Turn off MathJax
Article Contents
Mingyue Zhou, Jin Lan, Tianyang Zhang, Zhiyong Li, Chongyang Ou, Jun Xiong, Juan Su, Shuai Yan. Nano-formulations in therapeutic strategies targeting cancer ferroptosis[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101551
Citation: Mingyue Zhou, Jin Lan, Tianyang Zhang, Zhiyong Li, Chongyang Ou, Jun Xiong, Juan Su, Shuai Yan. Nano-formulations in therapeutic strategies targeting cancer ferroptosis[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101551

Nano-formulations in therapeutic strategies targeting cancer ferroptosis

doi: 10.1016/j.jpha.2026.101551
Funds:

This work was supported by the Naval Medical University Basic Medical Research Project (Grant No.: 2024QN012), Suzhou General Project of “Strengthening Health through Science and Education” (Grant No.: MSXM2024025) and Natural Science Foundation of Nanjing University of Chinese Medicine (Grant No.: XZR2024064).

  • Received Date: Jul. 25, 2025
  • Accepted Date: Jan. 10, 2026
  • Rev Recd Date: Jan. 06, 2026
  • Available Online: Jan. 12, 2026
  • Ferroptosis is a cell death mode caused by excessive accumulation of lipid peroxides due to intracellular metabolic pathway disorder, which is closely related to intracellular iron metabolism and lipid homeostasis. In cancer therapy, this metabolic imbalance promotes the clearance of tumor cells, suggesting that ferroptosis exerts a tumor suppressor function. However, the clinical translation of ferroptosis-based strategies in oncology is currently hindered by challenges such as inadequate therapeutic efficacy. In the past five years, the rational design of nano-formulations to induce cancer ferroptosis combined with other emerging therapeutic modalities (chemotherapy, chemodynamic therapy, photodynamic therapy, sonodynamic therapy and immunotherapy) has achieved promising therapeutic effects in many rodent tumor models. This review summarizes the recent progress of novel nano-formulations for cancer ferroptosis therapy. The multiple mechanisms and detection indicators of cancer cells during ferroptosis, the rational design of novel nano-formulations, and their strategies for inducing cancer ferroptosis will be introduced. Finally, the challenges and prospects of utilizing novel nano-formulations for cancer ferroptosis therapy will be discussed.
  • loading
  • [1]
    J. Saleem, L. Wang, C. Chen, Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment, Adv. Healthc. Mater. 7 (2018), e1800525.
    [2]
    J. Rao, Y. Yang, H. Pan Bei, et al., Antibacterial nanosystems for cancer therapy, Biomater. Sci. 8 (2020) 6814-6824.
    [3]
    M. Safari, A. Moghaddam, A. Salehi Moghaddam, et al., Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection, Talanta 258 (2023), 124399.
    [4]
    H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin 71 (2021) 209-249.
    [5]
    F. Bray, J. Ferlay, I. Soerjomataram, et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin 68 (2018) 394-424.
    [6]
    S. Augustine, J. Singh, M. Srivastava, et al., Recent advances in carbon based nanosystems for cancer theranostics, Biomater. Sci. 5 (2017) 901-952.
    [7]
    A.R. Bagheri, N. Aramesh, M. Bilal, et al., Carbon nanomaterials as emerging nanotherapeutic platforms to tackle the rising tide of cancer - A review, Bioorg. Med. Chem. 51 (2021), 116493.
    [8]
    N.K. Mehra, A.K. Jain, M. Nahar, Carbon nanomaterials in oncology: An expanding horizon, Drug Discov. Today 23 (2018) 1016-1025.
    [9]
    B. Hosnedlova, M. Kepinska, C. Fernandez, et al., Carbon nanomaterials for targeted cancer therapy drugs: A critical review, Chem. Rec. 19 (2019) 502-522.
    [10]
    J. Li, F. Cao, H. Yin, et al., Ferroptosis: Past, present and future, Cell Death Dis. 11 (2020), 88.
    [11]
    S. Mashayekhi, H. Majedi, A.R. Dehpour, et al., Ferroptosis as a therapeutic target in glioblastoma: Mechanisms and emerging strategies, Mol. Ther. Nucleic Acids 36 (2025), 102649.
    [12]
    P. Bhadra, P. Yadav, S. Kaur, et al., The role of ferroptosis in doxorubicin-induced cardiotoxicity-An update, Life Sci. 380 (2025), 123945.
    [13]
    X. Ma, D. Cao, Y. Zhang, et al., Apatinib combined with paclitaxel suppresses synergistically TNBC progression through enhancing ferroptosis susceptibility regulated SLC7A11/GPX4/ACSL4 axis, Cell. Signal. 131 (2025), 111760.
    [14]
    S. Kumfu, J. Sripetchwandee, C. Thonusin, et al., Ferroptosis inhibitor improves cardiac function more effectively than inhibitors of apoptosis and necroptosis through cardiac mitochondrial protection in rats with iron-overloaded cardiomyopathy, Toxicol. Appl. Pharmacol. 479 (2023), 116727.
    [15]
    N. Reimers, L. Xu, Peroxidation rate constants and mechanisms of isoprenoid-derived lipids and their roles in ferroptosis, Redox Biochem. Chem. 13 (2025), 100058.
    [16]
    H. Yang, X. Zhang, Y. Ding, et al., Elabela: Negative regulation of ferroptosis in trophoblasts via the ferritinophagy pathway implicated in the pathogenesis of preeclampsia, Cells 12 (2022), 99.
    [17]
    D. Ma, J. Liu, L. Wang, et al., GSK-3β-dependent Nrf2 antioxidant response modulates ferroptosis of lens epithelial cells in age-related cataract, Free Radic. Biol. Med. 204 (2023) 161-176.
    [18]
    M. Gao, J. Deng, F. Liu, et al., Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy, Biomaterials 223 (2019), 119486.
    [19]
    W. Wang, M. Green, J.E. Choi, et al., CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy, Nature 569 (2019) 270-274.
    [20]
    E. Mishima, J. Ito, Z. Wu, et al., A non-canonical vitamin K cycle is a potent ferroptosis suppressor, Nature 608 (2022) 778-783.
    [21]
    X. Luo, H. Gong, H. Gao, et al., Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2, Cell Death Differ. 28 (2021) 1971-1989.
    [22]
    V.E. Kagan, G. Mao, F. Qu, et al., Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis, Nat. Chem. Biol. 13 (2017) 81-90.
    [23]
    Y. An, J. Zhu, F. Liu, et al., Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation, ACS Appl. Mater. Interfaces 11 (2019) 29655-29666.
    [24]
    A.A. Kapralov, Q. Yang, H.H. Dar, et al., Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death, Nat. Chem. Biol. 16 (2020) 278-290.
    [25]
    T. Wu, X. Liang, X. Liu, et al., Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia, Part. Fibre Toxicol. 17 (2020), 30.
    [26]
    P.P. Yee, Y. Wei, S.Y. Kim, et al., Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression, Nat. Commun. 11 (2020), 5424.
    [27]
    M. Tsugita, N. Morimoto, M. Nakayama, SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses, Part. Fibre Toxicol. 14 (2017), 11.
    [28]
    H.H. Dar, Y.Y. Tyurina, K. Mikulska-Ruminska, et al., Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium, J. Clin. Invest. 128 (2018) 4639-4653.
    [29]
    T. Otani, M. Matsuda, A. Mizokami, et al., Osteocalcin triggers Fas/FasL-mediated necroptosis in adipocytes via activation of p300, Cell Death Dis. 9 (2018), 1194.
    [30]
    K. Igarashi, H. Iwai, K.I. Tanaka, et al., Neuroprotective effect of oxytocin on cognitive dysfunction, DNA damage, and intracellular chloride disturbance in young mice after cranial irradiation, Biochem. Biophys. Res. Commun. 612 (2022) 1-7.
    [31]
    J. Zhu, X. Wang, Y. Su, et al., Multifunctional nanolocks with GSH as the key for synergistic ferroptosis and anti-chemotherapeutic resistance, Biomaterials 288 (2022), 121704.
    [32]
    B. Yang, G.H. Joe, W. Li, et al., Comparison of Maillard-type glycated collagen with alginate oligosaccharide and glucose: Its characterization, antioxidant activity, and cytoprotective activity on H2O2-induced cell oxidative damage, Foods 11 (2022), 2374.
    [33]
    Z. Ali Sahito, A. Zehra, S. Chen, et al., Rhizobium rhizogenes -mediated-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion, root exudates and metal uptake efficiency, J. Hazard. Mater. 424 (2022), 127442.
    [34]
    C. Hou, L. Xiao, X. Ren, et al., EZH2-mediated H3K27me3 is a predictive biomarker and therapeutic target in uveal melanoma, Front. Genet. 13 (2022), 1013475.
    [35]
    M. Zhou, Z. Yang, T. Yin, et al., Functionalized Fe-doped carbon dots exhibiting dual glutathione consumption to amplify ferroptosis for enhanced cancer therapy, ACS Appl. Mater. Interfaces 15 (2023) 53228-53241.
    [36]
    G Lei, C Mao, Y Yan, et al., Ferroptosis, radiotherapy, and combination therapeutic strategies, Protein Cell 12 (2021) 836-857.
    [37]
    M. Song, C. Jiang, C. Shen, et al., Identification of a small molecule of nitric oxide donor-aurovertin hybrids as a GPX4 inhibitor inducing ferroptosis and apoptosis in acute T lymphocytic leukemia cells, J. Pharmacol. Exp. Ther. 392 (2025), 103689.
    [38]
    H. Nakagawa, A. Umemura, K. Taniguchi, et al., ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development, Cancer Cell 26 (2014) 331-343.
    [39]
    C. Kinoshita, K. Aoyama, N. Matsumura, et al., Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels, Nat. Commun. 5 (2014), 3823.
    [40]
    L. Jiang, N. Kon, T. Li, et al., Ferroptosis as a p53-mediated activity during tumour suppression, Nature 520 (2015) 57-62.
    [41]
    K. Hayashima, H. Katoh, Expression of gamma-glutamyltransferase 1 in glioblastoma cells confers resistance to cystine deprivation-induced ferroptosis, J. Biol. Chem. 298 (2022), 101703.
    [42]
    H. Chen, L. Cao, K. Han, et al., Patulin disrupts SLC7A11-cystine-cysteine-GSH antioxidant system and promotes renal cell ferroptosis both in vitro and in vivo, Food Chem. Toxicol. 166 (2022), 113255.
    [43]
    B. Yan, Y. Ai, Q. Sun, et al., Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1, Mol. Cell 81 (2021) 355-369.e10.
    [44]
    B.R. Stockwell, J.P. Friedmann Angeli, H. Bayir, et al., Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease, Cell 171 (2017) 273-285.
    [45]
    D.J.R. Lane, A.M. Merlot, M.L. Huang, et al., Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease, Biochim. Biophys. Acta 1853 (2015) 1130-1144.
    [46]
    R. Tian, A. Abarientos, J. Hong, et al., Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis, Nat. Neurosci. 24 (2021) 1020-1034.
    [47]
    R.A. Weber, F.S. Yen, S.P.V. Nicholson, et al., Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation, Mol. Cell 77 (2020) 645-655.e7.
    [48]
    Y. Li, Y. Cen, Y. Fang, et al., Breaking the iron homeostasis: A “Trojan horse” self-assembled nanodrug sensitizes homologous recombination proficient ovarian cancer cells to PARP inhibition, ACS Nano 16 (2022) 12786-12800.
    [49]
    K. McGinnes, G. Chapman, R. Marks, et al., A fluorescence NK assay using flow cytometry, J. Immunol. Methods 86 (1986) 7-15.
    [50]
    S.A. Weston, C.R. Parish, New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy, J. Immunol. Methods 133 (1990) 87-97.
    [51]
    D.M. Callewaert, G. Radcliff, R. Waite, et al., Characterization of effector-target conjugates for cloned human natural killer and human lymphokine activated killer cells by flow cytometry, Cytometry 12 (1991) 666-676.
    [52]
    S.J. Morris, Real-time multi-wavelength fluorescence imaging of living cells, Biotechniques 8 (1990) 296-308.
    [53]
    H. Ren, J. Yong, Q. Yang, et al., Self-assembled FeS-based cascade bioreactor with enhanced tumor penetration and synergistic treatments to trigger robust cancer immunotherapy, Acta Pharm. Sin. B 11 (2021) 3244-3261.
    [54]
    Y. Miao, Y. Chen, F. Xue, et al., Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression, EBioMedicine 76 (2022), 103847.
    [55]
    T. Wu, X. Wang, M. Chen, et al., Respiratory exposure to graphene quantum dots causes fibrotic effects on lung, liver and kidney of mice, Food Chem. Toxicol. 163 (2022), 112971.
    [56]
    T. Wu, X. Wang, J. Cheng, et al., Nitrogen-doped graphene quantum dots induce ferroptosis through disrupting calcium homeostasis in microglia, Part. Fibre Toxicol. 19 (2022), 22.
    [57]
    T. Wang, M. Gong, Y. Cao, et al., Persistent ferroptosis promotes cervical squamous intraepithelial lesion development and oncogenesis by regulating KRAS expression in patients with high risk-HPV infection, Cell Death Discov. 8 (2022), 201.
    [58]
    F. Fanti, M. Sergi, D. Compagnone, LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices, J. Pharm. Biomed. Anal. 256 (2025), 116681.
    [59]
    J. Zheng, Y. Liu, F. Zhu, et al., Picropodophyllin induces ferroptosis via blockage of AKT/NRF2/SLC7A11 and AKT/NRF2/SLC40A1 axes in hepatocellular carcinoma as a natural IGF1R inhibitor, Phytomedicine 143 (2025), 156840.
    [60]
    M. Orioli, G. Aldini, G. Beretta, et al., LC-ESI-MS/MS determination of 4-hydroxy-trans-2-nonenal Michael adducts with cysteine and histidine-containing peptides as early markers of oxidative stress in excitable tissues, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 827 (2005) 109-118.
    [61]
    S.S. Ranade, D.F. Zamudio Diaz, M.C. Meinke, et al., Advancing EPR spectroscopy with BMPO for UVA-induced radical detection in skin: Refining spin trapping and uncovering glutathione-dependent oxidative mechanisms, Chem. Biol. Interact. 421 (2025), 111744.
    [62]
    T. Hirayama, S. Kadota, M. Niwa, et al., A mitochondria-targeted fluorescent probe for selective detection of mitochondrial labile Fe(ii), Metallomics 10 (2018) 794-801.
    [63]
    T. Issitt, E. Bosseboeuf, N. De Winter, et al., Neuropilin-1 controls endothelial homeostasis by regulating mitochondrial function and iron-dependent oxidative stress, iScience 11 (2019) 205-223.
    [64]
    E.E. Mon, F. Wei, R.N.R. Ahmad, et al., Regulation of mitochondrial iron homeostasis by sideroflexin 2, J. Physiol. Sci. 69 (2019) 359-373.
    [65]
    S. Doll, F.P. Freitas, R. Shah, et al., FSP1 is a glutathione-independent ferroptosis suppressor, Nature 575 (2019) 693-698.
    [66]
    H. Zhu, Y. Yang, Y. Duan, et al., Nrf2/FSP1/CoQ10 axis-mediated ferroptosis is involved in sodium aescinate-induced nephrotoxicity, Arch. Biochem. Biophys. 759 (2024), 110100.
    [67]
    I. Martinez-Reyes, N.S. Chandel, Mitochondrial TCA cycle metabolites control physiology and disease, Nat. Commun. 11 (2020), 102.
    [68]
    R. Imamura, S. Kitagawa, T. Kubo, et al., Prostate cancer C5a receptor expression and augmentation of cancer cell proliferation, invasion, and PD-L1 expression by C5a, Prostate 81 (2021) 147-156.
    [69]
    D. Sun, S. Cui, H. Ma, et al., Salvianolate ameliorates renal tubular injury through the Keap1/Nrf2/ARE pathway in mouse kidney ischemia-reperfusion injury, J. Ethnopharmacol. 293 (2022), 115331.
    [70]
    S. Oka, J. Leon, K. Sakumi, et al., Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease, Sci. Rep. 6 (2016), 37889.
    [71]
    L. Liu, Y. Liu, X. Zhou, et al., Sodium butyrate induces ferroptosis in colorectal cancer cells by promoting NCOA4-FTH1-mediated ferritinophagy, Int. Immunopharmacol. 163 (2025), 115188.
    [72]
    J. Li, J. Liu, Y. Xu, et al., Tumor heterogeneity in autophagy-dependent ferroptosis, Autophagy 17 (2021) 3361-3374.
    [73]
    N. Eling, L. Reuter, J. Hazin, et al., Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells, Oncoscience 2 (2015) 517-532.
    [74]
    Y. Sun, L. He, T. Wang, et al., Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells, Mol. Neurobiol. 57 (2020) 4628-4641.
    [75]
    X. Jiang, B.R. Stockwell, M. Conrad, Ferroptosis: Mechanisms, biology and role in disease, Nat. Rev. Mol. Cell Biol. 22 (2021) 266-282.
    [76]
    Y. Shi, Y. Xu, Y. Li, et al., ALKBH5 regulates ACSL4 to sensitize erastin-induced ferroptosis via YTHDF2-dependent m6A modification in hypoxic pulmonary hypertension, Free. Radic. Biol. Med. 239 (2025) 280-297.
    [77]
    H. Lee, F. Zandkarimi, Y. Zhang, et al., Energy-stress-mediated AMPK activation inhibits ferroptosis, Nat. Cell Biol. 22 (2020) 225-234.
    [78]
    X. Xu, Y. Chen, Y. Zhang, et al., Highly stable and biocompatible hyaluronic acid-rehabilitated nanoscale MOF-Fe(2+) induced ferroptosis in breast cancer cells, J. Mater. Chem. B (2020). DOI: 10.1039/d0tb01616k.
    [79]
    R. Xu, J. Yang, Y. Qian, et al., Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF, Nanoscale Horiz. 6 (2021) 348-356.
    [80]
    W. Pan, Y. Tan, W. Meng, et al., Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework, Biomaterials 283 (2022), 121449.
    [81]
    S. Xie, W. Sun, C. Zhang, et al., Metabolic control by heat stress determining cell fate to ferroptosis for effective cancer therapy, ACS Nano 15 (2021) 7179-7194.
    [82]
    Z. Shen, T. Liu, Y. Li, et al., Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors, ACS Nano 12 (2018) 11355-11365.
    [83]
    X. Wan, L. Song, W. Pan, et al., Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy, ACS Nano 14 (2020) 11017-11028.
    [84]
    O.S. Kwon, E.J. Kwon, H.J. Kong, et al., Systematic identification of a nuclear receptor-enriched predictive signature for erastin-induced ferroptosis, Redox Biol. 37 (2020), 101719.
    [85]
    T. Zhu, L. Shi, C. Yu, et al., Ferroptosis promotes photodynamic therapy: Supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment, Theranostics 9 (2019) 3293-3307.
    [86]
    G. Hou, J. Qian, Y. Wang, et al., Hydrazide/metal/indocyanine green coordinated nanoplatform for potentiating reciprocal ferroptosis and immunity against melanoma, ACS Appl. Mater. Interfaces 15 (2023) 37143-37156.
    [87]
    Y. Chen, Z. Yao, P. Liu, et al., A self-assembly nano-prodrug for triple-negative breast cancer combined treatment by ferroptosis therapy and chemotherapy, Acta Biomater. 159 (2023) 275-288.
    [88]
    X. Guo, F. Liu, J. Deng, et al., Electron-accepting micelles deplete reduced nicotinamide adenine dinucleotide phosphate and impair two antioxidant cascades for ferroptosis-induced tumor eradication, ACS Nano 14 (2020) 14715-14730.
    [89]
    Y. Zhang, S. Liu, J. Peng, et al., Biomimetic nanozymes suppressed ferroptosis to ameliorate doxorubicin-induced cardiotoxicity via synergetic effect of antioxidant stress and GPX4 restoration, Nutrients 15 (2023), 1090.
    [90]
    L. Yao, M. Zhao, Q. Luo, et al., Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity, ACS Nano 16 (2022) 9228-9239.
    [91]
    X. Meng, D. Li, L. Chen, et al., High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy, ACS Nano 15 (2021) 5735-5751.
    [92]
    Z. Zhang, Y. Ding, J. Li, et al., Versatile iron-vitamin K3 derivative-based nanoscale coordination polymer augments tumor ferroptotic therapy, Nano Res. 14 (2021) 2398-2409.
    [93]
    M. Tetef, K. Margolin, C. Ahn, et al., Mitomycin C and menadione for the treatment of lung cancer: A phase II trial, Invest. New Drugs 13 (1995) 157-162.
    [94]
    Z. Zhou, J. Song, R. Tian, et al., Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy, Angew. Chem. Int. Ed. 56 (2017) 6492-6496.
    [95]
    Q. Luo, C. Fan, W. Ying, et al., In vivo anchoring bis-pyrene probe for molecular imaging of early gastric cancer by endoscopic techniques, Adv. Sci. 10 (2023), 2203918.
    [96]
    Z. Lei, L. Ding, C. Yao, et al., A highly efficient tumor-targeting nanoprobe with a novel cell membrane permeability mechanism, Adv. Mater. 31 (2019), e1807456.
    [97]
    J. Gyamfi, J. Kim, J. Choi, Cancer as a metabolic disorder, Int. J. Mol. Sci. 23 (2022), 1155.
    [98]
    H. Zhang, L. Zhao, J. Jiang, et al., Multiplexed nanomaterial-assisted laser desorption/ionization for pan-cancer diagnosis and classification, Nat. Commun. 13 (2022), 617.
    [99]
    W. Bao, X. Liu, Y. Lv, et al., Nanolongan with multiple on-demand conversions for ferroptosis-apoptosis combined anticancer therapy, ACS Nano 13 (2019) 260-273.
    [100]
    M. Wei, J. Bai, X. Shen, et al., Glutathione-exhausting nanoprobes for NIR-II fluorescence imaging-guided surgery and boosting radiation therapy efficacy via ferroptosis in breast cancer, ACS Nano 17 (2023) 11345-11361.
    [101]
    X. Chen, R. Kang, G. Kroemer, et al., Broadening horizons: The role of ferroptosis in cancer, Nat. Rev. Clin. Oncol. 18 (2021) 280-296.
    [102]
    H. Chen, Z. Han, Q. Luo, et al., Radiotherapy modulates tumor cell fate decisions: A review, Radiat. Oncol. 17 (2022), 196.
    [103]
    J. Zhao, Y. Chen, T. Xiong, et al., Clustered cobalt nanodots initiate ferroptosis by upregulating heme oxygenase 1 for radiotherapy sensitization, Small 19 (2023), e2206415.
    [104]
    J. Jiang, W. Wang, H. Zheng, et al., Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances, Biomaterials 285 (2022), 121561.
    [105]
    Y. Chang, J. Huang, S. Shi, et al., Precise engineering of a Se/Te nanochaperone for reinvigorating cancer radio-immunotherapy, Adv. Mater. 35 (2023), e2212178.
    [106]
    L. Zhou, Q. Guan, W. Li, et al., A ferrocene-functionalized covalent organic framework for enhancing chemodynamic therapy via redox dyshomeostasis, Small 17 (2021), e2101368.
    [107]
    C. Dai, Y. He, H. Lu, et al., Nanoquadruplex-driven hydrogen therapy: NIR-controlled release for targeted cancer ferroptosis, Biomaterials 326 (2026), 123635.
    [108]
    X. Zhou, Q. Hu, C. He, et al., Ferrocene-integrated hypericin self-assembly nano complex directs ferroptosis for enhanced cascade tumor photodynamic therapy and immune effects, Chin. Chem. Lett. (2025), 111645.
    [109]
    Z. Wu, Y. Tang, L. Chen, et al., In-situ assembly of Janus nanoprobe for cancer activated NIR-II photoacoustic imaging and enhanced photodynamic therapy, Anal. Chem. 94 (2022) 10540-10548.
    [110]
    P. Wang, J. Li, M. Wei, et al., Tumor-microenvironment triggered signal-to-noise boosting nanoprobes for NIR-IIb fluorescence imaging guided tumor surgery and NIR-II photothermal therapy, Biomaterials 287 (2022), 121636.
    [111]
    R. An, L. Liu, S. Wei, et al., Controlling disassembly of paramagnetic prodrug and photosensitizer nanoassemblies for on-demand orthotopic glioma theranostics, ACS Nano 16 (2022) 20607-20621.
    [112]
    X. Lin, W. Li, Y. Wen, et al., Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy, Biomaterials 287 (2022), 121603.
    [113]
    T. Nie, W. Zou, Z. Meng, et al., Bioactive iridium nanoclusters with glutathione depletion ability for enhanced sonodynamic-triggered ferroptosis-like cancer cell death, Adv. Mater. 34 (2022), e2206286.
    [114]
    X. Wang, X. Zhong, L. Bai, et al., Ultrafine titanium monoxide (TiO(1+x)) nanorods for enhanced sonodynamic therapy, J. Am. Chem. Soc. 142 (2020) 6527-6537.
    [115]
    H. Liang, X. Wu, G. Zhao, et al., Renal clearable ultrasmall single-crystal Fe nanoparticles for highly selective and effective ferroptosis therapy and immunotherapy, J. Am. Chem. Soc. 143 (2021) 15812-15823.
    [116]
    Y. Du, R. Zhang, J. Yang, et al., A “closed-loop” therapeutic strategy based on mutually reinforced ferroptosis and immunotherapy, Adv. Funct. Mater. 32 (2022), 2111784.
    [117]
    H. Xiong, C. Wang, Z. Wang, et al., Self-assembled nano-activator constructed ferroptosis-immunotherapy through hijacking endogenous iron to intracellular positive feedback loop, J. Control. Release 332 (2021) 539-552.
    [118]
    D. Zheng, Q. Lei, J. Zhu, et al., Switching apoptosis to ferroptosis: Metal-organic network for high-efficiency anticancer therapy, Nano Lett. 17 (2017) 284-291.
    [119]
    S. Doll, B. Proneth, Y.Y. Tyurina, et al., ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat. Chem. Biol. 13 (2017) 91-98.
    [120]
    X. Sun, Z. Ou, R. Chen, et al., Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells, Hepatology 63 (2016) 173-184.
    [121]
    H. Yuan, X. Li, X. Zhang, et al., CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation, Biochem. Biophys. Res. Commun. 478 (2016) 838-844.
    [122]
    X. Sun, Z. Ou, M. Xie, et al., HSPB1 as a novel regulator of ferroptotic cancer cell death, Oncogene 34 (2015) 5617-5625.
    [123]
    G. Chen, Y. Yang, Q. Xu, et al., Self-amplification of tumor oxidative stress with degradable metallic complexes for synergistic cascade tumor therapy, Nano Lett. 20 (2020) 8141-8150.
    [124]
    J. Zhang, J. Yang, T. Zuo, et al., Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy, Biomaterials 266 (2021), 120429.
    [125]
    C. Lin, J. Sun, Y. Yang, et al., Peptide-based nanoassembly enhances ferroptosis in cancer to overcome paclitaxel resistance, J. Control. Release 384 (2025), 113895.
    [126]
    Z. Liu, S. Liu, B. Liu, et al., Tumor microenvironment-activatable metal-phenolic nanoformulations for ultrasound-boosted ferroptosis through triple regulatory pathways, Adv. Funct. Mater. 34 (2024), 2407153.
    [127]
    L. Li, X. Yan, M. Xia, et al., Nanoparticle/nanocarrier formulation as an antigen: The immunogenicity and antigenicity of itself, Mol. Pharm. 19 (2022) 148-159.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (52) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return