| Citation: | Mingyue Zhou, Jin Lan, Tianyang Zhang, Zhiyong Li, Chongyang Ou, Jun Xiong, Juan Su, Shuai Yan. Nano-formulations in therapeutic strategies targeting cancer ferroptosis[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101551 |
| [1] |
J. Saleem, L. Wang, C. Chen, Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment, Adv. Healthc. Mater. 7 (2018), e1800525.
|
| [2] |
J. Rao, Y. Yang, H. Pan Bei, et al., Antibacterial nanosystems for cancer therapy, Biomater. Sci. 8 (2020) 6814-6824.
|
| [3] |
M. Safari, A. Moghaddam, A. Salehi Moghaddam, et al., Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection, Talanta 258 (2023), 124399.
|
| [4] |
H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin 71 (2021) 209-249.
|
| [5] |
F. Bray, J. Ferlay, I. Soerjomataram, et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin 68 (2018) 394-424.
|
| [6] |
S. Augustine, J. Singh, M. Srivastava, et al., Recent advances in carbon based nanosystems for cancer theranostics, Biomater. Sci. 5 (2017) 901-952.
|
| [7] |
A.R. Bagheri, N. Aramesh, M. Bilal, et al., Carbon nanomaterials as emerging nanotherapeutic platforms to tackle the rising tide of cancer - A review, Bioorg. Med. Chem. 51 (2021), 116493.
|
| [8] |
N.K. Mehra, A.K. Jain, M. Nahar, Carbon nanomaterials in oncology: An expanding horizon, Drug Discov. Today 23 (2018) 1016-1025.
|
| [9] |
B. Hosnedlova, M. Kepinska, C. Fernandez, et al., Carbon nanomaterials for targeted cancer therapy drugs: A critical review, Chem. Rec. 19 (2019) 502-522.
|
| [10] |
J. Li, F. Cao, H. Yin, et al., Ferroptosis: Past, present and future, Cell Death Dis. 11 (2020), 88.
|
| [11] |
S. Mashayekhi, H. Majedi, A.R. Dehpour, et al., Ferroptosis as a therapeutic target in glioblastoma: Mechanisms and emerging strategies, Mol. Ther. Nucleic Acids 36 (2025), 102649.
|
| [12] |
P. Bhadra, P. Yadav, S. Kaur, et al., The role of ferroptosis in doxorubicin-induced cardiotoxicity-An update, Life Sci. 380 (2025), 123945.
|
| [13] |
X. Ma, D. Cao, Y. Zhang, et al., Apatinib combined with paclitaxel suppresses synergistically TNBC progression through enhancing ferroptosis susceptibility regulated SLC7A11/GPX4/ACSL4 axis, Cell. Signal. 131 (2025), 111760.
|
| [14] |
S. Kumfu, J. Sripetchwandee, C. Thonusin, et al., Ferroptosis inhibitor improves cardiac function more effectively than inhibitors of apoptosis and necroptosis through cardiac mitochondrial protection in rats with iron-overloaded cardiomyopathy, Toxicol. Appl. Pharmacol. 479 (2023), 116727.
|
| [15] |
N. Reimers, L. Xu, Peroxidation rate constants and mechanisms of isoprenoid-derived lipids and their roles in ferroptosis, Redox Biochem. Chem. 13 (2025), 100058.
|
| [16] |
H. Yang, X. Zhang, Y. Ding, et al., Elabela: Negative regulation of ferroptosis in trophoblasts via the ferritinophagy pathway implicated in the pathogenesis of preeclampsia, Cells 12 (2022), 99.
|
| [17] |
D. Ma, J. Liu, L. Wang, et al., GSK-3β-dependent Nrf2 antioxidant response modulates ferroptosis of lens epithelial cells in age-related cataract, Free Radic. Biol. Med. 204 (2023) 161-176.
|
| [18] |
M. Gao, J. Deng, F. Liu, et al., Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy, Biomaterials 223 (2019), 119486.
|
| [19] |
W. Wang, M. Green, J.E. Choi, et al., CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy, Nature 569 (2019) 270-274.
|
| [20] |
E. Mishima, J. Ito, Z. Wu, et al., A non-canonical vitamin K cycle is a potent ferroptosis suppressor, Nature 608 (2022) 778-783.
|
| [21] |
X. Luo, H. Gong, H. Gao, et al., Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2, Cell Death Differ. 28 (2021) 1971-1989.
|
| [22] |
V.E. Kagan, G. Mao, F. Qu, et al., Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis, Nat. Chem. Biol. 13 (2017) 81-90.
|
| [23] |
Y. An, J. Zhu, F. Liu, et al., Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation, ACS Appl. Mater. Interfaces 11 (2019) 29655-29666.
|
| [24] |
A.A. Kapralov, Q. Yang, H.H. Dar, et al., Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death, Nat. Chem. Biol. 16 (2020) 278-290.
|
| [25] |
T. Wu, X. Liang, X. Liu, et al., Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia, Part. Fibre Toxicol. 17 (2020), 30.
|
| [26] |
P.P. Yee, Y. Wei, S.Y. Kim, et al., Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression, Nat. Commun. 11 (2020), 5424.
|
| [27] |
M. Tsugita, N. Morimoto, M. Nakayama, SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses, Part. Fibre Toxicol. 14 (2017), 11.
|
| [28] |
H.H. Dar, Y.Y. Tyurina, K. Mikulska-Ruminska, et al., Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium, J. Clin. Invest. 128 (2018) 4639-4653.
|
| [29] |
T. Otani, M. Matsuda, A. Mizokami, et al., Osteocalcin triggers Fas/FasL-mediated necroptosis in adipocytes via activation of p300, Cell Death Dis. 9 (2018), 1194.
|
| [30] |
K. Igarashi, H. Iwai, K.I. Tanaka, et al., Neuroprotective effect of oxytocin on cognitive dysfunction, DNA damage, and intracellular chloride disturbance in young mice after cranial irradiation, Biochem. Biophys. Res. Commun. 612 (2022) 1-7.
|
| [31] |
J. Zhu, X. Wang, Y. Su, et al., Multifunctional nanolocks with GSH as the key for synergistic ferroptosis and anti-chemotherapeutic resistance, Biomaterials 288 (2022), 121704.
|
| [32] |
B. Yang, G.H. Joe, W. Li, et al., Comparison of Maillard-type glycated collagen with alginate oligosaccharide and glucose: Its characterization, antioxidant activity, and cytoprotective activity on H2O2-induced cell oxidative damage, Foods 11 (2022), 2374.
|
| [33] |
Z. Ali Sahito, A. Zehra, S. Chen, et al., Rhizobium rhizogenes -mediated-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion, root exudates and metal uptake efficiency, J. Hazard. Mater. 424 (2022), 127442.
|
| [34] |
C. Hou, L. Xiao, X. Ren, et al., EZH2-mediated H3K27me3 is a predictive biomarker and therapeutic target in uveal melanoma, Front. Genet. 13 (2022), 1013475.
|
| [35] |
M. Zhou, Z. Yang, T. Yin, et al., Functionalized Fe-doped carbon dots exhibiting dual glutathione consumption to amplify ferroptosis for enhanced cancer therapy, ACS Appl. Mater. Interfaces 15 (2023) 53228-53241.
|
| [36] |
G Lei, C Mao, Y Yan, et al., Ferroptosis, radiotherapy, and combination therapeutic strategies, Protein Cell 12 (2021) 836-857.
|
| [37] |
M. Song, C. Jiang, C. Shen, et al., Identification of a small molecule of nitric oxide donor-aurovertin hybrids as a GPX4 inhibitor inducing ferroptosis and apoptosis in acute T lymphocytic leukemia cells, J. Pharmacol. Exp. Ther. 392 (2025), 103689.
|
| [38] |
H. Nakagawa, A. Umemura, K. Taniguchi, et al., ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development, Cancer Cell 26 (2014) 331-343.
|
| [39] |
C. Kinoshita, K. Aoyama, N. Matsumura, et al., Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels, Nat. Commun. 5 (2014), 3823.
|
| [40] |
L. Jiang, N. Kon, T. Li, et al., Ferroptosis as a p53-mediated activity during tumour suppression, Nature 520 (2015) 57-62.
|
| [41] |
K. Hayashima, H. Katoh, Expression of gamma-glutamyltransferase 1 in glioblastoma cells confers resistance to cystine deprivation-induced ferroptosis, J. Biol. Chem. 298 (2022), 101703.
|
| [42] |
H. Chen, L. Cao, K. Han, et al., Patulin disrupts SLC7A11-cystine-cysteine-GSH antioxidant system and promotes renal cell ferroptosis both in vitro and in vivo, Food Chem. Toxicol. 166 (2022), 113255.
|
| [43] |
B. Yan, Y. Ai, Q. Sun, et al., Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1, Mol. Cell 81 (2021) 355-369.e10.
|
| [44] |
B.R. Stockwell, J.P. Friedmann Angeli, H. Bayir, et al., Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease, Cell 171 (2017) 273-285.
|
| [45] |
D.J.R. Lane, A.M. Merlot, M.L. Huang, et al., Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease, Biochim. Biophys. Acta 1853 (2015) 1130-1144.
|
| [46] |
R. Tian, A. Abarientos, J. Hong, et al., Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis, Nat. Neurosci. 24 (2021) 1020-1034.
|
| [47] |
R.A. Weber, F.S. Yen, S.P.V. Nicholson, et al., Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation, Mol. Cell 77 (2020) 645-655.e7.
|
| [48] |
Y. Li, Y. Cen, Y. Fang, et al., Breaking the iron homeostasis: A “Trojan horse” self-assembled nanodrug sensitizes homologous recombination proficient ovarian cancer cells to PARP inhibition, ACS Nano 16 (2022) 12786-12800.
|
| [49] |
K. McGinnes, G. Chapman, R. Marks, et al., A fluorescence NK assay using flow cytometry, J. Immunol. Methods 86 (1986) 7-15.
|
| [50] |
S.A. Weston, C.R. Parish, New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy, J. Immunol. Methods 133 (1990) 87-97.
|
| [51] |
D.M. Callewaert, G. Radcliff, R. Waite, et al., Characterization of effector-target conjugates for cloned human natural killer and human lymphokine activated killer cells by flow cytometry, Cytometry 12 (1991) 666-676.
|
| [52] |
S.J. Morris, Real-time multi-wavelength fluorescence imaging of living cells, Biotechniques 8 (1990) 296-308.
|
| [53] |
H. Ren, J. Yong, Q. Yang, et al., Self-assembled FeS-based cascade bioreactor with enhanced tumor penetration and synergistic treatments to trigger robust cancer immunotherapy, Acta Pharm. Sin. B 11 (2021) 3244-3261.
|
| [54] |
Y. Miao, Y. Chen, F. Xue, et al., Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression, EBioMedicine 76 (2022), 103847.
|
| [55] |
T. Wu, X. Wang, M. Chen, et al., Respiratory exposure to graphene quantum dots causes fibrotic effects on lung, liver and kidney of mice, Food Chem. Toxicol. 163 (2022), 112971.
|
| [56] |
T. Wu, X. Wang, J. Cheng, et al., Nitrogen-doped graphene quantum dots induce ferroptosis through disrupting calcium homeostasis in microglia, Part. Fibre Toxicol. 19 (2022), 22.
|
| [57] |
T. Wang, M. Gong, Y. Cao, et al., Persistent ferroptosis promotes cervical squamous intraepithelial lesion development and oncogenesis by regulating KRAS expression in patients with high risk-HPV infection, Cell Death Discov. 8 (2022), 201.
|
| [58] |
F. Fanti, M. Sergi, D. Compagnone, LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices, J. Pharm. Biomed. Anal. 256 (2025), 116681.
|
| [59] |
J. Zheng, Y. Liu, F. Zhu, et al., Picropodophyllin induces ferroptosis via blockage of AKT/NRF2/SLC7A11 and AKT/NRF2/SLC40A1 axes in hepatocellular carcinoma as a natural IGF1R inhibitor, Phytomedicine 143 (2025), 156840.
|
| [60] |
M. Orioli, G. Aldini, G. Beretta, et al., LC-ESI-MS/MS determination of 4-hydroxy-trans-2-nonenal Michael adducts with cysteine and histidine-containing peptides as early markers of oxidative stress in excitable tissues, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 827 (2005) 109-118.
|
| [61] |
S.S. Ranade, D.F. Zamudio Diaz, M.C. Meinke, et al., Advancing EPR spectroscopy with BMPO for UVA-induced radical detection in skin: Refining spin trapping and uncovering glutathione-dependent oxidative mechanisms, Chem. Biol. Interact. 421 (2025), 111744.
|
| [62] |
T. Hirayama, S. Kadota, M. Niwa, et al., A mitochondria-targeted fluorescent probe for selective detection of mitochondrial labile Fe(ii), Metallomics 10 (2018) 794-801.
|
| [63] |
T. Issitt, E. Bosseboeuf, N. De Winter, et al., Neuropilin-1 controls endothelial homeostasis by regulating mitochondrial function and iron-dependent oxidative stress, iScience 11 (2019) 205-223.
|
| [64] |
E.E. Mon, F. Wei, R.N.R. Ahmad, et al., Regulation of mitochondrial iron homeostasis by sideroflexin 2, J. Physiol. Sci. 69 (2019) 359-373.
|
| [65] |
S. Doll, F.P. Freitas, R. Shah, et al., FSP1 is a glutathione-independent ferroptosis suppressor, Nature 575 (2019) 693-698.
|
| [66] |
H. Zhu, Y. Yang, Y. Duan, et al., Nrf2/FSP1/CoQ10 axis-mediated ferroptosis is involved in sodium aescinate-induced nephrotoxicity, Arch. Biochem. Biophys. 759 (2024), 110100.
|
| [67] |
I. Martinez-Reyes, N.S. Chandel, Mitochondrial TCA cycle metabolites control physiology and disease, Nat. Commun. 11 (2020), 102.
|
| [68] |
R. Imamura, S. Kitagawa, T. Kubo, et al., Prostate cancer C5a receptor expression and augmentation of cancer cell proliferation, invasion, and PD-L1 expression by C5a, Prostate 81 (2021) 147-156.
|
| [69] |
D. Sun, S. Cui, H. Ma, et al., Salvianolate ameliorates renal tubular injury through the Keap1/Nrf2/ARE pathway in mouse kidney ischemia-reperfusion injury, J. Ethnopharmacol. 293 (2022), 115331.
|
| [70] |
S. Oka, J. Leon, K. Sakumi, et al., Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease, Sci. Rep. 6 (2016), 37889.
|
| [71] |
L. Liu, Y. Liu, X. Zhou, et al., Sodium butyrate induces ferroptosis in colorectal cancer cells by promoting NCOA4-FTH1-mediated ferritinophagy, Int. Immunopharmacol. 163 (2025), 115188.
|
| [72] |
J. Li, J. Liu, Y. Xu, et al., Tumor heterogeneity in autophagy-dependent ferroptosis, Autophagy 17 (2021) 3361-3374.
|
| [73] |
N. Eling, L. Reuter, J. Hazin, et al., Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells, Oncoscience 2 (2015) 517-532.
|
| [74] |
Y. Sun, L. He, T. Wang, et al., Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells, Mol. Neurobiol. 57 (2020) 4628-4641.
|
| [75] |
X. Jiang, B.R. Stockwell, M. Conrad, Ferroptosis: Mechanisms, biology and role in disease, Nat. Rev. Mol. Cell Biol. 22 (2021) 266-282.
|
| [76] |
Y. Shi, Y. Xu, Y. Li, et al., ALKBH5 regulates ACSL4 to sensitize erastin-induced ferroptosis via YTHDF2-dependent m6A modification in hypoxic pulmonary hypertension, Free. Radic. Biol. Med. 239 (2025) 280-297.
|
| [77] |
H. Lee, F. Zandkarimi, Y. Zhang, et al., Energy-stress-mediated AMPK activation inhibits ferroptosis, Nat. Cell Biol. 22 (2020) 225-234.
|
| [78] |
X. Xu, Y. Chen, Y. Zhang, et al., Highly stable and biocompatible hyaluronic acid-rehabilitated nanoscale MOF-Fe(2+) induced ferroptosis in breast cancer cells, J. Mater. Chem. B (2020). DOI: 10.1039/d0tb01616k.
|
| [79] |
R. Xu, J. Yang, Y. Qian, et al., Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF, Nanoscale Horiz. 6 (2021) 348-356.
|
| [80] |
W. Pan, Y. Tan, W. Meng, et al., Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework, Biomaterials 283 (2022), 121449.
|
| [81] |
S. Xie, W. Sun, C. Zhang, et al., Metabolic control by heat stress determining cell fate to ferroptosis for effective cancer therapy, ACS Nano 15 (2021) 7179-7194.
|
| [82] |
Z. Shen, T. Liu, Y. Li, et al., Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors, ACS Nano 12 (2018) 11355-11365.
|
| [83] |
X. Wan, L. Song, W. Pan, et al., Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy, ACS Nano 14 (2020) 11017-11028.
|
| [84] |
O.S. Kwon, E.J. Kwon, H.J. Kong, et al., Systematic identification of a nuclear receptor-enriched predictive signature for erastin-induced ferroptosis, Redox Biol. 37 (2020), 101719.
|
| [85] |
T. Zhu, L. Shi, C. Yu, et al., Ferroptosis promotes photodynamic therapy: Supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment, Theranostics 9 (2019) 3293-3307.
|
| [86] |
G. Hou, J. Qian, Y. Wang, et al., Hydrazide/metal/indocyanine green coordinated nanoplatform for potentiating reciprocal ferroptosis and immunity against melanoma, ACS Appl. Mater. Interfaces 15 (2023) 37143-37156.
|
| [87] |
Y. Chen, Z. Yao, P. Liu, et al., A self-assembly nano-prodrug for triple-negative breast cancer combined treatment by ferroptosis therapy and chemotherapy, Acta Biomater. 159 (2023) 275-288.
|
| [88] |
X. Guo, F. Liu, J. Deng, et al., Electron-accepting micelles deplete reduced nicotinamide adenine dinucleotide phosphate and impair two antioxidant cascades for ferroptosis-induced tumor eradication, ACS Nano 14 (2020) 14715-14730.
|
| [89] |
Y. Zhang, S. Liu, J. Peng, et al., Biomimetic nanozymes suppressed ferroptosis to ameliorate doxorubicin-induced cardiotoxicity via synergetic effect of antioxidant stress and GPX4 restoration, Nutrients 15 (2023), 1090.
|
| [90] |
L. Yao, M. Zhao, Q. Luo, et al., Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity, ACS Nano 16 (2022) 9228-9239.
|
| [91] |
X. Meng, D. Li, L. Chen, et al., High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy, ACS Nano 15 (2021) 5735-5751.
|
| [92] |
Z. Zhang, Y. Ding, J. Li, et al., Versatile iron-vitamin K3 derivative-based nanoscale coordination polymer augments tumor ferroptotic therapy, Nano Res. 14 (2021) 2398-2409.
|
| [93] |
M. Tetef, K. Margolin, C. Ahn, et al., Mitomycin C and menadione for the treatment of lung cancer: A phase II trial, Invest. New Drugs 13 (1995) 157-162.
|
| [94] |
Z. Zhou, J. Song, R. Tian, et al., Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy, Angew. Chem. Int. Ed. 56 (2017) 6492-6496.
|
| [95] |
Q. Luo, C. Fan, W. Ying, et al., In vivo anchoring bis-pyrene probe for molecular imaging of early gastric cancer by endoscopic techniques, Adv. Sci. 10 (2023), 2203918.
|
| [96] |
Z. Lei, L. Ding, C. Yao, et al., A highly efficient tumor-targeting nanoprobe with a novel cell membrane permeability mechanism, Adv. Mater. 31 (2019), e1807456.
|
| [97] |
J. Gyamfi, J. Kim, J. Choi, Cancer as a metabolic disorder, Int. J. Mol. Sci. 23 (2022), 1155.
|
| [98] |
H. Zhang, L. Zhao, J. Jiang, et al., Multiplexed nanomaterial-assisted laser desorption/ionization for pan-cancer diagnosis and classification, Nat. Commun. 13 (2022), 617.
|
| [99] |
W. Bao, X. Liu, Y. Lv, et al., Nanolongan with multiple on-demand conversions for ferroptosis-apoptosis combined anticancer therapy, ACS Nano 13 (2019) 260-273.
|
| [100] |
M. Wei, J. Bai, X. Shen, et al., Glutathione-exhausting nanoprobes for NIR-II fluorescence imaging-guided surgery and boosting radiation therapy efficacy via ferroptosis in breast cancer, ACS Nano 17 (2023) 11345-11361.
|
| [101] |
X. Chen, R. Kang, G. Kroemer, et al., Broadening horizons: The role of ferroptosis in cancer, Nat. Rev. Clin. Oncol. 18 (2021) 280-296.
|
| [102] |
H. Chen, Z. Han, Q. Luo, et al., Radiotherapy modulates tumor cell fate decisions: A review, Radiat. Oncol. 17 (2022), 196.
|
| [103] |
J. Zhao, Y. Chen, T. Xiong, et al., Clustered cobalt nanodots initiate ferroptosis by upregulating heme oxygenase 1 for radiotherapy sensitization, Small 19 (2023), e2206415.
|
| [104] |
J. Jiang, W. Wang, H. Zheng, et al., Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances, Biomaterials 285 (2022), 121561.
|
| [105] |
Y. Chang, J. Huang, S. Shi, et al., Precise engineering of a Se/Te nanochaperone for reinvigorating cancer radio-immunotherapy, Adv. Mater. 35 (2023), e2212178.
|
| [106] |
L. Zhou, Q. Guan, W. Li, et al., A ferrocene-functionalized covalent organic framework for enhancing chemodynamic therapy via redox dyshomeostasis, Small 17 (2021), e2101368.
|
| [107] |
C. Dai, Y. He, H. Lu, et al., Nanoquadruplex-driven hydrogen therapy: NIR-controlled release for targeted cancer ferroptosis, Biomaterials 326 (2026), 123635.
|
| [108] |
X. Zhou, Q. Hu, C. He, et al., Ferrocene-integrated hypericin self-assembly nano complex directs ferroptosis for enhanced cascade tumor photodynamic therapy and immune effects, Chin. Chem. Lett. (2025), 111645.
|
| [109] |
Z. Wu, Y. Tang, L. Chen, et al., In-situ assembly of Janus nanoprobe for cancer activated NIR-II photoacoustic imaging and enhanced photodynamic therapy, Anal. Chem. 94 (2022) 10540-10548.
|
| [110] |
P. Wang, J. Li, M. Wei, et al., Tumor-microenvironment triggered signal-to-noise boosting nanoprobes for NIR-IIb fluorescence imaging guided tumor surgery and NIR-II photothermal therapy, Biomaterials 287 (2022), 121636.
|
| [111] |
R. An, L. Liu, S. Wei, et al., Controlling disassembly of paramagnetic prodrug and photosensitizer nanoassemblies for on-demand orthotopic glioma theranostics, ACS Nano 16 (2022) 20607-20621.
|
| [112] |
X. Lin, W. Li, Y. Wen, et al., Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy, Biomaterials 287 (2022), 121603.
|
| [113] |
T. Nie, W. Zou, Z. Meng, et al., Bioactive iridium nanoclusters with glutathione depletion ability for enhanced sonodynamic-triggered ferroptosis-like cancer cell death, Adv. Mater. 34 (2022), e2206286.
|
| [114] |
X. Wang, X. Zhong, L. Bai, et al., Ultrafine titanium monoxide (TiO(1+x)) nanorods for enhanced sonodynamic therapy, J. Am. Chem. Soc. 142 (2020) 6527-6537.
|
| [115] |
H. Liang, X. Wu, G. Zhao, et al., Renal clearable ultrasmall single-crystal Fe nanoparticles for highly selective and effective ferroptosis therapy and immunotherapy, J. Am. Chem. Soc. 143 (2021) 15812-15823.
|
| [116] |
Y. Du, R. Zhang, J. Yang, et al., A “closed-loop” therapeutic strategy based on mutually reinforced ferroptosis and immunotherapy, Adv. Funct. Mater. 32 (2022), 2111784.
|
| [117] |
H. Xiong, C. Wang, Z. Wang, et al., Self-assembled nano-activator constructed ferroptosis-immunotherapy through hijacking endogenous iron to intracellular positive feedback loop, J. Control. Release 332 (2021) 539-552.
|
| [118] |
D. Zheng, Q. Lei, J. Zhu, et al., Switching apoptosis to ferroptosis: Metal-organic network for high-efficiency anticancer therapy, Nano Lett. 17 (2017) 284-291.
|
| [119] |
S. Doll, B. Proneth, Y.Y. Tyurina, et al., ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat. Chem. Biol. 13 (2017) 91-98.
|
| [120] |
X. Sun, Z. Ou, R. Chen, et al., Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells, Hepatology 63 (2016) 173-184.
|
| [121] |
H. Yuan, X. Li, X. Zhang, et al., CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation, Biochem. Biophys. Res. Commun. 478 (2016) 838-844.
|
| [122] |
X. Sun, Z. Ou, M. Xie, et al., HSPB1 as a novel regulator of ferroptotic cancer cell death, Oncogene 34 (2015) 5617-5625.
|
| [123] |
G. Chen, Y. Yang, Q. Xu, et al., Self-amplification of tumor oxidative stress with degradable metallic complexes for synergistic cascade tumor therapy, Nano Lett. 20 (2020) 8141-8150.
|
| [124] |
J. Zhang, J. Yang, T. Zuo, et al., Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy, Biomaterials 266 (2021), 120429.
|
| [125] |
C. Lin, J. Sun, Y. Yang, et al., Peptide-based nanoassembly enhances ferroptosis in cancer to overcome paclitaxel resistance, J. Control. Release 384 (2025), 113895.
|
| [126] |
Z. Liu, S. Liu, B. Liu, et al., Tumor microenvironment-activatable metal-phenolic nanoformulations for ultrasound-boosted ferroptosis through triple regulatory pathways, Adv. Funct. Mater. 34 (2024), 2407153.
|
| [127] |
L. Li, X. Yan, M. Xia, et al., Nanoparticle/nanocarrier formulation as an antigen: The immunogenicity and antigenicity of itself, Mol. Pharm. 19 (2022) 148-159.
|