Turn off MathJax
Article Contents
Baoqiang Chen, Yiping Fan, Qi Wang, Jianguo Xu, Yi Wang, Bingyong Lin, Lee Jia, Longhua Guo. Self-assembled multifunctional hairpin probe for ultrasensitive and mismatch-selective miRNA detection[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101561
Citation: Baoqiang Chen, Yiping Fan, Qi Wang, Jianguo Xu, Yi Wang, Bingyong Lin, Lee Jia, Longhua Guo. Self-assembled multifunctional hairpin probe for ultrasensitive and mismatch-selective miRNA detection[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101561

Self-assembled multifunctional hairpin probe for ultrasensitive and mismatch-selective miRNA detection

doi: 10.1016/j.jpha.2026.101561
Funds:

This work was financially supported by the Jiaxing Science and Technology Program-Social Development Special Project (Grant No.: 2025BS009), Zhejiang Provincial Natural Science Foundation of China (Grant No.: LZ25C200005), Jiaxing Applied Basic Research Project (Grant No.: 2023AY11033), Zhejiang Provincial Traditional Chinese Medicine Science and Technology Plan (Grant No.: 2023ZL693), National Natural Science Foundation of China (Grant Nos.: 81773063&

81961138017), and Postgraduate Scientific Research and Practice Innovation Project of Jiaxing University (Grant No.: PSRPIP2025001B).

  • Received Date: Aug. 10, 2025
  • Accepted Date: Jan. 22, 2026
  • Rev Recd Date: Jan. 21, 2026
  • Available Online: Jan. 23, 2026
  • Sensitive, specific, and stable detection of microRNAs in complex biological environments remains a formidable challenge in molecular diagnostics. We introduce a novel bidirectional palindromic assembled multifunctional hairpin probe (A-MF-HP)-a molecular tool that integrates target recognition, cascade signal amplification, and fluorescence reporting into a single, compact system. Two palindromic arms drive autonomous, bidirectional self-assembly into a nuclease-resistant architecture, enabling robust operation in serum-rich environments. Upon recognition of miRNA-21, a structural switch in one hairpin triggers polymerase extension, nicking, and strand displacement all without auxiliary probes. This initiates a self-propagating disassembly cascade, unfolding additional hairpins and exponentially amplifying the signal. Under the optimized conditions, the platform demonstrates femtomolar-level sensitivity (∼1 × 10–15 M) across a six-order dynamic range, with single-nucleotide mismatch discrimination and negligible cross-reactivity to unrelated miRNAs. Notably, A-MF-HP retains full functionality after 12 h in 10% human serum, and clinical application to blood samples from lung cancer patients revealed marked fluorescence elevation compared to healthy controls. By uniting biostability, multifunctionality, and autonomous amplification in a single programmable probe, this novel strategy addresses limitations commonly observed in multi-component isothermal amplification assays, such as poor nuclease tolerance and dependence on multiple separate probes, offering a powerful diagnostic tool for microRNA profiling in biomedical and clinical settings.
  • loading
  • [1]
    N. Bidar, M. Amini, F. Oroojalian, et al., Molecular beacon strategies for sensing purpose, Trac Trends Anal. Chem. 134 (2021), 116143.
    [2]
    S. Tyagi, F.R. Kramer, Molecular beacons: Probes that fluoresce upon hybridization, Nat. Biotechnol. 14 (1996) 303-308.
    [3]
    F. Yang, H. Lu, X. Meng, et al., Rational engineering of nucleic acid probe system for enhanced intracellular microRNA detection, Coord. Chem. Rev. 487 (2023), 215157.
    [4]
    Y. Zhang, S. Xu, M. Luo, et al., Hairpin-empowered invasive reaction combined with catalytic hairpin assembly cascade amplification for the specific detection of single-nucleotide polymorphisms, Anal. Chem. 96 (2024) 10283-10293.
    [5]
    X. Long, Z. Gong, Y. Gan, et al., Sensitive detection of Escherichia coli O157: H7 using allosteric probe and hairpin switches-based isothermal transcription amplification, Anal. Chem. 96 (2024) 15608-15613.
    [6]
    Q. Wang, T. Zhou, D. Xue, et al., An allosteric palindromic hairpin probe based dual-mode interactive strand displacement amplification enables robust miRNA biosensing, Chem. Commun. 60 (2024) 2910-2913.
    [7]
    H. Chai, J. Shi, Y. Zhuang, et al., Assembly of ligation chain reaction and DNA triangular prism for miRNA diagnostics, Biosens. Bioelectron. 262 (2024), 116551.
    [8]
    Y. Yang, D. Kong, Y. Wu, et al., Catalytic hairpin assembly-enhanced graphene transistor for ultrasensitive miRNA detection, Anal. Chem. 95 (2023) 13281-13288.
    [9]
    H. Guo, J. Chen, Y. Feng, et al., A simple and robust exponential amplification reaction (EXPAR)-based hairpin template (exp-hairpin) for highly specific, sensitive, and universal microRNA detection, Anal. Chem. 96 (2024) 2643-2650.
    [10]
    Y. Shao, J. Xu, W. Chen, et al., miR-135b: An emerging player in cardio-cerebrovascular diseases, J. Pharm. Anal. 14 (2024), 100997.
    [11]
    J. Shao, Y. Fang, R. Zhao, et al., Evolution from small molecule to nano-drug delivery systems: An emerging approach for cancer therapy of ursolic acid, Asian J. Pharm. Sci. 15 (2020) 685-700.
    [12]
    D. Wang, J. Wang, Y. Wang, et al., DNA nanostructure-based nucleic acid probes: Construction and biological applications, Chem. Sci. 12 (2021) 7602-7622.
    [13]
    Z. Zhang, P. Sen, B.R. Adhikari, et al., Development of nucleic-acid-based electrochemical biosensors for clinical applications, Angew. Chem. Int. Ed. 61 (2022), e202212496.
    [14]
    D. Zhang, G. Zhou, H. Yang, et al., A bifunctional-blocker-aided hybridization chain reaction lighting-up self-calibrating nanocluster fluorescence for reliable nucleic acid detection, J. Anal. Test. 8 (2024) 160-169.
    [15]
    X. Qu, Y. Han, Q. Huang, et al., Intramolecular DNA wheel construction for highly sensitive electrochemical detection of miRNA, Nano Lett. 25 (2025) 1414-1419.
    [16]
    F. Yu, Y. Wang, C. Yu, et al., Sensitive and specific Y-shaped ratio biosensor for detecting serum miR-18a: Potential early scanning tool for non-small cell lung cancer, J. Anal. Test. 8 (2024) 237-244.
    [17]
    P. Miao, H. Chai, Y. Tang, DNA hairpins and dumbbell-wheel transitions amplified walking nanomachine for ultrasensitive nucleic acid detection, ACS Nano 16 (2022) 4726-4733.
    [18]
    X. Xia, H. Yang, J. Cao, et al., Isothermal nucleic acid amplification for food safety analysis, Trac Trends Anal. Chem. 153 (2022), 116641.
    [19]
    Y. Zhu, J. Wu, Q. Zhou, Functional DNA sensors integrated with nucleic acid signal amplification strategies for non-nucleic acid targets detection, Biosens. Bioelectron. 230 (2023), 115282.
    [20]
    X. Zhou, S. Chen, Y. Chai, et al., Supramolecular DNA nanodevice assembled via RCA and HCR cascade reaction on tetrahedral DNA nanostructure for sensitive detection and intracellular imaging of dual-miRNAs associated with liver cancer, Anal. Chem. 97 (2025) 686-693.
    [21]
    D. Yang, Y. Han, Q. Zhang, et al., Development of a DNAzyme-driven fluorescent light-up aptasensor for label-free detection of multiple lncRNAs, Anal. Chem. 96 (2024) 11603-11610.
    [22]
    K. Matange, J.M. Tuck, A.J. Keung, DNA stability: A central design consideration for DNA data storage systems, Nat. Commun. 12 (2021), 1358.
    [23]
    S. Li, Y. Liu, M. He, et al., Mirror-image DNA nanobox for enhancing environment resistance of nucleic acid probes, ACS Nano 18 (2024) 23104-23116.
    [24]
    Y. Gao, S. Zhang, C. Wu, et al., Self-protected DNAzyme walker with a circular bulging DNA shield for amplified imaging of miRNAs in living cells and mice, ACS Nano 15 (2021) 19211-19224.
    [25]
    A.O. Fadaka, T. Akinsoji, A. Klein, et al., Stage-specific treatment of colorectal cancer: A microRNA-nanocomposite approach, J. Pharm. Anal. 13 (2023) 1235-1251.
    [26]
    J. Wang, J. Sun, J. Zhang, et al., Engineered G-quadruplex-embedded self-quenching probes regulate single probe-based multiplex isothermal amplification to light road lamp probes for sensitized determination of microRNAs, Anal. Chem. 94 (2022) 4437-4445.
    [27]
    S. Shaikh, M. Younis, L. Yuan, Functionalized DNA nanostructures for bioimaging, Coord. Chem. Rev. 469 (2022), 214648.
    [28]
    A.R. Chandrasekaran, Nuclease resistance of DNA nanostructures, Nat. Rev. Chem. 5 (2021) 225-239.
    [29]
    J. Wang, S. Li, J. Xu, et al., A functionalized dumbbell probe-based cascading exponential amplification DNA machine enables amplified probing of microRNAs, Chem. Commun. 56 (2020) 1681-1684.
    [30]
    A. Ait Saada, A.B. Costa, Z. Sheng, et al., Structural parameters of palindromic repeats determine the specificity of nuclease attack of secondary structures, Nucleic Acids Res. 49 (2021) 3932-3947.
    [31]
    X. Li, F. Yu, L. Li, Tandem-controlled dynamic DNA assembly enables temporally-selective orthogonal regulation of cGAS-STING stimulation, Angew. Chem. Int. Ed. 64 (2025), e202417916.
    [32]
    Z. Sui, B. Chen, J. Zhao, et al., Dual-accelerated signal amplification in biosensing via spatial confining catalytic hairpin assembly-activated spherical CRISPR/Cas12a system for trans-cleavage of hairpin DNA reporters, Anal. Chem. 97 (2025) 4668-4677.
    [33]
    O. Calvo-Lozano, P. Garcia-Aparicio, L.Z. Raduly, et al., One-step and real-time detection of microRNA-21 in human samples for lung cancer biosensing diagnosis, Anal. Chem. 94 (2022) 14659-14665.
    [34]
    H. Li, X. Tie, Exploring research progress in studying serum exosomal miRNA-21 as a molecular diagnostic marker for breast cancer, Clin. Transl. Oncol. 26 (2024) 2166-2171.
    [35]
    H. Xu, D. Wu, Y. Zhang, et al., RCA-enhanced multifunctional molecule beacon-based strand-displacement amplification for sensitive microRNA detection, Sens. Actuat. B Chem. 258 (2018) 470-477.
    [36]
    Q. Wang, S. Yang, X. Chen, et al., Mutually activated dual-exponential amplification DNA machine enhances robust CRISPR/Cas12a feedback propagation for ultrasensitive miRNA detection, Anal. Chem. 97 (2025) 13504-13513.
    [37]
    Q. Wang, J. Xia, C. Yang, et al., Cross-priming-linked hierarchical isothermal amplification programming progressive activating clustered regularly interspaced short palindromic repeats/Cas12a in miRNA signaling, Anal. Chem. 96 (2024) 14205-14214.
    [38]
    M. Reid, R.E. Paliwoda, H. Zhang, et al., Reduction of background generated from template-template hybridizations in the exponential amplification reaction, Anal. Chem. 90 (2018) 11033-11039.
    [39]
    A.M. Solovjev, O.Y. Pletjushkina, I.Y. Sakharov, What DNA polymerase is preferable in miRNA assay coupled with isothermal circular strand displacement polymerization reaction (ICSDPR)? Anal. Chem. 97 (2025) 3371-3377.
    [40]
    C. Qian, R. Wang, H. Wu, et al., Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review, Anal. Chim. Acta 1050 (2019) 1-15.
    [41]
    W. Wang, X. Li, C. Liu, et al., microRNA-21 as a diagnostic and prognostic biomarker of lung cancer: A systematic review and meta-analysis, Biosci. Rep. 42 (2022), BSR20211653.
    [42]
    Q. Wang, S. Yu, L. Zhang, et al., Sensitive electrochemiluminescence analysis of lung cancer marker miRNA-21 based on RAFT signal amplification, Chem. Commun. 58 (2022) 1701-1703.
    [43]
    J. Shao, Y. Dai, W. Zhao, et al., Intracellular distribution and mechanisms of actions of photosensitizer Zinc (II)-phthalocyanine solubilized in Cremophor EL against human hepatocellular carcinoma HepG2 cells, Cancer Lett. 330 (2013) 49-56.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (68) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return