Turn off MathJax
Article Contents
Jingshuo Li, Xibin Zhou, Shoushi Liu, Alu Ouyang, Bo Su, Zixin Wang, Jiayu Lu, Xin Chen, Qiuju Huang, Ronghua Jin, Hongwei Guo. Augmented Therapeutic Efficacy of Erianin through pH-Responsive Charge-Reversal Liposome Integrated Synergistic PTT and PDT in Breast Cancer[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101555
Citation: Jingshuo Li, Xibin Zhou, Shoushi Liu, Alu Ouyang, Bo Su, Zixin Wang, Jiayu Lu, Xin Chen, Qiuju Huang, Ronghua Jin, Hongwei Guo. Augmented Therapeutic Efficacy of Erianin through pH-Responsive Charge-Reversal Liposome Integrated Synergistic PTT and PDT in Breast Cancer[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101555

Augmented Therapeutic Efficacy of Erianin through pH-Responsive Charge-Reversal Liposome Integrated Synergistic PTT and PDT in Breast Cancer

doi: 10.1016/j.jpha.2026.101555
Funds:

This work was supported by the Guangxi Science and Technology Base and Talent Special Project (Project No.: AD23026052), the Guangxi Science and Technology Project (Project No.: FANGKE ZY20221502).

  • Received Date: Jun. 26, 2025
  • Accepted Date: Jan. 15, 2026
  • Rev Recd Date: Jan. 14, 2026
  • Available Online: Jan. 22, 2026
  • To address Erianin’s limited solubility and the insufficient efficacy of single-modality chemotherapy, a charge-reversal liposomal system co-encapsulating Erianin and IR780 was designed. The liposomes maintain a negative surface charge under physiological conditions to prolong circulation, but undergo pH-responsive conversion to a positive charge within the acidic tumor microenvironment (pH 6.5–6.8), thereby improving tumor-selective internalization. The optimized formulation achieved targeted mitochondrial delivery, where IR780-induced reactive oxygen species (ROS) production and mild hyperthermia activated stress pathways, leading to mitochondrial disruption and ultimately initiating immunogenic cell death (ICD). Concurrently, encapsulated Erianin effectively suppressed photothermal therapy (PTT)/photodynamic therapy (PDT)-induced programmed cell death ligand 1 ( PD-L1) upregulation. This nanoplatform not only avoids the drawbacks of conventional chemotherapy but also establishes a synergistic therapeutic framework integrating PTT, PDT, and chemotherapy. By counteracting resistance mechanisms and limiting immune checkpoint expression, the system provides robust antitumor activity and introduces an innovative approach for advancing liposomal strategies in combinatorial cancer therapy.
  • loading
  • [1]
    R.L. Siegel, A.N. Giaquinto, A. Jemal, Cancer statistics, 2024, CA: Cancer J. Clin. 74 (2024) 12-49. https://doi.org/10.3322/caac.21820.
    [2]
    Y.N. Liao, Z. Luo, Y. Liu, et al., Total flavonoids of Litchi seed attenuate stem cell-like properties in breast cancer by regulating Notch3 signaling pathway, J. Ethnopharmacol. 305 (2023) 116133. https://doi.org/10.1016/j.jep.2023.116133.
    [3]
    H. Zeng, R. Zheng, K. Sun, et al., Cancer survival statistics in China 2019-2021: A multicenter, population-based study, J. Natl. Cancer Cent. 4 (2024) 203-213. https://doi.org/10.1016/j.jncc.2024.06.005.
    [4]
    R. Jin, Z. Liu, Y. Bai, et al., Core-satellite mesoporous silica-gold nanotheranostics for biological stimuli triggered multimodal cancer therapy, Adv. Funct. Mater. 28 (2018) 1801961. https://doi.org/10.1002/adfm.201801961.
    [5]
    L. Li, B. Sun, J. Sun, et al., Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy, Chin. Chem. Lett. 35 (2024) 109538. https://doi.org/10.1016/j.cclet.2024.109538.
    [6]
    U. Anand, A. Dey, A.K.S. Chandel, et al., Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics, Genes Dis. 10 (2023) 1367-1401. https://doi.org/10.1016/j.gendis.2022.02.007.
    [7]
    H.B. Low, Z.L. Wong, B. Wu, et al., DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death, Nat. Commun. 12 (2021) 2284. https://doi.org/10.1038/s41467-021-22638-7.
    [8]
    Z. Yang, Z. Zhou, Q. Meng, et al., Dihydroartemisinin sensitizes lung cancer cells to cisplatin treatment by upregulating ZIP14 expression and inducing ferroptosis, Cancer Med. 13 (2024) e70271. https://doi.org/10.1002/cam4.70271.
    [9]
    R.C. Leonard, S. Williams, A. Tulpule, et al., Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet), Breast 18 (2009) 218-224. https://doi.org/10.1016/j.breast.2009.05.004.
    [10]
    N. Salari, F. Faraji, F.M. Torghabeh, et al., Polymer-based drug delivery systems for anticancer drugs: A systematic review, Cancer Treat. Res. Commun. 32 (2022) 100605. https://doi.org/10.1016/j.ctarc.2022.100605.
    [11]
    T. Hu, H. Gong, J. Xu, et al., Nanomedicines for overcoming cancer drug resistance, Pharmaceutics 14 (2022) 1606. https://doi.org/10.3390/pharmaceutics14081606.
    [12]
    I. Shaw, A.A. Aryee, Y.S. Ali, et al., Harmonizing tradition and technology: Liposomal nanocarriers unlocking the power of natural herbs in Traditional Chinese Medicine, Chin. J. Nat. Med. 23 (2025) 700-713. https://doi.org/10.1016/S1875-5364(25)60889-2.
    [13]
    J. Tomsen-Melero, J. Merlo-Mas, A. Carreno, et al., Liposomal formulations for treating lysosomal storage disorders, Adv. Drug Deliv. Rev. 190 (2022) 114531. https://doi.org/10.1016/j.addr.2022.114531.
    [14]
    J. Chen, S. Hu, M. Sun, et al., Recent advances and clinical translation of liposomal delivery systems in cancer therapy, Eur. J. Pharm. Sci. 193 (2024) 106688. https://doi.org/10.1016/j.ejps.2023.106688.
    [15]
    H. Nsairat, D. Khater, U. Sayed, et al., Liposomes: structure, composition, types, and clinical applications, Heliyon 8 (2022) e09394. https://doi.org/10.1016/j.heliyon.2022.e09394.
    [16]
    R. Jin, J. Xie, X. Yang, et al., A tumor-targeted nanoplatform with stimuli-responsive cascaded activities for multiple model tumor therapy, Biomater. Sci. 8 (2020) 1865-1874. https://doi.org/10.1039/c9bm01992h.
    [17]
    H. Nienhuser, N. Wirsik, T. Schmidt, Esophageal tumor microenvironment, Adv. Exp. Med. Biol. 1296 (2020) 103-116. https://doi.org/10.1007/978-3-030-59038-3_6.
    [18]
    Z. Zhang, Y. Du, X. Shi, et al., NIR-II light in clinical oncology: Opportunities and challenges, Nat. Rev. Clin. Oncol. 21 (2024) 449-467. https://doi.org/10.1038/s41571-024-00892-0.
    [19]
    E. Varon, G. Blumrosen, M. Sinvani, et al., An engineered nanocomplex with photodynamic and photothermal synergistic properties for cancer treatment, Int. J. Mol. Sci. 23 (2022) 2286. https://doi.org/10.3390/ijms23042286.
    [20]
    J. Xu, Y. Lai, F. Wang, et al., Dual stimuli-activatable versatile nanoplatform for photodynamic therapy and chemotherapy of triple-negative breast cancer, Chin. Chem. Lett. 34 (2023) 108332. https://doi.org/10.1016/j.cclet.2023.108332.
    [21]
    N. Yang, H. Li, C. Cao, et al., Tumor microenvironment-activated theranostic nanoreactor for NIR-II Photoacoustic imaging-guided tumor-specific photothermal therapy, Fundam. Res. 4 (2024) 178-187. https://doi.org/10.1016/j.fmre.2022.04.021.
    [22]
    N. Li, F. Dong, L. Sun, et al., Carrier-free delivery of nucleic acid and photosensitizer nanoparticles for enhanced photodynamic and gene antitumour therapy, Fundam. Res. 5 (2025) 1698-1709. https://doi.org/10.1016/j.fmre.2024.03.014.
    [23]
    F. Wang, W. Lai, D. Xie, et al., Nanoparticle-mediated celastrol ER targeting delivery amplify immunogenic cell death in melanoma, J. Adv. Res. 71 (2025) 585-601. https://doi.org/10.1016/j.jare.2024.06.011.
    [24]
    L. Li, H. Tian, Z. Zhang, et al., Carrier-free nanoplatform via evoking pyroptosis and immune response against breast cancer, ACS Appl. Mater. Interfaces 15 (2023) 452-468. https://doi.org/10.1021/acsami.2c17579.
    [25]
    Y. Li, J. Chen, Q. Xia, et al., Photothermal Fe3O4 nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy, J. Nanobiotechnology 22 (2024) 630. https://doi.org/10.1186/s12951-024-02909-3.
    [26]
    Y. Wang, P. Wang, W. Li, et al., Cascaded multiresponsive supramolecular dimer-engineered nano-modulator enabling spatiotemporally adaptable tumor immune microenvironment remodeling in photodynamic immunotherapy, Nano Today 56 (2024) 102305. https://doi.org/10.1016/j.nantod.2024.102305.
    [27]
    W. Zhang, G. Chen, Z. Chen, et al., Mitochondria-targeted polyprodrug nanoparticles induce mitochondrial stress for immunogenic chemo-photodynamic therapy of ovarian cancer, J. Control. Release 371 (2024) 470-483. https://doi.org/10.1016/j.jconrel.2024.06.014.
    [28]
    X. Feng, T. Lin, D. Chen, et al., Mitochondria-associated ER stress evokes immunogenic cell death through the ROS-PERK-eIF2α pathway under PTT/CDT combined therapy, Acta Biomater. 160 (2023) 211-224. https://doi.org/10.1016/j.actbio.2023.02.011.
    [29]
    F. Lu, Z. Li, Y. Sheng, et al., Thermal-triggered packing of lipophilic NIR dye IR780 in hepatitis B core at critical ionic strength and cargo-host ratio for improved stability and enhanced cancer phototherapy, Biomaterials 276 (2021) 121035. https://doi.org/10.1016/j.biomaterials.2021.121035.
    [30]
    A. Yang, M.Y. Li, Z.H. Zhang, et al., Erianin regulates programmed cell death ligand 1 expression and enhances cytotoxic T lymphocyte activity, J. Ethnopharmacol 273 (2021) 113598. https://doi.org/10.1016/j.jep.2020.113598.
    [31]
    J. Tian, K. Chen, Q. Zhang, et al., Mechanism of Self-Assembled Celastrol-Erianin nanomedicine for treatment of breast cancer, Chem. Eng. J. 499 (2024) 155709. https://doi.org/10.1016/j.cej.2024.155709.
    [32]
    Y. Xiao, A. Ouyang, L. Fan, et al., Precision delivery of binary cooperative nanodrugs self-assembled by berberine glycyrrhetinic acid salts for hepatocellular carcinoma treatment, ACS Appl. Mater. Interfaces 16 (2024) 58489-58505. https://doi.org/10.1021/acsami.4c15320.
    [33]
    R. Jin, Q. Wang, G. Dou, et al., Stimuli responsive nanoplatform with mitochondria-specific multiple model therapeutics for effective tumor treatment, Appl. Mater. Today 21 (2020) 100883. https://doi.org/10.1016/j.apmt.2020.100883.
    [34]
    R. Mo, Z. Gu, Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery, Mater. Today 19 (2016) 274-283. https://doi.org/10.1016/j.mattod.2015.11.025.
    [35]
    R. Jin, Z. Liu, Y. Bai, et al., Multiple-responsive mesoporous silica nanoparticles for highly accurate drugs delivery to tumor cells, ACS Omega 3 (2018) 4306-4315. https://doi.org/10.1021/acsomega.8b00427.
    [36]
    H. Yu, J.M. Li, K. Deng, et al., Tumor acidity activated triphenylphosphonium-based mitochondrial targeting nanocarriers for overcoming drug resistance of cancer therapy, Theranostics 9 (2019) 7033-7050. https://doi.org/10.7150/thno.35748.
    [37]
    J.Z. Du, T.M. Sun, W.J. Song, et al., A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery, Angew Chem. Int. Ed. Engl. 49 (2010) 3621-3626. https://doi.org/10.1002/anie.200907210.
    [38]
    R. Jin, J. Li, B. Huang, et al., Amelioration of osteoarthritis through salicylic acid nano-formulated self-therapeutic prodrug for the prolonged launch of salicylic acid to damaged cartilage, Appl. Mater. Today 37 (2024) 102102. https://doi.org/10.1016/j.apmt.2024.102102.
    [39]
    T. Zhang, B. Wu, O.U. Akakuru, et al., Hsp90 inhibitor-loaded IR780 micelles for mitochondria-targeted mild-temperature photothermal therapy in xenograft models of human breast cancer, Cancer Lett. 500 (2021) 41-50. https://doi.org/10.1016/j.canlet.2020.12.028.
    [40]
    X. Zhang, Y. Dong, M. Gao, et al., Knockdown of TRAP1 promotes cisplatin-induced apoptosis by promoting the ROS-dependent mitochondrial dysfunction in lung cancer cells, Mol. Cell. Biochem. 476 (2021) 1075-1082. https://doi.org/10.1007/s11010-020-03973-7.
    [41]
    B. Liu, G. Qiao, Y. Han, et al., Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy, Acta Biomater. 117 (2020) 361-373. https://doi.org/10.1016/j.actbio.2020.09.040.
    [42]
    C. Kong, B. Xu, G. Qiu, et al., Multifunctional nanoparticles-mediated PTT/PDT synergistic immune activation and antitumor activity combined with Anti-PD-L1 immunotherapy for breast cancer treatment, Int. J. Nanomedicine 17 (2022) 5391-5411. https://doi.org/10.2147/ijn.S373282.
    [43]
    C. Huang, X. Yang, H. Li, et al., GSH-responsive polymeric micelles-based augmented photoimmunotherapy synergized with PD-1 blockade for eliciting robust antitumor immunity against colon tumor, J. Nanobiotechnology 22 (2024) 542. https://doi.org/10.1186/s12951-024-02813-w.
    [44]
    L. Zheng, Y. Ding, S. Fang, et al., Potentiated calcium carbonate with enhanced calcium overload induction and acid neutralization capabilities to boost chemoimmunotherapy against liver cancer, ACS Nano 18 (2024) 27597-27616. https://doi.org/10.1021/acsnano.4c08690.
    [45]
    J. Lei, L. Wang, C. Yang, et al., Dasatinib and erianin co-loaded ion-responsive in-situ hydrogel for effective treatment of corneal neovascularization, J. Control. Release 376 (2024) 94-107. https://doi.org/10.1016/j.jconrel.2024.10.001.
    [46]
    K. Wen, L. Wu, X. Wu, et al., Precisely tuning photothermal and photodynamic effects of polymeric nanoparticles by controlled copolymerization, Angew Chem. Int. Ed. Engl. 59 (2020) 12756-12761. https://doi.org/10.1002/anie.202004181.
    [47]
    X. Li, H. Li, C. Zhang, et al., Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy, Bioact. Mater. 6 (2021) 3473-3484. https://doi.org/10.1016/j.bioactmat.2021.03.021.
    [48]
    Q. Chen, C. Jia, Y. Xu, et al., Dual-pH responsive chitosan nanoparticles for improving in vivo drugs delivery and chemoresistance in breast cancer, Carbohydr. Polym. 290 (2022) 119518. https://doi.org/10.1016/j.carbpol.2022.119518.
    [49]
    K. Maruyama, Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects, Adv. Drug Deliver. Rev. 63 (2011) 161-169. https://doi.org/10.1016/j.addr.2010.09.003.
    [50]
    M.A. Farooq, A.P.R. Johnston, N.L. Trevaskis, Impact of nanoparticle properties on immune cell interactions in the lymph node, Acta Biomater. 193 (2025) 65-82. https://doi.org/10.1016/j.actbio.2024.12.039.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (59) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return