| Citation: | Yunhao Yi, Yanling Chen, Wuchaonan Liu, Jingjing Yang, Le Yang, Jing Liu, Shengping Luo, Qianru Zeng, Tao Gao, Yihui Deng. Potential mechanisms of natural products in improving gouty arthritis: Focusing on NLRP3 inflammasome regulation[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101563 |
| [1] |
J.D. FitzGerald, Gout, Ann. Intern. Med. 178 (2025) Itc33-itc48.
|
| [2] |
S. Xie, H. Xiao, L. Xu, et al., A comprehensive analysis of trends in the burden of gout in China and globally from 1990 to 2021, Sci. Rep. 15 (2025) 3310.
|
| [3] |
G.G. Collaborators, Global, regional, and national burden of gout, 1990-2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021, Lancet Rheumatol. 6 (2024) e507-e517.
|
| [4] |
A.K. So, F. Martinon, Inflammation in gout: mechanisms and therapeutic targets, Nat. Rev. Rheumatol. 13 (2017) 639-647.
|
| [5] |
Y. Wang, F. Wang, W. Liu, et al., New drug discovery and development from natural products: Advances and strategies, Pharmacol. Ther. 264 (2024) 108752.
|
| [6] |
X. Guo, W. Luo, L. Wu, et al., Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials, Adv. Sci (Weinh). 11 (2024) e2403388.
|
| [7] |
A. Akbal, A. Dernst, M. Lovotti, et al., How location and cellular signaling combine to activate the NLRP3 inflammasome, Cell. Mol. Immunol. 19 (2022) 1201-1214.
|
| [8] |
J.H. Lee, H.S. Kim, J.H. Lee, et al., Natural Products as a Novel Therapeutic Strategy for NLRP3 Inflammasome-Mediated Gout, Front. Pharmacol. 13 (2022) 861399.
|
| [9] |
S. Toldo, E. Mezzaroma, L.F. Buckley, et al., Targeting the NLRP3 inflammasome in cardiovascular diseases, Pharmacol. Ther. 236 (2022) 108053.
|
| [10] |
M. Cescato, Y.Y.J. Zhu, L. Le Corre, et al., Implication of the LRR Domain in the Regulation and Activation of the NLRP3 Inflammasome, Cells. 13 (2024).
|
| [11] |
J.A. Duncan, D.T. Bergstralh, Y. Wang, et al., Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 8041-8046.
|
| [12] |
A. Lu, V.G. Magupalli, J. Ruan, et al., Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes, Cell. 156 (2014) 1193-1206.
|
| [13] |
A. Nagar, T. Rahman, J.A. Harton, The ASC Speck and NLRP3 Inflammasome Function Are Spatially and Temporally Distinct, Front. Immunol. 12 (2021) 752482.
|
| [14] |
H. Zhen, Y. Hu, X. Liu, et al., The protease caspase-1: Activation pathways and functions, Biochem. Biophys. Res. Commun. 717 (2024) 149978.
|
| [15] |
L. Sun, W. Ma, W. Gao, et al., Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome, Cell. Death. Dis. 10 (2019) 542.
|
| [16] |
X. Yu, P. Lan, X. Hou, et al., HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production, J. Hepatol. 66 (2017) 693-702.
|
| [17] |
X. Lin, H. Wang, X. An, et al., Baeckein E suppressed NLRP3 inflammasome activation through inhibiting both the priming and assembly procedure: Implications for gout therapy, Phytomedicine. 84 (2021) 153521.
|
| [18] |
Q. Liu, L. Jiao, M.S. Ye, et al., GSNOR negatively regulates the NLRP3 inflammasome via S-nitrosation of MAPK14, Cell. Mol. Immunol. 21 (2024) 561-574.https://10.1038/s41423-024-01155-9.
|
| [19] |
M. Yang, Z. Qin, Y. Lin, et al., HDAC10 switches NLRP3 modification from acetylation to ubiquitination and attenuates acute inflammatory diseases, Cell. Commun. Signal. 22 (2024) 615.
|
| [20] |
L. Xiao, V.G. Magupalli, H. Wu, Cryo-EM structures of the active NLRP3 inflammasome disc, Nature. 613 (2023) 595-600.
|
| [21] |
X. Cai, H. Xu, Z.J. Chen, Prion-Like Polymerization in Immunity and Inflammation, Cold Spring Harb. Perspect. Biol. 9 (2017) a023580.
|
| [22] |
J. Shi, Y. Zhao, K. Wang, et al., Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death, Nature. 526 (2015) 660-665.
|
| [23] |
M. Papatriantafyllou, Inflammasomes: microtubules pull mitochondria to NLRP3, Nat. Rev. Immunol. 13 (2013) 306.
|
| [24] |
S. Paik, J.K. Kim, H.J. Shin, et al., Updated insights into the molecular networks for NLRP3 inflammasome activation, Cell. Mol. Immunol. 22 (2025) 563-596.
|
| [25] |
J. Moretti, B. Jia, Z. Hutchins, et al., Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome, Nat. Immunol. 23 (2022) 705-717.
|
| [26] |
N. Kayagaki, I.B. Stowe, B.L. Lee, et al., Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling, Nature. 526 (2015) 666-671.
|
| [27] |
M.M. Gaidt, T.S. Ebert, D. Chauhan, et al., Human Monocytes Engage an Alternative Inflammasome Pathway, Immunity. 44 (2016) 833-846.
|
| [28] |
Y. He, H. Hara, G. Nunez, Mechanism and Regulation of NLRP3 Inflammasome Activation, Trends. Biochem. Sci. 41 (2016) 1012-1021.
|
| [29] |
W.T. Dang, D. Xu, J.G. Zhou, Effect of Berberine on Activation of TLR4-NFκB Signaling Pathway and NLRP3 Inflammasome in Patients with Gout, Chin. J. Integr. Med. 29 (2023) 10-18.
|
| [30] |
H. Rasheed, C. McKinney, L.K. Stamp, et al., The Toll-Like Receptor 4 (TLR4) Variant rs2149356 and Risk of Gout in European and Polynesian Sample Sets, PLoS. ONE. 11 (2016) e0147939.
|
| [31] |
Y.F. Qing, J.G. Zhou, Q.B. Zhang, et al., Association of TLR4 Gene rs2149356 polymorphism with primary gouty arthritis in a case-control study, PLoS. ONE. 8 (2013) e64845.
|
| [32] |
R. Shen, L. Ma, Y. Zheng, Anti-inflammatory effects of luteolin on acute gouty arthritis rats via TLR/MyD88/NF-κB pathway, Zhong Nan Da Xue Xue Bao Yi Xue Ban. 45 (2020) 115-122.
|
| [33] |
F. Martinon, V. Petrilli, A. Mayor, et al., Gout-associated uric acid crystals activate the NALP3 inflammasome, Nature. 440 (2006) 237-241.
|
| [34] |
R. Liu-Bryan, P. Scott, A. Sydlaske, et al., Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation, Arthritis Rheum. 52 (2005) 2936-2946.
|
| [35] |
E. Bousoik, M. Qadri, K.A. Elsaid, CD44 Receptor Mediates Urate Crystal Phagocytosis by Macrophages and Regulates Inflammation in A Murine Peritoneal Model of Acute Gout, Sci. Rep. 10 (2020) 5748.
|
| [36] |
P.M. Panipinto, G.E. Yue, B. Prasad, et al., Pentagalloyl glucose inhibits monosodium urate-induced inflammation and NLRP3 inflammasome formation via TAK1, Am. J. Physiol. Cell Physiol. 329 (2025) C500-c512.
|
| [37] |
H. Li, G. Ou, Y. He, et al., Resveratrol attenuates the MSU crystal-induced inflammatory response through the inhibition of TAK1 activity, Int. Immunopharmacol. 67 (2019) 62-68.
|
| [38] |
Q. Wang, H. Qiu, Deubiquitinase USP16 induces gouty arthritis via Drp1-dependent mitochondrial fission and NLRP3 inflammasome activation, Arthritis Res. Ther. 25 (2023) 126.
|
| [39] |
F. Jiang, Q. Hu, Z. Zhang, et al., Discovery of Benzo[cd]indol-2(1H)-ones and Pyrrolo[4,3,2-de]quinolin-2(1H)-ones as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the First Bromodomain with Potential High Efficiency against Acute Gouty Arthritis, J. Med. Chem. 62 (2019) 11080-11107.
|
| [40] |
K. Hao, W. Jiang, M. Zhou, et al., Targeting BRD4 prevents acute gouty arthritis by regulating pyroptosis, Int. J. Biol. Sci. 16 (2020) 3163-3173.
|
| [41] |
Q. Meng, W. Meng, H. Bian, et al., Total glucosides of paeony protects THP-1 macrophages against monosodium urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis, Biomed. Pharmacother. 138 (2021) 111413.
|
| [42] |
Y.H. Chung, D.H. Kim, W.W. Lee, Monosodium urate crystal-induced pro-interleukin-1β production is post-transcriptionally regulated via the p38 signaling pathway in human monocytes, Sci Rep. 6 (2016) 34533.
|
| [43] |
B.L. Snyder, P.J. Blackshear, Clinical implications of tristetraprolin (TTP) modulation in the treatment of inflammatory diseases, Pharmacol. Ther. 239 (2022) 108198.
|
| [44] |
L. Lv, T. Qin, Q. Huang, et al., Targeting Tristetraprolin Expression or Functional Activity Regulates Inflammatory Response Induced by MSU Crystals, Front. Immunol. 12 (2021) 675534.
|
| [45] |
H.S. Mohammed, H.A. Elariny, N.A. Seif-Eldein, et al., Investigating the involvement of the NLRP3/ASC/caspase-1 and NF-κb/MAPK pathways in the pathogenesis of gouty arthritis: Insights from irradiated and non-irradiated Trifolium alexandrium L. extracts and some metabolites, J. Ethnopharmacol. 334 (2024) 118566.
|
| [46] |
Y. Zamudio-Cuevas, K. Martinez-Flores, J. Fernandez-Torres, et al., Monosodium urate crystals induce oxidative stress in human synoviocytes, Arthritis Res. Ther. 18 (2016) 117.
|
| [47] |
N. Schlesinger, E. Mysler, H.Y. Lin, et al., Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: results of a double-blind, randomised study, Ann. Rheum. Dis. 70 (2011) 1264-1271.
|
| [48] |
M.Y. Kim, E. Bang, H. Hwangbo, et al., Diallyl trisulfide inhibits monosodium urate-induced NLRP3 inflammasome activation via NOX3/4-dependent mitochondrial oxidative stress in RAW 264.7 and bone marrow-derived macrophages, Phytomedicine. 112 (2023) 154705.
|
| [49] |
L. Wang, R. Negro, H. Wu, TRPM2, linking oxidative stress and Ca(2+) permeation to NLRP3 inflammasome activation, Curr. Opin. Immunol. 62 (2020) 131-135.
|
| [50] |
T. Murakami, J. Ockinger, J. Yu, et al., Critical role for calcium mobilization in activation of the NLRP3 inflammasome, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 11282-11287.
|
| [51] |
Q. Liu, D. Zhang, D. Hu, et al., The role of mitochondria in NLRP3 inflammasome activation, Mol. Immunol. 103 (2018) 115-124.
|
| [52] |
H. Wu, Y. Wang, J. Huang, et al., Rutin ameliorates gout via reducing XOD activity, inhibiting ROS production and NLRP3 inflammasome activation in quail, Biomed. Pharmacother. 158 (2023) 114175.
|
| [53] |
S. Elsayed, K.A. Elsaid, Protein phosphatase 2A regulates xanthine oxidase-derived ROS production in macrophages and influx of inflammatory monocytes in a murine gout model, Front Pharmacol. 13 (2022) 1033520.
|
| [54] |
M. Yamamoto, T.W. Kensler, H. Motohashi, The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis, Physiol. Rev. 98 (2018) 1169-1203.
|
| [55] |
R. Zhou, A. Tardivel, B. Thorens, et al., Thioredoxin-interacting protein links oxidative stress to inflammasome activation, Nat. Immunol. 11 (2010) 136-140.
|
| [56] |
S.K. Kim, J.Y. Choe, K.Y. Park, Rebamipide Suppresses Monosodium Urate Crystal-Induced Interleukin-1β Production Through Regulation of Oxidative Stress and Caspase-1 in THP-1 Cells, Inflammation. 39 (2016) 473-482.
|
| [57] |
A.L. Gosling, J. Boocock, N. Dalbeth, et al., Mitochondrial genetic variation and gout in Maori and Pacific people living in Aotearoa New Zealand, Ann. Rheum. Dis. 77 (2018) 571-578.
|
| [58] |
C.C. Tseng, C.J. Chen, J.H. Yen, et al., Next-generation sequencing profiling of mitochondrial genomes in gout, Arthritis Res. Ther. 20 (2018) 137.
|
| [59] |
H. Rottenberg, J.B. Hoek, The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore, Aging Cell. 16 (2017) 943-955.
|
| [60] |
S.K. Kim, K.Y. Park, J.Y. Choe, Toll-Like Receptor 9 Is Involved in NLRP3 Inflammasome Activation and IL-1β Production Through Monosodium Urate-Induced Mitochondrial DNA, Inflammation. 43 (2020) 2301-2311.
|
| [61] |
Y. Gu, Y. Zhu, G. Deng, et al., Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation, Int. Immunopharmacol. 93 (2021) 107375.
|
| [62] |
A. Chevriaux, T. Pilot, V. Derangere, et al., Cathepsin B Is Required for NLRP3 Inflammasome Activation in Macrophages, Through NLRP3 Interaction, Front. Cell. Dev. Biol. 8 (2020) 167.
|
| [63] |
J.J. Jhang, Y.T. Cheng, C.Y. Ho, et al., Monosodium urate crystals trigger Nrf2- and heme oxygenase-1-dependent inflammation in THP-1 cells, Cell. Mol. Immunol. 12 (2015) 424-434.
|
| [64] |
K. Tsujimoto, T. Jo, D. Nagira, et al., The lysosomal Ragulator complex activates NLRP3 inflammasome in vivo via HDAC6, EMBO J. 42 (2023) e111389.
|
| [65] |
D. Song, X. Zhou, Q. Yu, et al., ML335 inhibits TWIK2 channel-mediated potassium efflux and attenuates mitochondrial damage in MSU crystal-induced inflammation, J. Transl. Med. 22 (2024) 785.
|
| [66] |
C. Schorn, B. Frey, K. Lauber, et al., Sodium overload and water influx activate the NALP3 inflammasome, J. Biol. Chem. 286 (2011) 35-41.
|
| [67] |
T. Tang, X. Lang, C. Xu, et al., CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation, Nat. Commun. 8 (2017) 202.
|
| [68] |
J.H. Tao, Y. Zhang, X.P. Li, P2X7R: a potential key regulator of acute gouty arthritis, Semin. Arthritis Rheum. 43 (2013) 376-380.
|
| [69] |
X. Li, A. Wan, Y. Liu, et al., P2X7R Mediates the Synergistic Effect of ATP and MSU Crystals to Induce Acute Gouty Arthritis, Oxid. Med. Cell. Longev. 2023 (2023) 3317307.
|
| [70] |
X. Dai, X. Fang, Y. Xia, et al., ATP-Activated P2X7R Promote the Attack of Acute Gouty Arthritis in Rats Through Activating NLRP3 Inflammasome and Inflammatory Cytokine Production, J. Inflamm. Res. 15 (2022) 1237-1248.
|
| [71] |
T. Sun, R. Xie, H. He, et al., Kynurenic acid ameliorates NLRP3 inflammasome activation by blocking calcium mobilization via GPR35, Front. Immunol. 13 (2022) 1019365.
|
| [72] |
X. Cao, Y. Li, Y. Luo, et al., Transient receptor potential melastatin 2 regulates neutrophil extracellular traps formation and delays resolution of neutrophil-driven sterile inflammation, J Inflamm (Lond). 20 (2023) 7.
|
| [73] |
Y. Zhou, Z. Tong, S. Jiang, et al., The Roles of Endoplasmic Reticulum in NLRP3 Inflammasome Activation, Cells. 9 (2020).
|
| [74] |
K. Triantafilou, T.R. Hughes, M. Triantafilou, et al., The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation, J. Cell Sci. 126 (2013) 2903-2913.
|
| [75] |
Q.B. Yang, Y.L. He, X.W. Zhong, et al., Resveratrol ameliorates gouty inflammation via upregulation of sirtuin 1 to promote autophagy in gout patients, Inflammopharmacology. 27 (2019) 47-56.
|
| [76] |
P. Liu, Y. Xu, J. Ye, et al., Qingre Huazhuo Jiangsuan Decoction promotes autophagy by inhibiting PI3K/AKT/mTOR signaling pathway to relieve acute gouty arthritis, J. Ethnopharmacol. 302 (2023) 115875.
|
| [77] |
Z. Liu, A. Chu, Z. Bai, et al., Nobiletin ameliorates monosodium urate-induced gouty arthritis in mice by enhancing AMPK/mTOR-mediated autophagy to inhibit NF-κB/NLRP3 inflammasome activation, Immunol. Lett. 274 (2025) 106982.
|
| [78] |
Y. Wang, B. Viollet, R. Terkeltaub, et al., AMP-activated protein kinase suppresses urate crystal-induced inflammation and transduces colchicine effects in macrophages, Ann. Rheum. Dis. 75 (2016) 286-294.
|
| [79] |
J. Nie, H. Qiu, DUSP1 Mitigates MSU-Induced Immune Response in Gouty Arthritis Reinforcing Autophagy, Front. Biosci (Landmark Ed). 29 (2024) 222.
|
| [80] |
H. Jiang, F. Chen, D. Song, et al., Dynamin-Related Protein 1 Is Involved in Mitochondrial Damage, Defective Mitophagy, and NLRP3 Inflammasome Activation Induced by MSU Crystals, Oxid. Med. Cell. Longev. 2022 (2022) 5064494.
|
| [81] |
J. Yu, H. Nagasu, T. Murakami, et al., Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 15514-15519.
|
| [82] |
Y. Cao, Q. Zhong, F. Tang, et al., Anethole ameliorates inflammation induced by monosodium urate in an acute gouty arthritis model via inhibiting TLRs/MyD88 pathway, Allergol. Immunopathol. (Madr.). 50 (2022) 107-114.
|
| [83] |
W. Xu, F. Li, X. Zhang, et al., The Protective Effects of Neoastilbin on Monosodium Urate Stimulated THP-1-Derived Macrophages and Gouty Arthritis in Mice through NF-κB and NLRP3 Inflammasome Pathways, Molecules. 27 (2022).
|
| [84] |
W.Y. Li, F. Yang, J.H. Chen, et al., β-Caryophyllene Ameliorates MSU-Induced Gouty Arthritis and Inflammation Through Inhibiting NLRP3 and NF-κB Signal Pathway: In Silico and In Vivo, Front. Pharmacol. 12 (2021) 651305.
|
| [85] |
J. Han, G. Shi, W. Li, et al., Preventive effect of dioscin against monosodium urate-mediated gouty arthritis through inhibiting inflammasome NLRP3 and TLR4/NF-κB signaling pathway activation: an in vivo and in vitro study, J. Nat. Med. 75 (2021) 37-47.
|
| [86] |
X. Li, D.Q. Xu, D.Y. Sun, et al., Curcumin ameliorates monosodium urate-induced gouty arthritis through Nod-like receptor 3 inflammasome mediation via inhibiting nuclear factor-kappa B signaling, J. Cell. Biochem. 120 (2019) 6718-6728.
|
| [87] |
B. Chen, H. Li, G. Ou, et al., Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage, Arthritis Res. Ther. 21 (2019) 193.
|
| [88] |
Q. Wang, B. Lin, Z. Li, et al., Cichoric Acid Ameliorates Monosodium Urate-Induced Inflammatory Response by Reducing NLRP3 Inflammasome Activation via Inhibition of NF-kB Signaling Pathway, Evid. Based Complement. Alternat. Med. 2021 (2021) 8868527.
|
| [89] |
Y. Liu, H. Zhu, W. Zhou, et al., Anti-inflammatory and anti-gouty-arthritic effect of free Ginsenoside Rb1 and nano Ginsenoside Rb1 against MSU induced gouty arthritis in experimental animals, Chem. Biol. Interact. 332 (2020) 109285.
|
| [90] |
C. Wu, S. Chen, Y. Liu, et al., Cynarin suppresses gouty arthritis induced by monosodium urate crystals, Bioengineered. 13 (2022) 11782-11793.
|
| [91] |
G.A.K. Jati, N. Assihhah, A.A. Wati, et al., Immunosuppression by piperine as a regulator of the NLRP3 inflammasome through MAPK/NF-κB in monosodium urate-induced rat gouty arthritis, Vet. World. 15 (2022) 288-298.
|
| [92] |
G. Chen, T. Guo, L. Yang, Paeonol reduces IL-β production by inhibiting the activation of nucleotide oligomerization domain-like receptor protein-3 inflammasome and nuclear factor-κB in macrophages, Biochem. Cell Biol. 100 (2022) 28-36.
|
| [93] |
M. Li, Z.J. Yin, L. Li, et al., Rutaecarpine Attenuates Monosodium Urate Crystal-Induced Gouty Inflammation via Inhibition of TNFR-MAPK/NF-κB and NLRP3 Inflammasome Signaling Pathways, Chin. J. Integr. Med. 31 (2025) 590-599.
|
| [94] |
C.Y. Yan, S.H. Ouyang, X. Wang, et al., Celastrol ameliorates Propionibacterium acnes/LPS-induced liver damage and MSU-induced gouty arthritis via inhibiting K63 deubiquitination of NLRP3, Phytomedicine. 80 (2021) 153398.
|
| [95] |
C. Yin, B. Liu, P. Wang, et al., Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis, Br. J. Pharmacol. 177 (2020) 2042-2057.
|
| [96] |
C.W. Lo, C.K. Lii, J.J. Hong, et al., Andrographolide inhibits IL-1β release in bone marrow-derived macrophages and monocyte infiltration in mouse knee joints induced by monosodium urate, Toxicol. Appl. Pharmacol. 410 (2021) 115341.
|
| [97] |
J.J. Cheng, X.D. Ma, G.X. Ai, et al., Palmatine Protects Against MSU-Induced Gouty Arthritis via Regulating the NF-κB/NLRP3 and Nrf2 Pathways, Drug Des. Devel. Ther. 16 (2022) 2119-2132.
|
| [98] |
X. Xu, Y. Lu, R. Shen, et al., Phillyrin inhibits oxidative stress and neutrophil extracellular trap formation through the KEAP1/NRF2 pathway in gouty arthritis, Immunol. Res. 72 (2024) 1489-1501.
|
| [99] |
Y. Wang, W. Zhu, D. Lu, et al., Tetrahydropalmatine attenuates MSU crystal-induced gouty arthritis by inhibiting ROS-mediated NLRP3 inflammasome activation, Int. Immunopharmacol. 100 (2021) 108107.
|
| [100] |
Y. Huang, C. Li, W. Xu, et al., Kaempferol attenuates hyperuricemia combined with gouty arthritis via urate transporters and NLRP3/NF-κB pathway modulation, iScience. 27 (2024) 111186.
|
| [101] |
Y. Zhou, Y. Chen, X. Zhong, et al., Lipoxin A4 attenuates MSU-crystal-induced NLRP3 inflammasome activation through suppressing Nrf2 thereby increasing TXNRD2, Front. Immunol. 13 (2022) 1060441.
|
| [102] |
J. Kim, H. Ahn, B.C. Han, et al., Obovatol inhibits NLRP3, AIM2, and non-canonical inflammasome activation, Phytomedicine. 63 (2019) 153019.
|
| [103] |
J.J. Jhang, C.C. Lu, C.Y. Ho, et al., Protective Effects of Catechin against Monosodium Urate-Induced Inflammation through the Modulation of NLRP3 Inflammasome Activation, J. Agric. Food Chem. 63 (2015) 7343-7352.
|
| [104] |
Y. Cheng, X. Huang, Y. Tang, et al., Effects of evodiamine on ROS/TXNIP/NLRP3 pathway against gouty arthritis, Naunyn. Schmiedebergs Arch. Pharmacol. 397 (2024) 1015-1023.
|
| [105] |
P. Dinesh, M. Rasool, Berberine, an isoquinoline alkaloid suppresses TXNIP mediated NLRP3 inflammasome activation in MSU crystal stimulated RAW 264.7 macrophages through the upregulation of Nrf2 transcription factor and alleviates MSU crystal induced inflammation in rats, Int. Immunopharmacol. 44 (2017) 26-37.
|
| [106] |
H.E. Lee, G. Yang, Y.B. Park, et al., Epigallocatechin-3-Gallate Prevents Acute Gout by Suppressing NLRP3 Inflammasome Activation and Mitochondrial DNA Synthesis, Molecules. 24 (2019).
|
| [107] |
C.Y. Qiao, Y. Li, Y. Shang, et al., Management of Gout-associated MSU crystals-induced NLRP3 inflammasome activation by procyanidin B2: targeting IL-1β and Cathepsin B in macrophages, Inflammopharmacology. 28 (2020) 1481-1493.
|
| [108] |
Y. Li, Y. Zhuang, Y. Chen, et al., Euphorbia factor L2 alleviated gouty inflammation by specifically suppressing both the priming and activation of NLRP3 inflammasome, Int. Immunopharmacol. 138 (2024) 112598.
|
| [109] |
Z. Zhang, C. Wu, Z. Bao, et al., Benzoylmesaconine mitigates NLRP3 inflammasome-related diseases by reducing intracellular K(+) efflux and disrupting NLRP3 inflammasome assembly, Phytomedicine. 135 (2024) 156154.
|
| [110] |
X.J. Zhang, K. Shang, Y.K. Pu, et al., Leojaponin inhibits NLRP3 inflammasome activation through restoration of autophagy via upregulating RAPTOR phosphorylation, J. Ethnopharmacol. 278 (2021) 114322.
|
| [111] |
W. Fan, S. Chen, X. Wu, et al., Resveratrol Relieves Gouty Arthritis by Promoting Mitophagy to Inhibit Activation of NLRP3 Inflammasomes, J. Inflamm. Res. 14 (2021) 3523-3536.
|
| [112] |
J. Wu, Y. Luo, Q. Jiang, et al., Coptisine from Coptis chinensis blocks NLRP3 inflammasome activation by inhibiting caspase-1, Pharmacol. Res. 147 (2019) 104348.
|
| [113] |
J. Wu, Y. Lan, X. Shi, et al., Sennoside A is a novel inhibitor targeting caspase-1, Food Funct. 13 (2022) 9782-9795.
|
| [114] |
X. Zhang, L. Hu, S. Xu, et al., Erianin: A Direct NLRP3 Inhibitor With Remarkable Anti-Inflammatory Activity, Front. Immunol. 12 (2021) 739953.
|
| [115] |
G. Yang, H.E. Lee, S.J. Moon, et al., Direct Binding to NLRP3 Pyrin Domain as a Novel Strategy to Prevent NLRP3-Driven Inflammation and Gouty Arthritis, Arthritis Rheumatol. 72 (2020) 1192-1202.
|
| [116] |
H. Xu, J. Chen, P. Chen, et al., Costunolide covalently targets NACHT domain of NLRP3 to inhibit inflammasome activation and alleviate NLRP3-driven inflammatory diseases, Acta. Pharm Sin B. 13 (2023) 678-693.
|
| [117] |
H. Park, R. Ko, J. Seo, et al., Octyl gallate has potent anti-inflammasome activity by directly binding to NLRP3 LRR domain, J. Cell. Physiol. 239 (2024) e31196.
|
| [118] |
X. Ni, Q. Wang, Y. Ning, et al., Anemoside B4 targets NEK7 to inhibit NLRP3 inflammasome activation and alleviate MSU-induced acute gouty arthritis by modulating the NF-κB signaling pathway, Phytomedicine. 138 (2025) 156407.
|
| [119] |
H. He, H. Jiang, Y. Chen, et al., Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity, Nat. Commun. 9 (2018) 2550.
|
| [120] |
J.J. Shao, W.F. Li, J.F. Sun, et al., Britannin as a novel NLRP3 inhibitor, suppresses inflammasome activation in macrophages and alleviates NLRP3-related diseases in mice, Acta Pharmacol. Sin. 45 (2024) 803-814.
|
| [121] |
Q. Zhao, Y. Bi, J. Guo, et al., Pristimerin protects against inflammation and metabolic disorder in mice through inhibition of NLRP3 inflammasome activation, Acta Pharmacol. Sin. 42 (2021) 975-986.
|
| [122] |
S.K. Kim, J.Y. Choe, K.Y. Park, Anti-inflammatory effect of artemisinin on uric acid-induced NLRP3 inflammasome activation through blocking interaction between NLRP3 and NEK7, Biochem. Biophys. Res. Commun. 517 (2019) 338-345.
|
| [123] |
L.J. Yan, S. Qi, C. Wu, et al., Hypocrellin A from an ethnic medicinal fungus protects against NLRP3-driven gout in mice by suppressing inflammasome activation, Acta Pharmacol. Sin. 46 (2025) 1016-1029.
|
| [124] |
W. Li, H. Xu, J. Shao, et al., Discovery of alantolactone as a naturally occurring NLRP3 inhibitor to alleviate NLRP3-driven inflammatory diseases in mice, Br. J. Pharmacol. 180 (2023) 1634-1647.
|
| [125] |
Q. Li, H. Feng, H. Wang, et al., Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7-NLRP3 interaction, EMBO Rep. 23 (2022) e53499.
|
| [126] |
P. Tang, S. Zhao, X. Wang, et al., Chloranthalactone B covalently binds to the NACHT domain of NLRP3 to attenuate NLRP3-driven inflammation, Biochem. Pharmacol. 226 (2024) 116360.
|
| [127] |
S.Y. Chen, Y.P. Li, Y.P. You, et al., Theaflavin mitigates acute gouty peritonitis and septic organ injury in mice by suppressing NLRP3 inflammasome assembly, Acta Pharmacol. Sin. 44 (2023) 2019-2036.
|
| [128] |
W.C. Chang, M.T. Chu, C.Y. Hsu, et al., Rhein, An Anthraquinone Drug, Suppresses the NLRP3 Inflammasome and Macrophage Activation in Urate Crystal-Induced Gouty Inflammation, Am. J. Chin. Med. 47 (2019) 135-151.
|
| [129] |
H.E. Lee, G. Yang, N.D. Kim, et al., Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: a novel strategy to treat acute gout, Sci Rep. 6 (2016) 38622.
|
| [130] |
Y. Lin, T. Luo, A. Weng, et al., Gallic Acid Alleviates Gouty Arthritis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Through Enhancing Nrf2 Signaling, Front. Immunol. 11 (2020) 580593.
|
| [131] |
A.M. Posadino, A. Cossu, R. Giordo, et al., Resveratrol alters human endothelial cells redox state and causes mitochondrial-dependent cell death, Food Chem. Toxicol. 78 (2015) 10-16.
|
| [132] |
B. Juhasz, S. Mukherjee, D.K. Das, Hormetic response of resveratrol against cardioprotection, Exp. Clin. Cardiol. 15 (2010) e134-138.
|
| [133] |
R.T. Mankowski, L. You, T.W. Buford, et al., Higher dose of resveratrol elevated cardiovascular disease risk biomarker levels in overweight older adults - A pilot study, Exp. Gerontol. 131 (2020) 110821.
|
| [134] |
I. Szymkowiak, J. Marcinkowska, M. Kucinska, et al., Resveratrol Bioavailability After Oral Administration: A Meta-Analysis of Clinical Trial Data, Phytother. Res. 39 (2025) 453-464.
|
| [135] |
U. Mengs, Toxic effects of sennosides in laboratory animals and in vitro, Pharmacology. 36 Suppl 1 (1988) 180-187.
|
| [136] |
V. Somsak, A. Damkaew, P. Onrak, Antimalarial Activity of Kaempferol and Its Combination with Chloroquine in Plasmodium berghei Infection in Mice, J. Pathog. 2018 (2018) 3912090.
|
| [137] |
W. Rached, F.Z. Zeghada, M. Bennaceur, et al., Phytochemical analysis and assessment of antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties of Tetraclinis articulata (Vahl) Masters leaves, Industrial Crops and Products. 112 (2018) 460-466.
|
| [138] |
T. Xu, S. Zhang, L. Zheng, et al., A 90-day subchronic toxicological assessment of dioscin, a natural steroid saponin, in Sprague-Dawley rats, Food Chem. Toxicol. 50 (2012) 1279-1287.
|
| [139] |
S. Bandopadhyay, U. Anand, V.S. Gadekar, et al., Dioscin: A review on pharmacological properties and therapeutic values, Biofactors. 48 (2022) 22-55.
|
| [140] |
K. Li, Y. Tang, J.P. Fawcett, et al., Characterization of the pharmacokinetics of dioscin in rat, Steroids. 70 (2005) 525-530.
|
| [141] |
T. Beninca, L. Schmidt, L. Thome Cardoso, et al., Carvacrol as a food additive: Toxicological aspects and the role of nanotechnology in enhancing its antimicrobial and antioxidant properties, Food Res. Int. 197 (2024) 115256.
|
| [142] |
A. Andersen, Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol, Int. J. Toxicol. 25 Suppl 1 (2006) 29-127.
|
| [143] |
E.C. Hagan, W.H. Hansen, O.G. Fitzhugh, et al., Food flavourings and compounds of related structure. II. Subacute and chronic toxicity, Food Cosmet. Toxicol. 5 (1967) 141-157.
|
| [144] |
H. Turkez, E. Aydin, Investigation of cytotoxic, genotoxic and oxidative properties of carvacrol in human blood cells, Toxicol. Ind. Health. 32 (2016) 625-633.
|
| [145] |
A. Gunes-Bayir, A. Kocyigit, E.M. Guler, et al., Effects of carvacrol on human fibroblast (WS-1) and gastric adenocarcinoma (AGS) cells in vitro and on Wistar rats in vivo, Mol. Cell. Biochem. 448 (2018) 237-249.
|
| [146] |
H.L. Wiraswati, I.F. Ma'ruf, J. Sharifi-Rad, et al., Piperine: an emerging biofactor with anticancer efficacy and therapeutic potential, Biofactors. 51 (2025) e2134.
|
| [147] |
C. Liu, C. Zhang, W. Wang, et al., Integrated metabolomics and network toxicology to reveal molecular mechanism of celastrol induced cardiotoxicity, Toxicol. Appl. Pharmacol. 383 (2019) 114785.
|
| [148] |
C. Wang, S. Dai, X. Zhao, et al., Celastrol as an emerging anticancer agent: Current status, challenges and therapeutic strategies, Biomed. Pharmacother. 163 (2023) 114882.
|
| [149] |
B. Zeng, A. Wei, Q. Zhou, et al., Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches, Phytother. Res. 36 (2022) 336-364.
|