. Sharma, Role of Pyruvate Kinase M2 (PKM2) in Cardiovascular Diseases, J. Cardiovasc. Transl. Res. 16 (2023) 382-402.
    [68]
    B. Saleme, V. Gurtu, Y. Zhang, et al., Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity, Sci. Transl. Med. 11 (2019).
    [69]
    L. Hauck, K. Dadson, S. Chauhan, et al., Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI, Cell Death Differ. 28 (2021) 1398-1417.
    [70]
    Y. Tang, M. Feng, Y. Su, et al., Jmjd4 Facilitates Pkm2 Degradation in Cardiomyocytes and Is Protective Against Dilated Cardiomyopathy, Circulation 147 (2023) 1684-1704.
    [71]
    L. Guo, L. Wang, G. Qin, et al., M-type pyruvate kinase 2 (PKM2) tetramerization alleviates the progression of right ventricle failure by regulating oxidative stress and mitochondrial dynamics, J. Transl. Med. 21 (2023) 888.
    [72]
    M. Siragusa, J. Thole, S.-I. Bibli, et al., Nitric oxide maintains endothelial redox homeostasis through PKM2 inhibition, EMBO J. 38 (2019) e100938.
    [73]
    F. Yao, G. Yang, Y. Xian, et al., The protective effect of hydroxytyrosol acetate against inflammation of vascular endothelial cells partly through the SIRT6-mediated PKM2 signaling pathway, Food Funct. 10 (2019) 5789-5803.
    [74]
    J. Zhu, H. Chen, Y. Le, et al., Salvianolic acid A regulates pyroptosis of endothelial cells via directly targeting PKM2 and ameliorates diabetic atherosclerosis, Front. Pharmacol. 13 (2022) 1009229.
    [75]
    Y. Wu, L. Tang, H. Huang, et al., Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence, Nat. Commun. 14 (2023) 1323.
    [76]
    T. Shirai, R.R. Nazarewicz, B.B. Wallis, et al., The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease, J. Exp. Med. 213 (2016) 337-354.
    [77]
    P. Doddapattar, R. Dev, M. Ghatge, et al., Myeloid Cell PKM2 Deletion Enhances Efferocytosis and Reduces Atherosclerosis, Circ. Res. 130 (2022) 1289-1305.
    [78]
    X. Gai, F. Liu, Y. Wu, et al., Overexpressed PKM2 promotes macrophage phagocytosis and atherosclerosis, Animal Model. Exp. Med. 6 (2023) 92-102.
    [79]
    S. Lu, J. Deng, H. Liu, et al., PKM2-dependent metabolic reprogramming in CD4(+) T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis, J. Mol. Med. (Berl) 96 (2018) 585-600.
    [80]
    S.-L. Lu, G.-H. Dang, J.-C. Deng, et al., Shikonin attenuates hyperhomocysteinemia-induced CD4(+) T cell inflammatory activation and atherosclerosis in ApoE(-/-) mice by metabolic suppression, Acta Pharmacol. Sin. 41 (2020) 47-55.
    [81]
    G. Dang, T. Li, D. Yang, et al., T lymphocyte-derived extracellular vesicles aggravate abdominal aortic aneurysm by promoting macrophage lipid peroxidation and migration via pyruvate kinase muscle isozyme 2, Redox Biol. 50 (2022) 102257.
    [82]
    Y. Du, J. Li, Z. Dai, et al., Pyruvate kinase M2 sustains cardiac mitochondrial quality surveillance in septic cardiomyopathy by regulating prohibitin 2 abundance via S91 phosphorylation, Cell. Mol. Life Sci. 81 (2024) 254.
    [83]
    J. Ren, B. Ren, T. Fu, et al., Pyruvate kinase M2 sustains cardiac mitochondrial integrity in septic cardiomyopathy by regulating PHB2-dependent mitochondrial biogenesis, Int. J. Med. Sci. 21 (2024) 983-993.
    [84]
    Le Ni, B. Lin, L. Hu, et al., Pyruvate Kinase M2 Protects Heart from Pressure Overload-Induced Heart Failure by Phosphorylating RAC1, J. Am. Heart Assoc. 11 (2022) e024854.
    [85]
    M.A. Lorenzana-Carrillo, K. Gopal, N.J. Byrne, et al., TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and induces P53 in cardiomyocytes to promote heart failure, Sci. Transl. Med. 14 (2022) eabm3565.
    [86]
    K.C. Lee, A.L. Williams, A. Hara, et al., Loss of PKM2 dysregulates inflammatory signaling in the infarcted murine heart, Physiol. Rep. 13 (2025) e70193.
    [87]
    I. Esen, W.F. Jiemy, Y. van Sleen, et al., Plasma Pyruvate Kinase M2 as a marker of vascular inflammation in giant cell arteritis, Rheumatology (Oxford) 61 (2022) 3060-3070.
    [88]
    Q. Li, K. Leng, Y. Liu, et al., The impact of hyperglycaemia on PKM2-mediated NLRP3 inflammasome/stress granule signalling in macrophages and its correlation with plaque vulnerability: an in vivo and in vitro study, Metabolism 107 (2020) 154231.
    [89]
    Z.-W. Zhao, Y.-W. Xu, X.-T. Zhang, et al., Elevated plasma pyruvate kinase M2 concentrations are associated with the clinical severity and prognosis of coronary artery disease, Biochem. Med. (Zagreb) 34 (2024) 10704.
    [90]
    T.J. Barrett, Macrophages in Atherosclerosis Regression, Arterioscler. Thromb. Vasc. Biol. 40 (2020) 20-33.
    [91]
    S.A. O'Rourke, N.G. Neto, E. Devilly, et al., Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages, Atherosclerosis 352 (2022) 35-45.
    [92]
    H. Cui, L. Xie, H. Lu, et al., Macrophage junctional adhesion molecule-like (JAML) protein promotes NLRP3 inflammasome activation in the development of atherosclerosis, Cell Death Differ. (2025).
    [93]
    J. Yap, J. Irei, J. Lozano-Gerona, et al., Macrophages in cardiac remodelling after myocardial infarction, Nat. Rev. Cardiol. 20 (2023) 373-385.
    [94]
    Y. Cheng, Y. Feng, Z. Xia, et al., ω-Alkynyl arachidonic acid promotes anti-inflammatory macrophage M2 polarization against acute myocardial infarction via regulating the cross-talk between PKM2, HIF-1α and iNOS, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862 (2017) 1595-1605.
    [95]
    S. Lu, Y. Tian, Y. Luo, et al., Iminostilbene, a novel small-molecule modulator of PKM2, suppresses macrophage inflammation in myocardial ischemia-reperfusion injury, J. Adv. Res. 29 (2021) 83-94.
    [96]
    M. Rihan, S.S. Sharma, Inhibition of Pyruvate kinase M2 (PKM2) by shikonin attenuates isoproterenol-induced acute myocardial infarction via reduction in inflammation, hypoxia, apoptosis, and fibrosis, Naunyn Schmiedebergs. Arch. Pharmacol. 397 (2024) 145-159.
    [97]
    Y. Zhang, L. Zhu, X. Li, et al., M2 macrophage exosome-derived lncRNA AK083884 protects mice from CVB3-induced viral myocarditis through regulating PKM2/HIF-1α axis mediated metabolic reprogramming of macrophages, Redox Biol. 69 (2024) 103016.
    [98]
    Z. Chen, Y. Li, Y. Niu, et al., MEK1/2-PKM2 Pathway Modulates the Immunometabolic Reprogramming of Proinflammatory Allograft-infiltrating Macrophages During Heart Transplant Rejection, Transplantation 108 (2024) 1127-1141.
    [99]
    M.E. Long, R.K. Mallampalli, J.C. Horowitz, Pathogenesis of pneumonia and acute lung injury, Clin. Sci. (Lond) 136 (2022) 747-769.
    [100]
    V. Kumar, Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury, Front. Immunol. 11 (2020) 1722.
    [101]
    W.-J. Zhong, H.-H. Yang, X.-X. Guan, et al., Inhibition of glycolysis alleviates lipopolysaccharide-induced acute lung injury in a mouse model, J. Cell. Physiol. 234 (2019) 4641-4654.
    [102]
    Z.-H. Ying, H.-M. Li, W.-Y. Yu, et al., Iridin Prevented Against Lipopolysaccharide-Induced Inflammatory Responses of Macrophages via Inactivation of PKM2-Mediated Glycolytic Pathways, J. Inflamm. Res. 14 (2021) 341-354.
    [103]
    H. Wang, C. Fan, X. Chen, et al., Pyruvate Kinase M2 Nuclear Translocation Regulate Ferroptosis-Associated Acute Lung Injury in Cytokine Storm, Inflammation (2024).
    [104]
    W. Wang, F. Zheng, C. Lin, et al., Changes in energy metabolism and macrophage polarization: Potential mechanisms of arsenic-induced lung injury, Ecotoxicol. Environ. Saf. 204 (2020) 110948.
    [105]
    N. Mao, H. Yang, J. Yin, et al., Glycolytic Reprogramming in Silica-Induced Lung Macrophages and Silicosis Reversed by Ac-SDKP Treatment, Int. J. Mol. Sci. 22 (2021).
    [106]
    C. Li, C. Deng, S. Wang, et al., A novel role for the ROS-ATM-Chk2 axis mediated metabolic and cell cycle reprogramming in the M1 macrophage polarization, Redox Biol. 70 (2024) 103059.
    [107]
    L.-L. Chen, C. Song, Y. Zhang, et al., Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulation, Eur. J. Pharmacol. 936 (2022) 175352.
    [108]
    Q. Chen, X. Shao, Y. He, et al., Norisoboldine Attenuates Sepsis-Induced Acute Lung Injury by Modulating Macrophage Polarization via PKM2/HIF-1α/PGC-1α Pathway, Biol. Pharm. Bull. 44 (2021) 1536-1547.
    [109]
    S. He, C. Fan, Y. Ji, et al., SENP3 facilitates M1 macrophage polarization via the HIF-1α/PKM2 axis in lipopolysaccharide-induced acute lung injury, Innate Immun. 29 (2023) 25-34.
    [110]
    R.-Y. Pan, L. He, J. Zhang, et al., Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease, Cell Metab. 34 (2022) 634-648.e6.
    [111]
    Y. Liu, W. Kwok, H. Yoon, et al., Imbalance in Glucose Metabolism Regulates the Transition of Microglia from Homeostasis to Disease-Associated Microglia Stage 1, J. Neurosci. 44 (2024).
    [112]
    J. Gao, M. Yao, W. Zhang, et al., Panax notoginseng saponins alleviates inflammation induced by microglial activation and protects against ischemic brain injury via inhibiting HIF-1α/PKM2/STAT3 signaling, Biomed. Pharmacother. 155 (2022) 113479.
    [113]
    X.-Y. Xiong, Y.-J. Liang, X.-X. Zhang, et al., PKM2 Nuclear Translocation Promotes Glial Cell Activation and Aggravates the Brain Injury of Intracerebral Hemorrhage, J. Integr. Neurosci. 22 (2023) 168.
    [114]
    J. Gao, R. Liu, J. Tang, et al., Suppressing nuclear translocation of microglial PKM2 confers neuroprotection via downregulation of neuroinflammation after mouse cerebral ischemia-reperfusion injury, Int. Immunopharmacol. 141 (2024) 112880.
    [115]
    H. Zhu, H. Zhang, X.-J. Zhao, et al., Tetramerization of PKM2 Alleviates Traumatic Brain Injury by Ameliorating Mitochondrial Damage in Microglia, J. Neuroimmune Pharmacol. 19 (2024) 48.
    [116]
    L. Lu, H. Wang, X. Liu, et al., Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway, J. Neuroinflammation 18 (2021) 229.
    [117]
    G. Wang, J. Shen, Q. Guan, et al., LncRNA-AC020978 Promotes Metabolic Reprogramming in M1 Microglial Cells in Postoperative Cognitive Disorder via PKM2, Mol. Neurobiol. 61 (2024) 2459-2467.
    [118]
    M. Li, H. Lu, X. Wang, et al., Pyruvate kinase M2 (PKM2) interacts with activating transcription factor 2 (ATF2) to bridge glycolysis and pyroptosis in microglia, Mol. Immunol. 140 (2021) 250-266.
    [119]
    L. Zhang, T. Lv, P. Hou, et al., Sirt5-mediated polarization and metabolic reprogramming of macrophage sustain brain function following ischemic stroke, Brain Res. 1857 (2025) 149613.
    [120]
    Y. Zhang, H. Chen, R. Li, et al., Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future, Signal Transduct. Target. Ther. 8 (2023) 248.
    [121]
    Z. Wei, X. Ni, H. Cui, et al., Neurotoxic effects of triclosan in adolescent mice: Pyruvate kinase M2 dimer regulated Signal transducer and activator of transcription 3 phosphorylation mediated microglia activation and neuroinflammation, Sci. Total Environ. 942 (2024) 173739.
    [122]
    C. Shu, H. Cui, Y. Peng, et al., Understanding the molecular pathway of triclosan-induced ADHD-like behaviour: Involvement of the hnRNPA1-PKM2-STAT3 feedback loop, Environ. Int. 191 (2024) 108966.
    [123]
    H. Qiao, X. He, Q. Zhang, et al., Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis, Int. J. Biol. Macromol. 129 (2019) 601-607.
    [124]
    X. Li, R. Zhou, H. Peng, et al., Microglia PKM2 Mediates Neuroinflammation and Neuron Loss in Mice Epilepsy through the Astrocyte C3-Neuron C3R Signaling Pathway, Brain Sci. 13 (2023).
    [125]
    E.M. Palsson-McDermott, L.A. O'Neill, The Warburg effect then and now: From cancer to inflammatory diseases, Bioessays 35 (2013) 965-973.
    [126]
    C. Xue, Q. Yao, X. Gu, et al., Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer, Signal Transduct. Target. Ther. 8 (2023) 204.
    [127]
    P. Ye, Z. Li, H. Jiang, Novel targets for treating neurodegenerative diseases: The PKM2-STAT3-hnRNPA1 feedback loop, Pharmacol. Res. 218 (2025) 107840.
    [128]
    C. Guo, J. He, X. Song, et al., Pharmacological properties and derivatives of shikonin-A review in recent years, Pharmacol. Res. 149 (2019) 104463.
    [129]
    L. Yuan, Y. Wang, Y. Chen, et al., Shikonin inhibits immune checkpoint PD-L1 expression on macrophage in sepsis by modulating PKM2, Int. Immunopharmacol. 121 (2023) 110401.
    [130]
    A. Servillo, P. Scandale, G. Oldoni, et al., Inflammatory choroidal neovascularization: An evidence-based update, Surv. Ophthalmol. 70 (2025) 451-466.
    [131]
    Y. Wang, L. Xie, M. Zhu, et al., Shikonin alleviates choroidal neovascularization by inhibiting proangiogenic factor production from infiltrating macrophages, Exp. Eye Res. 213 (2021) 108823.
    [132]
    G. Petrocelli, P. Marrazzo, L. Bonsi, et al., Plumbagin, a Natural Compound with Several Biological Effects and Anti-Inflammatory Properties, Life (Basel) 13 (2023).
    [133]
    T. Mehmood, C. Muanprasat, Deoxyelephantopin and Its Isomer Isodeoxyelephantopin: Anti-Cancer Natural Products with Multiple Modes of Action, Molecules 27 (2022).
    [134]
    H. Lei, Y. Ruan, R. Ding, et al., The role of celastrol in inflammation and diseases, Inflamm. Res. 74 (2025) 23.
    [135]
    P. Luo, Q. Zhang, T.-Y. Zhong, et al., Celastrol mitigates inflammation in sepsis by inhibiting the PKM2-dependent Warburg effect, Mil. Med. Res. 9 (2022) 22.
    [136]
    N. Wang, X. Zhou, T. Zhang, et al., Capsaicin from chili peppers and its analogues and their valued applications: An updated literature review, Food Res. Int. 208 (2025) 116034.
    [137]
    Q. Zhang, P. Luo, F. Xia, et al., Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis, Cell Chem. Biol. 29 (2022) 1248-1259.e6.
    [138]
    A. Bouyahya, D. Taha, T. Benali, et al., Natural sources, biological effects, and pharmacological properties of cynaroside, Biomed. Pharmacother. 161 (2023) 114337.
    [139]
    Q. Sun, Q. Liu, X. Zhou, et al., Flavonoids regulate tumor-associated macrophages - From structure-activity relationship to clinical potential (Review), Pharmacol. Res. 184 (2022) 106419.
    [140]
    Le Zhang, K. Wei, J. Xu, et al., Belamcanda chinensis (L.) DC-An ethnopharmacological, phytochemical and pharmacological review, J. Ethnopharmacol. 186 (2016) 1-13.
    [141]
    J. Lu, J. Yan, J. Yan, et al., Network pharmacology based research into the effect and mechanism of Xijiao Dihuang decoction against sepsis, Biomed. Pharmacother. 122 (2020) 109777.
    [142]
    X. Liu, Y. Song, F. Zhou, et al., Network and experimental pharmacology on mechanism of Si-Wu-tang improving ovarian function in a mouse model of premature ovarian failure induced by cyclophosphamide, J. Ethnopharmacol. 301 (2023) 115842.
    [143]
    Z. Ma, K. Xie, X. Xue, et al., Si-Wu-Tang attenuates hepatocyte PANoptosis and M1 polarization of macrophages in non-alcoholic fatty liver disease by influencing the intercellular transfer of mtDNA, J. Ethnopharmacol. 328 (2024) 118057.
    [144]
    Y. Zhang, W. Zhang, Y. Zhao, et al., Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications, Crit. Rev. Food Sci. Nutr. (2024) 1-21.
    [145]
    S. Bahiraii, M. Brenner, F. Yan, et al., Sulforaphane diminishes moonlighting of pyruvate kinase M2 and interleukin 1β expression in M1 (LPS) macrophages, Front. Immunol. 13 (2022) 935692.
    [146]
    H.-Q. Zhang, C. Sun, N. Xu, et al., The current landscape of the antimicrobial peptide melittin and its therapeutic potential, Front. Immunol. 15 (2024) 1326033.
    [147]
    X.-G. Fan, S.-Y. Pei, D. Zhou, et al., Melittin ameliorates inflammation in mouse acute liver failure via inhibition of PKM2-mediated Warburg effect, Acta Pharmacol. Sin. 42 (2021) 1256-1266.
    [148]
    F. Jamshed, F. Dashti, X. Ouyang, et al., New uses for an old remedy: Digoxin as a potential treatment for steatohepatitis and other disorders, World J. Gastroenterol. 29 (2023) 1824-1837.
    [149]
    X. Ouyang, S.-N. Han, J.-Y. Zhang, et al., Digoxin Suppresses Pyruvate Kinase M2-Promoted HIF-1α Transactivation in Steatohepatitis, Cell Metab. 27 (2018) 339-350.e3.
    [150]
    H. Zhang, J. Li, M. Diao, et al., Production and pharmaceutical research of minor saponins in Panax notoginseng (Sanqi): Current status and future prospects, Phytochemistry 223 (2024) 114099.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (55) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return