| Citation: | Jingshuo Li, Xibin Zhou, Shoushi Liu, Alu Ouyang, Bo Su, Zixin Wang, Jiayu Lu, Xin Chen, Qiuju Huang, Ronghua Jin, Hongwei Guo. Augmented Therapeutic Efficacy of Erianin through pH-Responsive Charge-Reversal Liposome Integrated Synergistic PTT and PDT in Breast Cancer[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101555 |
| [1] |
R.L. Siegel, A.N. Giaquinto, A. Jemal, Cancer statistics, 2024, CA: Cancer J. Clin. 74 (2024) 12-49. https://doi.org/10.3322/caac.21820.
|
| [2] |
Y.N. Liao, Z. Luo, Y. Liu, et al., Total flavonoids of Litchi seed attenuate stem cell-like properties in breast cancer by regulating Notch3 signaling pathway, J. Ethnopharmacol. 305 (2023) 116133. https://doi.org/10.1016/j.jep.2023.116133.
|
| [3] |
H. Zeng, R. Zheng, K. Sun, et al., Cancer survival statistics in China 2019-2021: A multicenter, population-based study, J. Natl. Cancer Cent. 4 (2024) 203-213. https://doi.org/10.1016/j.jncc.2024.06.005.
|
| [4] |
R. Jin, Z. Liu, Y. Bai, et al., Core-satellite mesoporous silica-gold nanotheranostics for biological stimuli triggered multimodal cancer therapy, Adv. Funct. Mater. 28 (2018) 1801961. https://doi.org/10.1002/adfm.201801961.
|
| [5] |
L. Li, B. Sun, J. Sun, et al., Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy, Chin. Chem. Lett. 35 (2024) 109538. https://doi.org/10.1016/j.cclet.2024.109538.
|
| [6] |
U. Anand, A. Dey, A.K.S. Chandel, et al., Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics, Genes Dis. 10 (2023) 1367-1401. https://doi.org/10.1016/j.gendis.2022.02.007.
|
| [7] |
H.B. Low, Z.L. Wong, B. Wu, et al., DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death, Nat. Commun. 12 (2021) 2284. https://doi.org/10.1038/s41467-021-22638-7.
|
| [8] |
Z. Yang, Z. Zhou, Q. Meng, et al., Dihydroartemisinin sensitizes lung cancer cells to cisplatin treatment by upregulating ZIP14 expression and inducing ferroptosis, Cancer Med. 13 (2024) e70271. https://doi.org/10.1002/cam4.70271.
|
| [9] |
R.C. Leonard, S. Williams, A. Tulpule, et al., Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet), Breast 18 (2009) 218-224. https://doi.org/10.1016/j.breast.2009.05.004.
|
| [10] |
N. Salari, F. Faraji, F.M. Torghabeh, et al., Polymer-based drug delivery systems for anticancer drugs: A systematic review, Cancer Treat. Res. Commun. 32 (2022) 100605. https://doi.org/10.1016/j.ctarc.2022.100605.
|
| [11] |
T. Hu, H. Gong, J. Xu, et al., Nanomedicines for overcoming cancer drug resistance, Pharmaceutics 14 (2022) 1606. https://doi.org/10.3390/pharmaceutics14081606.
|
| [12] |
I. Shaw, A.A. Aryee, Y.S. Ali, et al., Harmonizing tradition and technology: Liposomal nanocarriers unlocking the power of natural herbs in Traditional Chinese Medicine, Chin. J. Nat. Med. 23 (2025) 700-713. https://doi.org/10.1016/S1875-5364(25)60889-2.
|
| [13] |
J. Tomsen-Melero, J. Merlo-Mas, A. Carreno, et al., Liposomal formulations for treating lysosomal storage disorders, Adv. Drug Deliv. Rev. 190 (2022) 114531. https://doi.org/10.1016/j.addr.2022.114531.
|
| [14] |
J. Chen, S. Hu, M. Sun, et al., Recent advances and clinical translation of liposomal delivery systems in cancer therapy, Eur. J. Pharm. Sci. 193 (2024) 106688. https://doi.org/10.1016/j.ejps.2023.106688.
|
| [15] |
H. Nsairat, D. Khater, U. Sayed, et al., Liposomes: structure, composition, types, and clinical applications, Heliyon 8 (2022) e09394. https://doi.org/10.1016/j.heliyon.2022.e09394.
|
| [16] |
R. Jin, J. Xie, X. Yang, et al., A tumor-targeted nanoplatform with stimuli-responsive cascaded activities for multiple model tumor therapy, Biomater. Sci. 8 (2020) 1865-1874. https://doi.org/10.1039/c9bm01992h.
|
| [17] |
H. Nienhuser, N. Wirsik, T. Schmidt, Esophageal tumor microenvironment, Adv. Exp. Med. Biol. 1296 (2020) 103-116. https://doi.org/10.1007/978-3-030-59038-3_6.
|
| [18] |
Z. Zhang, Y. Du, X. Shi, et al., NIR-II light in clinical oncology: Opportunities and challenges, Nat. Rev. Clin. Oncol. 21 (2024) 449-467. https://doi.org/10.1038/s41571-024-00892-0.
|
| [19] |
E. Varon, G. Blumrosen, M. Sinvani, et al., An engineered nanocomplex with photodynamic and photothermal synergistic properties for cancer treatment, Int. J. Mol. Sci. 23 (2022) 2286. https://doi.org/10.3390/ijms23042286.
|
| [20] |
J. Xu, Y. Lai, F. Wang, et al., Dual stimuli-activatable versatile nanoplatform for photodynamic therapy and chemotherapy of triple-negative breast cancer, Chin. Chem. Lett. 34 (2023) 108332. https://doi.org/10.1016/j.cclet.2023.108332.
|
| [21] |
N. Yang, H. Li, C. Cao, et al., Tumor microenvironment-activated theranostic nanoreactor for NIR-II Photoacoustic imaging-guided tumor-specific photothermal therapy, Fundam. Res. 4 (2024) 178-187. https://doi.org/10.1016/j.fmre.2022.04.021.
|
| [22] |
N. Li, F. Dong, L. Sun, et al., Carrier-free delivery of nucleic acid and photosensitizer nanoparticles for enhanced photodynamic and gene antitumour therapy, Fundam. Res. 5 (2025) 1698-1709. https://doi.org/10.1016/j.fmre.2024.03.014.
|
| [23] |
F. Wang, W. Lai, D. Xie, et al., Nanoparticle-mediated celastrol ER targeting delivery amplify immunogenic cell death in melanoma, J. Adv. Res. 71 (2025) 585-601. https://doi.org/10.1016/j.jare.2024.06.011.
|
| [24] |
L. Li, H. Tian, Z. Zhang, et al., Carrier-free nanoplatform via evoking pyroptosis and immune response against breast cancer, ACS Appl. Mater. Interfaces 15 (2023) 452-468. https://doi.org/10.1021/acsami.2c17579.
|
| [25] |
Y. Li, J. Chen, Q. Xia, et al., Photothermal Fe3O4 nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy, J. Nanobiotechnology 22 (2024) 630. https://doi.org/10.1186/s12951-024-02909-3.
|
| [26] |
Y. Wang, P. Wang, W. Li, et al., Cascaded multiresponsive supramolecular dimer-engineered nano-modulator enabling spatiotemporally adaptable tumor immune microenvironment remodeling in photodynamic immunotherapy, Nano Today 56 (2024) 102305. https://doi.org/10.1016/j.nantod.2024.102305.
|
| [27] |
W. Zhang, G. Chen, Z. Chen, et al., Mitochondria-targeted polyprodrug nanoparticles induce mitochondrial stress for immunogenic chemo-photodynamic therapy of ovarian cancer, J. Control. Release 371 (2024) 470-483. https://doi.org/10.1016/j.jconrel.2024.06.014.
|
| [28] |
X. Feng, T. Lin, D. Chen, et al., Mitochondria-associated ER stress evokes immunogenic cell death through the ROS-PERK-eIF2α pathway under PTT/CDT combined therapy, Acta Biomater. 160 (2023) 211-224. https://doi.org/10.1016/j.actbio.2023.02.011.
|
| [29] |
F. Lu, Z. Li, Y. Sheng, et al., Thermal-triggered packing of lipophilic NIR dye IR780 in hepatitis B core at critical ionic strength and cargo-host ratio for improved stability and enhanced cancer phototherapy, Biomaterials 276 (2021) 121035. https://doi.org/10.1016/j.biomaterials.2021.121035.
|
| [30] |
A. Yang, M.Y. Li, Z.H. Zhang, et al., Erianin regulates programmed cell death ligand 1 expression and enhances cytotoxic T lymphocyte activity, J. Ethnopharmacol 273 (2021) 113598. https://doi.org/10.1016/j.jep.2020.113598.
|
| [31] |
J. Tian, K. Chen, Q. Zhang, et al., Mechanism of Self-Assembled Celastrol-Erianin nanomedicine for treatment of breast cancer, Chem. Eng. J. 499 (2024) 155709. https://doi.org/10.1016/j.cej.2024.155709.
|
| [32] |
Y. Xiao, A. Ouyang, L. Fan, et al., Precision delivery of binary cooperative nanodrugs self-assembled by berberine glycyrrhetinic acid salts for hepatocellular carcinoma treatment, ACS Appl. Mater. Interfaces 16 (2024) 58489-58505. https://doi.org/10.1021/acsami.4c15320.
|
| [33] |
R. Jin, Q. Wang, G. Dou, et al., Stimuli responsive nanoplatform with mitochondria-specific multiple model therapeutics for effective tumor treatment, Appl. Mater. Today 21 (2020) 100883. https://doi.org/10.1016/j.apmt.2020.100883.
|
| [34] |
R. Mo, Z. Gu, Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery, Mater. Today 19 (2016) 274-283. https://doi.org/10.1016/j.mattod.2015.11.025.
|
| [35] |
R. Jin, Z. Liu, Y. Bai, et al., Multiple-responsive mesoporous silica nanoparticles for highly accurate drugs delivery to tumor cells, ACS Omega 3 (2018) 4306-4315. https://doi.org/10.1021/acsomega.8b00427.
|
| [36] |
H. Yu, J.M. Li, K. Deng, et al., Tumor acidity activated triphenylphosphonium-based mitochondrial targeting nanocarriers for overcoming drug resistance of cancer therapy, Theranostics 9 (2019) 7033-7050. https://doi.org/10.7150/thno.35748.
|
| [37] |
J.Z. Du, T.M. Sun, W.J. Song, et al., A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery, Angew Chem. Int. Ed. Engl. 49 (2010) 3621-3626. https://doi.org/10.1002/anie.200907210.
|
| [38] |
R. Jin, J. Li, B. Huang, et al., Amelioration of osteoarthritis through salicylic acid nano-formulated self-therapeutic prodrug for the prolonged launch of salicylic acid to damaged cartilage, Appl. Mater. Today 37 (2024) 102102. https://doi.org/10.1016/j.apmt.2024.102102.
|
| [39] |
T. Zhang, B. Wu, O.U. Akakuru, et al., Hsp90 inhibitor-loaded IR780 micelles for mitochondria-targeted mild-temperature photothermal therapy in xenograft models of human breast cancer, Cancer Lett. 500 (2021) 41-50. https://doi.org/10.1016/j.canlet.2020.12.028.
|
| [40] |
X. Zhang, Y. Dong, M. Gao, et al., Knockdown of TRAP1 promotes cisplatin-induced apoptosis by promoting the ROS-dependent mitochondrial dysfunction in lung cancer cells, Mol. Cell. Biochem. 476 (2021) 1075-1082. https://doi.org/10.1007/s11010-020-03973-7.
|
| [41] |
B. Liu, G. Qiao, Y. Han, et al., Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy, Acta Biomater. 117 (2020) 361-373. https://doi.org/10.1016/j.actbio.2020.09.040.
|
| [42] |
C. Kong, B. Xu, G. Qiu, et al., Multifunctional nanoparticles-mediated PTT/PDT synergistic immune activation and antitumor activity combined with Anti-PD-L1 immunotherapy for breast cancer treatment, Int. J. Nanomedicine 17 (2022) 5391-5411. https://doi.org/10.2147/ijn.S373282.
|
| [43] |
C. Huang, X. Yang, H. Li, et al., GSH-responsive polymeric micelles-based augmented photoimmunotherapy synergized with PD-1 blockade for eliciting robust antitumor immunity against colon tumor, J. Nanobiotechnology 22 (2024) 542. https://doi.org/10.1186/s12951-024-02813-w.
|
| [44] |
L. Zheng, Y. Ding, S. Fang, et al., Potentiated calcium carbonate with enhanced calcium overload induction and acid neutralization capabilities to boost chemoimmunotherapy against liver cancer, ACS Nano 18 (2024) 27597-27616. https://doi.org/10.1021/acsnano.4c08690.
|
| [45] |
J. Lei, L. Wang, C. Yang, et al., Dasatinib and erianin co-loaded ion-responsive in-situ hydrogel for effective treatment of corneal neovascularization, J. Control. Release 376 (2024) 94-107. https://doi.org/10.1016/j.jconrel.2024.10.001.
|
| [46] |
K. Wen, L. Wu, X. Wu, et al., Precisely tuning photothermal and photodynamic effects of polymeric nanoparticles by controlled copolymerization, Angew Chem. Int. Ed. Engl. 59 (2020) 12756-12761. https://doi.org/10.1002/anie.202004181.
|
| [47] |
X. Li, H. Li, C. Zhang, et al., Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy, Bioact. Mater. 6 (2021) 3473-3484. https://doi.org/10.1016/j.bioactmat.2021.03.021.
|
| [48] |
Q. Chen, C. Jia, Y. Xu, et al., Dual-pH responsive chitosan nanoparticles for improving in vivo drugs delivery and chemoresistance in breast cancer, Carbohydr. Polym. 290 (2022) 119518. https://doi.org/10.1016/j.carbpol.2022.119518.
|
| [49] |
K. Maruyama, Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects, Adv. Drug Deliver. Rev. 63 (2011) 161-169. https://doi.org/10.1016/j.addr.2010.09.003.
|
| [50] |
M.A. Farooq, A.P.R. Johnston, N.L. Trevaskis, Impact of nanoparticle properties on immune cell interactions in the lymph node, Acta Biomater. 193 (2025) 65-82. https://doi.org/10.1016/j.actbio.2024.12.039.
|