| Citation: | Haomiao Bai, Guiling Wu, Xinghua Qin, Qilong Yang, Zhihui Yao, Wei Zhang, Jing Wang, Wengang Dong, Lantian Wang, Xing Zhang, Ke Zhou, Jie Deng, Guodong Yang, Jia Li, Bo Peng. Self-homing TGF-β1 traps: Engineered vasorin vesicles as smart biomaterials for targeted anti-fibrotic therapy after myocardial infarction[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101560 |
| [1] |
N.G. Frangogiannis, Cardiac fibrosis, Cardiovasc. Res. 117 (2021) 1450-1488.
|
| [2] |
L. Alex, I. Tuleta, S.C. Hernandez, et al., Cardiac pericytes acquire a fibrogenic phenotype and contribute to vascular maturation after myocardial infarction, Circulation 148 (2023) 882-898.
|
| [3] |
Y Li, X Wang, B Hu, et al., Neutralization of excessive levels of active TGF-β1 reduces MSC recruitment and differentiation to mitigate peritendinous adhesion, Bone Res. 11 (2023), 24.
|
| [4] |
M Shou, H Zhou, L Ma, New advances in cancer therapy targeting TGF-β signaling pathways, Mol. Ther. Oncolytics 31 (2023), 100755.
|
| [5] |
L Weng, J Ye, F Yang, et al., TGF-β1/SMAD3 regulates programmed cell death 5 that suppresses cardiac fibrosis post-myocardial infarction by inhibiting HDAC3, Circ. Res. 133 (2023) 237-251.
|
| [6] |
M Zhou, C Zhou, H Geng, et al., EGCG-enabled deep tumor penetration of phosphatase and acidity dual-responsive nanotherapeutics for combinatory therapy of breast cancer, Small 21 (2025), e2406245.
|
| [7] |
A. Hata, Y Chen, TGF-β signaling from receptors to smads, Cold Spring Harb. Perspect. Biol. 8 (2016), a022061.
|
| [8] |
J. Abramson, J. Adler, J. Dunger, et al., Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature 630 (2024) 493-500.
|
| [9] |
N Wang, B Yang, C Fu, et al., Genetically encoding fluorosulfate-L-tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteinsin vivo, J. Am. Chem. Soc. 140 (2018) 4995-4999.
|
| [10] |
B Yu, S Li, T. Tabata, et al., Accelerating PERx reaction enables covalent nanobodies for potent neutralization of SARS-CoV-2 and variants, Chem 8 (2022) 2766-2783.
|
| [11] |
C.D. Reinkemeier, E.A. Lemke, Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation, Cell 184 (2021) 4886-4903.e21.
|
| [12] |
Y. Ikeda, Y. Imai, H. Kumagai, et al., Vasorin, a transforming growth factor β-binding protein expressed in vascular smooth muscle cells, modulates the arterial response to injuryin vivo, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 10732-10737.
|
| [13] |
G. Pintus, R. Giordo, Y Wang, et al., Reduced vasorin enhances angiotensin II signaling within the aging arterial wall, Oncotarget 9 (2018) 27117-27132.
|
| [14] |
J.A. Zhang, K Feng, W Shen, et al., Research advances of cellular nanoparticles as multiplex countermeasures, ACS Nano 18 (2024) 30211-30223.
|
| [15] |
Y Zhou, Q Liang, X Wu, et al., siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nano complexes, Adv. Mater. 35 (2023) e2210691.
|
| [16] |
S. Kumar, D. Nagesh, V. Ramasubbu, et al., Isolation and culture of primary fibroblasts from neonatal murine hearts to study cardiac fibrosis, Bio Protoc. 13 (2023) e4616.
|
| [17] |
C Xie, X Mao, J Huang, et al., KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases, Nucleic Acids Res. 39 (2011) W316-W322.
|
| [18] |
S Song, X Zhang, Z Huang, et al., TEA domain transcription factor 1 (TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway, Signal Transduct. Target. Ther. 9 (2024) 45.
|
| [19] |
L Wang, Genetically encoding new bioreactivity, New Biotechnol. 38 (2017) 16-25.
|
| [20] |
Q Li, Q Chen, P.C. Klauser, et al., Developing covalent protein drugs via proximity-enabled reactive therapeutics, Cell 182 (2020) 85-97. e16.
|
| [21] |
J Dong, L. Krasnova, M.G. Finn, et al., Sulfur(VI) fluoride exchange (SuFEx): Another good reaction for click chemistry, Angew. Chem. Int. Ed. 53 (2014) 9430-9448.
|
| [22] |
A.T. Beattie, D.L. Dunkelmann, J.W. Chin, Quintuply orthogonal pyrrolysyl-tRNA synthetase/tRNAPyl pairs, Nat. Chem. 15 (2023) 948-959.
|
| [23] |
Z Pei, Y Qin, X Fu, et al., Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model, Redox Biol. 57 (2022), 102509.
|
| [24] |
F. Link, Y Li, J Zhao, et al., ECM1 attenuates hepatic fibrosis by interfering with mediators of latent TGF-β1 activation, Gut 74 (2025) 424-439.
|
| [25] |
Z Cai, Z Xin, H Wang, et al., Extracellular vesicle-contained thrombospondin 1 retards age-related degenerative tendinopathy by rejuvenating tendon stem/progenitor cell senescence, Small 20 (2024) e2400598.
|
| [26] |
N.B. McNamara, D.A.D. Munro, N. Bestard-Cuche, et al., Microglia regulate central nervous system myelin growth and integrity, Nature 613 (2023) 120-129.
|
| [27] |
J Han, Y Jia, S Wang, et al., The improvement effect of sodium ferulate on the formation of pulmonary fibrosis in silicosis mice through the neutrophil alkaline phosphatase 3 (NALP3)/transforming growth factor-β1 (TGF-β1)/α-smooth muscle actin (α-SMA) pathway, Med. Sci. Monit. 27 (2021) e927978.
|
| [28] |
G Lu, Z Ge, X Chen, et al., BMP6 knockdown enhances cardiac fibrosis in a mouse myocardial infarction model by upregulating AP-1/CEMIP expression, Clin. Transl. Med. 13 (2023) e1296.
|
| [29] |
Y. Enomoto, H. Katsura, T. Fujimura, et al., Autocrine TGF-β-positive feedback in profibrotic AT2-lineage cells plays a crucial role in non-inflammatory lung fibrogenesis, Nat. Commun. 14 (2023) e4956.
|
| [30] |
R Lin, L Jin, Y Xue, et al., Hybrid membrane-coated nanoparticles for precise targeting and synergistic therapy in Alzheimer’s disease, Adv. Sci. 11 (2024), e2306675.
|
| [31] |
H Xiao, X Meng, S Li, et al., Combined drug anti-deep vein thrombosis therapy based on platelet membrane biomimetic targeting nanotechnology, Biomaterials 311 (2024) e122670.
|
| [32] |
Y Bai, J Chen, S Zhang, et al., Inflammation-responsive cell membrane-camouflaged nanoparticles against liver fibrosis via regulating endoplasmic reticulum stress and oxidative stress, Adv. Mater. 36 (2024) e2310443.
|
| [33] |
Y Qi, Y Fu, X Wu, et al., Flower-shaped lipid nanoparticles evade apolipoprotein E-mediated liver tropism for safe and enhanced cytokine-based cancer immunotherapy, ACS Nano 19 (2025) 35675-35691.
|
| [34] |
Y Feng, W Tai, P Huang, et al., Albumin-recruiting lipid nanoparticle potentiates the safety and efficacy of mRNA vaccines by avoiding liver accumulation, Nat. Mater. 24 (2025) 1826-1839.
|