| Citation: | Xiaohui Hu, Yingxia Tian, Qianping Chen, Yanan Guo, Pengfei Ji, Yixiao Tian, Shuangxi Qian, Guolin Chai, Fangdi Hu, Rong Shen, Degui Wang. Flavonoid Compounds from Shenrong Guben Huanshao Pill alleviates senescence-associated mitochondrial dysfunction through NDUFV2 and LDHB mediated metabolic reprogramming[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101559 |
| [1] |
J.P. de Magalhaes, An overview of contemporary theories of ageing, Nat. Cell Biol. 27 (2025) 1074-1082.
|
| [2] |
M. Chen, K. Hanewald, Y. Si, et al., Intrinsic capacity across 15 countries in the survey of health, aging, and retirement in Europe, JAMA Netw. Open 8 (2025), e259792.
|
| [3] |
A. Raberin, J. Burtscher, M. Burtscher, et al., Hypoxia and the aging cardiovascular system, Aging Dis. 14 (2023), 2051.
|
| [4] |
S. Wakale, X. Wu, Y. Sonar, et al., How are aging and osteoarthritis related? Aging Dis. 14 (2023), 592.
|
| [5] |
Y.H. Chou, Y.M. Chen, Aging and renal disease: Old questions for new challenges, Aging Dis. 12 (2021), 515.
|
| [6] |
C. Zhuo, Y. Xu, W. Hou, et al., Mechanistic/mammalian target of rapamycin and side effects of antipsychotics: Insights into mechanisms and implications for therapy, Transl. Psychiatry 12 (2022), 13.
|
| [7] |
J. Feng, X. Wang, X. Ye, et al., Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications, Pharmacol. Res. 177 (2022), 106114.
|
| [8] |
Y. Huang, X. Che, P.W. Wang, et al., p53/MDM2 signaling pathway in aging, senescence and tumorigenesis, Semin. Cancer Biol. 101 (2024) 44-57.
|
| [9] |
E. Born, L. Lipskaia, M. Breau, et al., Eliminating senescent cells can promote pulmonary hypertension development and progression, Circulation 147 (2023) 650-666.
|
| [10] |
Y. Guo, T. Guan, K. Shafiq, et al., Mitochondrial dysfunction in aging, Ageing Res. Rev. 88 (2023), 101955.
|
| [11] |
C. Lopez-Otin, M.A. Blasco, L. Partridge, et al., Hallmarks of aging: An expanding universe, Cell 186 (2023) 243-278.
|
| [12] |
Q. Wang, L. Duan, X. Li, et al., Glucose metabolism, neural cell senescence and Alzheimer’s disease, Int. J. Mol. Sci. 23 (2022), 4351.
|
| [13] |
M. Han, E.A. Bushong, M. Segawa, et al., Spatial mapping of mitochondrial networks and bioenergetics in lung cancer, Nature 615 (2023) 712-719.
|
| [14] |
Z. Liu, L. Zhang, C. Ren, et al., Whole genome and exome sequencing identify NDUFV2 mutations as a new cause of progressive cavitating leukoencephalopathy, J. Med. Genet. 59 (2022) 351-357.
|
| [15] |
R. Nechushtai, L. Rowland, O. Karmi, et al., CISD3/MiNT is required for complex I function, mitochondrial integrity, and skeletal muscle maintenance, Proc. Natl. Acad. Sci. U. S. A. 121 (2024), e2405123121.
|
| [16] |
H. Jiang, H. Wei, H. Wang, et al., Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer, Cell Death Dis. 13 (2022), 206.
|
| [17] |
P.W. Stacpoole, Lactic acidosis and other mitochondrial disorders, Metabolism 46 (1997) 306-321.
|
| [18] |
H. Deng, L. Zhao, H. Ge, et al., Ubiquinol-mediated suppression of mitochondria-associated ferroptosis is a targetable function of lactate dehydrogenase B in cancer, Nat. Commun. 16 (2025), 2597.
|
| [19] |
X. Peng, B. Sun, C. Tang, et al., HMOX1-LDHB interaction promotes ferroptosis by inducing mitochondrial dysfunction in foamy macrophages during advanced atherosclerosis, Dev. Cell 60 (2025) 1070-1086.e8.
|
| [20] |
R. Wang, Z. Yu, B. Sunchu, et al., Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism, Aging Cell 16 (2017) 564-574.
|
| [21] |
A. Onorati, A.P. Havas, B. Lin, et al., Upregulation of PD-L1 in senescence and aging, Mol. Cell. Biol. 42 (2022) e00171-e00122.
|
| [22] |
L. Yang, P. Shi, G. Zhao, et al., Targeting cancer stem cell pathways for cancer therapy, Signal Transduct. Target. Ther. 5 (2020), 8.
|
| [23] |
C.R. Triggle, I. Mohammed, K. Bshesh, et al., Metformin: Is it a drug for all reasons and diseases? Metabolism 133 (2022), 155223.
|
| [24] |
J. Feng, X. Wang, X. Ye, et al., Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications, Pharmacol. Res. 177 (2022), 106114.
|
| [25] |
M. Kritsilis, S.V. Rizou, P.N. Koutsoudaki, et al., Ageing, cellular senescence and neurodegenerative disease, Int. J. Mol. Sci. 19 (2018), 2937.
|
| [26] |
A. Anighoro, J. Bajorath, G. Rastelli, Polypharmacology: Challenges and opportunities in drug discovery: Miniperspective, J. Med. Chem. 57 (2014) 7874-7887.
|
| [27] |
M.A. Yildirim, K.I. Goh, M.E. Cusick, et al., Drug: Target network, Nat. Biotechnol. 25 (2007) 1119-1126.
|
| [28] |
R. Kumari, P. Jat, Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype, Front. Cell Dev. Biol. 9 (2021), 645593.
|
| [29] |
R. Xu, W. Wang, W. Zhang, Ferroptosis and the bidirectional regulatory factor p53, Cell Death Discov. 9 (2023), 197.
|
| [30] |
S. Lu, J. Zhou, C. Yang, et al., γ-Glutamylcysteine ameliorates d-gal-induced senescence in PC12 cells and mice via activating AMPK and SIRT1, Food Funct. 13 (2022) 7560-7571.
|
| [31] |
Y. Tian, L. Ma, C. Ding, et al., Autophagy regulates X-ray radiation-induced premature senescence through STAT3-Beclin1-p62 pathway in lung adenocarcinoma cells, Int. J. Radiat. Biol. 98 (2022) 1432-1441.
|
| [32] |
M. Koike, Y. Yutoku, A. Koike, Inhibition of Crandell-Rees Feline Kidney cell proliferation by X-ray-induced senescence, J. Vet. Med. Sci. 83 (2021) 798-804.
|
| [33] |
C. Morral, A. Ayyaz, H.C. Kuo, et al., p53 promotes revival stem cells in the regenerating intestine after severe radiation injury, Nat. Commun. 15 (2024), 3018.
|
| [34] |
S. Miwa, S. Kashyap, E. Chini, et al., Mitochondrial dysfunction in cell senescence and aging, J. Clin. Investig. 132 (2022), e158447.
|
| [35] |
M. Yang, M. Abudureyimu, X. Wang, et al., PHB2 ameliorates Doxorubicin-induced cardiomyopathy through interaction with NDUFV2 and restoration of mitochondrial complex I function, Redox Biol. 65 (2023), 102812.
|
| [36] |
X. Dou, Q. Fu, Q. Long, et al., PDK4-dependent hypercatabolism and lactate production of senescent cells promotes cancer malignancy, Nat. Metab. 5 (2023) 1887-1910.
|
| [37] |
Y. Wu, R. Gao, Q. Huang, et al., Lactate supplementation after hypoglycemia alleviates cognitive dysfunction induced by recurrent non-severe hypoglycemia in diabetic mice, Exp. Neurol. 383 (2025), 115037.
|
| [38] |
F. Cuozzo, K. Viloria, A.H. Shilleh, et al., LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic β cells, Cell Rep. 43 (2024), 114047.
|
| [39] |
H. Ge, F. Malsiu, Y. Gao, et al., Inhibition of LDHB suppresses the metastatic potential of lung cancer by reducing mitochondrial GSH catabolism, Cancer Lett. 611 (2025), 217353.
|
| [40] |
W. Xie, L. Deng, X. Zhang, et al., Myricetin alleviates silica-mediated lung fibrosis via PPARγ-PGC-1α loop and suppressing mitochondrial senescence in epithelial cells, J. Agric. Food Chem. 72 (2024) 27737-27749.
|
| [41] |
R. Chen, X. Zhang, X. Zhu, et al., Myricetin alleviated hydrogen peroxide-induced cellular senescence of nucleus pulposus cell through regulating SERPINE1, J. Orthop. Surg. Res. 18 (2023), 143.
|
| [42] |
R.L. Younis, R.M. El-Gohary, A.A. Ghalwash, et al., Luteolin mitigates D-galactose-induced brain ageing in rats: SIRT1-mediated neuroprotection, Neurochem. Res. 49 (2024) 2803-2820.
|