| Citation: | Maozhu Liu, Cuilin He, Xiwen Wang, Jiao Ye, Enqiang Chen, Tao Tao. Therapeutic Potential of Traditional Chinese Medicine-derived Formulations and Extracts in Candida Infections: Current Trends and Future Directions[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101549 |
| [1] |
E. Puumala, S. Fallah, N. Robbins, et al., Advancements and challenges in antifungal therapeutic development, Clin. Microbiol. Rev. 37 (2024) e00142-23.
|
| [2] |
M.C. Arendrup, T.F. Patterson, Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment, J. Infect. Dis. 216 (2017) S445-S451.
|
| [3] |
T.P. McCarty, C.M. White, P.G. Pappas, Candidemia and invasive candidiasis, Infect. Dis. Clin. North Am. 35 (2021) 389-413.
|
| [4] |
S. Silva, M. Negri, M. Henriques, et al., Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance, FEMS Microbiol. Rev. 36 (2012) 288-305.
|
| [5] |
E. Kotthoff-Burrell, Candidemia (blood infection) and other Candida infections, Am. J. Respir. Crit. Care Med. 200 (2019) 9-10.
|
| [6] |
J. Beardsley, C.L. Halliday, S.C. Chen, et al., Responding to the emergence of antifungal drug resistance: Perspectives from the bench and the bedside, Future Microbiol. 13 (2018) 1175-1191.
|
| [7] |
S. Sankararaman, S. Velayuthan, Y. Chen, et al., Role of traditional Chinese herbal medicines in functional gastrointestinal and motility disorders, Curr. Gastroenterol. Rep. 24 (2022) 43-51.
|
| [8] |
T. Sen, S.K. Samanta, Medicinal plants, human health and biodiversity: A broad review, Adv. Biochem. Eng. Biotechnol. 147 (2015) 59-110.
|
| [9] |
G. Zhao, R. Chen, B. Li, et al., Clinical practice guideline on traditional Chinese medicine therapy alone or combined with antibiotics for sepsis, Ann. Transl. Med. 7 (2019), 122.
|
| [10] |
L. Bu, O. Dai, F. Zhou, et al., Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis, Biomed. Pharmacother. 132 (2020), 110855.
|
| [11] |
J. Dai, L. Qiu, Y. Lu, et al., Recent advances of traditional Chinese medicine against cardiovascular disease: Overview and potential mechanisms, Front. Endocrinol. 15 (2024), 1366285.
|
| [12] |
X. Feng, H. Zhang, K. Hu, et al., Longdan Xiegan decoction ameliorates vulvovaginal candidiasis by inhibiting the NLRP3 inflammasome via the Toll-like receptor/MyD88 pathway, J. Ethnopharmacol. 318 (2024), 116869.
|
| [13] |
H. Yue, X. Xu, S. He, et al., Antifungal mechanisms of a Chinese herbal medicine, Cao Huang Gui Xiang, against Candida Species, Front. Pharmacol. 13 (2022), 813818.
|
| [14] |
Z. Chen, T. Luo, F. Huang, et al., Kangbainian Lotion ameliorates vulvovaginal candidiasis in mice by inhibiting the growth of fluconazole-resistant Candida albicans and the dectin-1 signaling pathway activation, Front. Pharmacol. 12 (2022), 816290.
|
| [15] |
H. Yue, X. Xu, B. Peng, et al., Antifungal Activity of the Dichloromethane Extract of CaoHuangGuiXiang Formula Against Candida auris by in vitro and in vivo Evaluation, Infect. Drug Resist. 17 (2024) 3547-3559.
|
| [16] |
J. Du, S. Jin, Y. Zhang, et al., In vitro and in vivo inhibitory effects of the Sanghuang mushroom extracts against Candida albicans, Future Microbiol. 19 (2024) 983-996.
|
| [17] |
J. Shen, Z. Wang, Y. Duan, et al., Antifungal bioactivity of Sarcococca hookeriana var. digyna Franch. against fluconazole-resistant Candida albicans in vitro and in vivo, J. Ethnopharmacol. 333 (2024), 118473.
|
| [18] |
F. Tornero-Gutierrez, J.A. Ortiz-Ramirez, E. Lopez-Romero, et al., Materials used to prevent adhesion, growth, and biofilm formation of Candida species, Med. Mycol. 61 (2023), myad065.
|
| [19] |
C. Lass-Florl, S. Steixner, The changing epidemiology of fungal infections, Mol. Aspects Med. 94 (2023), 101215.
|
| [20] |
F.M. Verduyn Lunel, J.F. Meis, A. Voss, Nosocomial fungal infections: Candidemia, Diagn. Microbiol. Infect. Dis. 34 (1999) 213-220.
|
| [21] |
N.R. Gaffar, N. Valand, U. Venkatraman Girija, Candidiasis: Insights into virulence factors, complement evasion and antifungal drug resistance, Microorganisms 13 (2025), 272.
|
| [22] |
R. Pereira, R.O. Dos Santos Fontenelle, E.H.S. de Brito, et al., Biofilm of Candida albicans: Formation, regulation and resistance, J. Appl. Microbiol. 131 (2021) 11-22.
|
| [23] |
J. Talapko, M. Juzbasic, T. Matijevic, et al., Candida albicans-the virulence factors and clinical manifestations of infection, J. Fungi 7 (2021), 79.
|
| [24] |
A. Soriano, P.M. Honore, P. Puerta-Alcalde, et al., Invasive candidiasis: Current clinical challenges and unmet needs in adult populations, J. Antimicrob. Chemother. 78 (2023) 1569-1585.
|
| [25] |
G.D. Brown, E.R. Ballou, S. Bates, et al., The pathobiology of human fungal infections, Nat. Rev. Microbiol. 22 (2024) 687-704.
|
| [26] |
V. Soulountsi, T. Schizodimos, S.C. Kotoulas, Deciphering the epidemiology of invasive candidiasis in the intensive care unit: Is it possible? Infection 49 (2021) 1107-1131.
|
| [27] |
H. Bilal, M. Shafiq, B. Hou, et al., Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis, Virulence 13 (2022) 1573-1589.
|
| [28] |
M. Xiao, S.C. Chen, F. Kong, et al., Distribution and antifungal susceptibility of Candida Species causing candidemia in China: An update from the CHIF-NET study, J. Infect. Dis. 221 (2020) S139-s147.
|
| [29] |
Y. Lee, E. Puumala, N. Robbins, et al., Antifungal drug resistance: Molecular mechanisms in Candida albicans and beyond, Chem. Rev. 121 (2021) 3390-3411.
|
| [30] |
A.J. Ullmann, M. Akova, R. Herbrecht, et al., ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT), Clin. Microbiol. Infect. 18 (2012) 53-67.
|
| [31] |
O.A. Cornely, M. Bassetti, T. Calandra, et al., ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Non-neutropenic adult patients, Clin. Microbiol. Infect. 18 (2012) 19-37.
|
| [32] |
P.G. Pappas, C.A. Kauffman, D.R. Andes, et al., Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America, Clin. Infect. Dis. 62 (2016) e1-e50.
|
| [33] |
W. Lee, J.F. Hsu, M. Lai, et al., Factors and outcomes associated with candidemia caused by non-albicans Candida spp versus Candida albicans in children, Am. J. Infect. Control 46 (2018) 1387-1393.
|
| [34] |
J. Berman, D.J. Krysan, Drug resistance and tolerance in fungi, Nat. Rev. Microbiol. 18 (2020) 319-331.
|
| [35] |
D.S. Perlin, R. Rautemaa-Richardson, A. Alastruey-Izquierdo, The global problem of antifungal resistance: Prevalence, mechanisms, and management, Lancet Infect. Dis. 17 (2017) e383-e392.
|
| [36] |
K.M. Czajka, K. Venkataraman, D. Brabant-Kirwan, et al., Molecular mechanisms associated with antifungal resistance in pathogenic Candida Species, Cells 12 (2023), 2655.
|
| [37] |
A.T. Nishimoto, C. Sharma, P.D. Rogers, Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans, J. Antimicrob. Chemother. 75 (2020) 257-270.
|
| [38] |
M. Szymanski, S. Chmielewska, U. Czyzewska, et al., Echinocandins - structure, mechanism of action and use in antifungal therapy, J. Enzyme Inhib. Med. Chem. 37 (2022) 876-894.
|
| [39] |
L. Ahmady, M. Gothwal, M.M. Mukkoli, et al., Antifungal drug resistance in Candida: A special emphasis on amphotericin B, APMIS 132 (2024) 291-316.
|
| [40] |
A.M. Dawoud, S.A. Saied, M.M. Torayah, et al., Antifungal susceptibility and virulence determinants profile of Candida species isolated from patients with candidemia, Sci. Rep. 14 (2024), 11597.
|
| [41] |
E. Kalantar, M. Assadi, H. Pormazaheri, et al., Candida non albicans with a High amphotericin B resistance pattern causing candidemia among cancer patients, Asian Pac. J. Cancer Prev. 15 (2014) 10933-10935.
|
| [42] |
C. Ibe, A. Otu, C.H. Pohl, Mechanisms of resistance to cell wall and plasma membrane targeting antifungal drugs in Candida species isolated in Africa, Expert Rev. Anti Infect. Ther. 23 (2025) 91-104.
|
| [43] |
B.D. Alexander, M.D. Johnson, C.D. Pfeiffer, et al., Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations, Clin. Infect. Dis. 56 (2013) 1724-1732.
|
| [44] |
F. Askari, R. Kaur, Candida glabrata: A tale of stealth and endurance, ACS Infect. Dis. 11 (2025) 4-20.
|
| [45] |
J. Gu, M.E. Lane, B. Da Silva Sil Dos Santos, et al., Topical and transdermal botanical formulations of the Chinese pharmacopoeia-a review, Phytother. Res. 38 (2024) 4716-4735.
|
| [46] |
X. Luan, L. Zhang, X. Li, et al., Compound-based Chinese medicine formula: From discovery to compatibility mechanism, J. Ethnopharmacol. 254 (2020), 112687.
|
| [47] |
F. Chu, H. Wu, C. Li, et al., Transcriptomics analysis reveals the effect of Pulsatilla decoction butanol extract on endoplasmic reticulum and peroxisome function of Candida albicans in hyphal state, J. Ethnopharmacol. 337 (2025), 118826.
|
| [48] |
L. Yang, H. Wu, W. Qiu, et al., Pulsatilla decoction inhibits Candida albicans proliferation and adhesion in a mouse model of vulvovaginal candidiasis via the Dectin-1 signaling pathway, J. Ethnopharmacol. 223 (2018) 51-62.
|
| [49] |
K. Hu, H. Zhang, G. Shi, et al., Effects of n-butanol extract of Pulsatilla decoction on the NLRP3 inflammasome in macrophages infected with Candida albicans, J. Ethnopharmacol. 304 (2023), 116041.
|
| [50] |
H. Zhang, C. Li, H. Wu, et al., Pulsatilla suppository prevents recurrent vulvovaginal candidiasis in a rat model via the TLR/MyD88/NLRP3 signaling pathway, Fitoterapia 179 (2024), 106250.
|
| [51] |
K. Hu, X. Jiang, J. Zhang, et al., Effect of Pulsatilla decoction on vulvovaginal candidiasis in mice. Evidences for its mechanisms of action, Phytomedicine 128 (2024), 155515.
|
| [52] |
Z. Li, H. Wu, C. Li, et al., n-butanol extract of Pulsatilla decoction alleviates vulvovaginal candidiasis via the regulation of mitochondria-associated Type I interferon signaling pathways, J. Ethnopharmacol. 340 (2025), 119292.
|
| [53] |
J. Zhang, X. Jiang, G. Shi, et al., Effect of the Pulsatilla decoction n-butanol extract on vulvovaginal candidiasis caused by Candida glabrata and on its virulence factors, Fitoterapia 173 (2024), 105825.
|
| [54] |
Z. Han, X. Tan, J. Sun, et al., Systems pharmacology and transcriptomics reveal the mechanisms of Sanhuang decoction enema in the treatment of ulcerative colitis with additional Candida albicans infection, Chin. Med. 16 (2021), 75.
|
| [55] |
Q. Yang, L. Gao, M. Tao, et al., Transcriptomics analysis of Candida albicans treated with Huanglian Jiedu decoction using RNA-seq, Evid. Based Complement. Alternat. Med. 2016 (2016), 3198249.
|
| [56] |
J. Li, Z.-H. Jin, J.-S. Li, et al., Activity of Compound Agrimony Enteritis Capsules against invasive candidiasis: Exploring the differences between traditional Chinese medicine prescriptions and its main components in the treatment of diseases, J. Ethnopharmacol. 277 (2021), 114201.
|
| [57] |
Y. Li, Y. Liu, Y. Sun, et al., Study on the mechanism of Yupingfeng powder in the treatment of immunosuppression based on UPLC⁃QTOF⁃MS, network pharmacology and molecular biology verification, Life Sci. 289 (2022), 120211.
|
| [58] |
X. He, Q. Tang, F. Zhan, et al., Inflammatory invasion on human vaginal mucosa correlated with combined drug treatment and recurrence in recurrent vulvovaginal candidiasis, J. Obstet. Gynaecol. Res. 49 (2023)1443-1451.
|
| [59] |
S. Joly, F.S. Sutterwala, Fungal pathogen recognition by the NLRP3 inflammasome, Virulence 1 (2010) 276-280.
|
| [60] |
E. Roselletti, S. Perito, E. Gabrielli, et al., NLRP3 inflammasome is a key player in human vulvovaginal disease caused by Candida albicans, Sci. Rep. 7 (2017), 17877.
|
| [61] |
M. Borghi, A. De Luca, M. Puccetti, et al., Pathogenic NLRP3 inflammasome activity during Candida infection is negatively regulated by IL-22 via activation of NLRC4 and IL-1Ra, Cell Host Microbe 18 (2015) 198-209.
|
| [62] |
F. McNab, K. Mayer-Barber, A. Sher, et al., Type I interferons in infectious disease, Nat. Rev. Immunol. 15 (2015) 87-103.
|
| [63] |
J. Zhang, J. Peng, D. Li, et al., Divergent EGFR/MAPK-mediated immune responses to clinical Candida Pathogens in vulvovaginal candidiasis, Front. Immunol. 13 (2022), 894069.
|
| [64] |
G. Huang, Q. Huang, Y. Wei, et al., Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans, Mol. Microbiol. 111 (2019) 6-16.
|
| [65] |
G. Guan, H. Wang, W. Liang, et al., The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans, Fungal Genet. Biol. 81 (2015) 150-159.
|
| [66] |
J. Chong, Z. Chen, J. Ma, et al., Mechanistic investigation and the optimal dose based on baicalin in the treatment of ulcerative colitis-A preclinical systematic review and meta-analysis, BMC Gastroenterol. 25 (2025), 50.
|
| [67] |
X. Hou, C. Li, J. Liu, et al., Cathelicidin boosts the antifungal activity of neutrophils and improves prognosis during Aspergillus fumigatus keratitis, Infect. Immun. 92 (2024) e00483-23.
|
| [68] |
L. Wei, D. Abraham, V. Ong, The Yin and Yang of IL-17 in systemic sclerosis, Front. Immunol. 13 (2022), 885609.
|
| [69] |
E. Aboualigalehdari, N. Sadeghifard, M. Taherikalani, et al., Anti-biofilm properties of Peganum harmala against Candida albicans, Osong Public Health Res. Perspect. 7 (2016) 116-118.
|
| [70] |
Y. Sekita, K. Murakami, H. Yumoto, et al., Antibiofilm and anti-Inflammatory activities of Houttuynia cordata decoction for oral care, Evid. Based Complement. Alternat. Med. 2017 (2017), 2850947.
|
| [71] |
V.M. Meccatti, L.F. Santos, L.S. de Carvalho, et al., Antifungal action of herbal plants' glycolic extracts against Candida species, Molecules 28 (2023), 2857.
|
| [72] |
V.M. Meccatti, J.R. DE Oliveira, L.W. Figueira, et al., Rosmarinus officinalis L. (rosemary) extract has antibiofilm effect similar to the antifungal nystatin on Candida samples, An. Acad. Bras. Cienc. 93 (2021), e20190366.
|
| [73] |
Y. Sekita, K. Murakami, H. Yumoto, et al., Preventive effects of Houttuynia cordata extract for oral infectious diseases, Biomed Res. Int. 2016 (2016), 2581876.
|
| [74] |
J.R. de Oliveira, D. de Jesus, L.W. Figueira, et al., Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells, Exp. Biol. Med. (Maywood) 242 (2017) 625-634.
|
| [75] |
R.A.D. Silva, N.B.S. Silva, C.H.G. Martins, et al., Combining essential oils with each other and with clotrimazole prevents the formation of Candida biofilms and eradicates mature biofilms, Pharmaceutics 14 (2022), 1872.
|
| [76] |
M. de Lucena Rangel, S.G. de Aquino, J.M. de Lima, et al., In vitro effect of Cinnamomum zeylanicum Blume essential oil on Candida spp. involved in oral infections, Evid. Based Complement. Alternat. Med. 2018 (2018), 4045013.
|
| [77] |
C. Condo, I. Anacarso, C. Sabia, et al., Antimicrobial activity of spices essential oils and its effectiveness on mature biofilms of human pathogens, Nat. Prod. Res. 34 (2020) 567-574.
|
| [78] |
H.N.H. Tran, L. Graham, E.C. Adukwu, In vitro antifungal activity of Cinnamomum zeylanicum bark and leaf essential oils against Candida albicans and Candida auris, Appl. Microbiol. Biotechnol. 104 (2020) 8911-8924.
|
| [79] |
A. Khan, A. Ahmad, I. Xess, et al., Ocimum sanctum essential oil inhibits virulence attributes in Candida albicans, Phytomedicine 21 (2014) 448-452.
|
| [80] |
J. Ma, Y.C. Yang, L.Q. Su, et al., The liquid Kangfuxin (KFX) has efficient antifungal activity and can be used in the treatment of vulvovaginal candidiasis in mice, Lett. Appl. Microbiol. 74 (2022) 564-576.
|
| [81] |
K. Gu, S. Feng, X. Zhang, et al., Deciphering the antifungal mechanism and functional components of Cinnamomum cassia essential oil against Candida albicans through integration of network-based metabolomics and pharmacology, the greedy algorithm, and molecular docking, J. Ethnopharmacol. 319 (2024), 117156.
|
| [82] |
D. Li, R. Wang, M. You, et al., The antimicrobial effect and mechanism of the Artemisia argyi essential oil against bacteria and fungus, Braz. J. Microbiol. 55 (2024) 727-735.
|
| [83] |
C. Wu, H.-T. Wu, Q. Wang, et al., Anticandidal potential of stem bark extract from Schima superba and the identification of its major anticandidal compound, Molecules 24 (2019), 1587.
|
| [84] |
Y. Yang, Y. Ning, X. Zhu, et al., Antifungal and anti-inflammatory effects of coptidis rhizoma extract against Candida Albicans, Afr. J. Tradit. Complementary Altern. Med. 12 (2015) 161-168.
|
| [85] |
N.H. Ali, S. Faizi, S.U. Kazmi, Antibacterial activity in spices and local medicinal plants against clinical isolates of Karachi, Pakistan, Pharm. Biol. 49 (2011) 833-839.
|
| [86] |
W. Chaiyana, C. Punyoyai, S. Sriyab, et al., Anti-inflammatory and antimicrobial activities of fermented Ocimum sanctum Linn. extracts against skin and scalp microorganisms, Chem. Biodivers. 19 (2022), e202100799.
|
| [87] |
M.R.C. de Araujo, P.P. Maciel, L.R.C. Castellano, et al., Efficacy of essential oil of cinnamon for the treatment of oral candidiasis: A randomized trial, Spec. Care Dentist. 41 (2021) 349-357.
|
| [88] |
S. Gavanji, S.R. Zaker, Z.G. Nejad, et al., Comparative efficacy of herbal essences with amphotricin B and ketoconazole on Candida albicans in the in vitro condition, Integr. Med. Res. 4 (2015) 112-118.
|
| [89] |
H. Hu, B. Hu, C. Hu, et al., Picrasma quassioides leaves: Insights from chemical profiling and bioactivity comparison with stems, Fitoterapia 177 (2024), 106108.
|
| [90] |
J. Hu, J. Wang, S. Li, et al., Phytochemical compositions, antioxidant and antimicrobial activities analysis of extracts from Vaccinium bracteatum Thunb. leaves, Journal of Applied Botany & Food Quality 89 (2016) 150-155.
|
| [91] |
K. Huanbutta, N. Rattanachitthawat, K. Luangpraditkun, et al., Development and evaluation of ethosomes loaded with Zingiber zerumbet Linn rhizome extract for antifungal skin infection in deep layer skin, Pharmaceutics 14 (2022), 2765.
|
| [92] |
F. Katiraee, S. Ahmadi Afshar, S.F. Rahimi Pirmahalleh, et al., In vitro antifungal activity of essential oils extracted from plants against fluconazole-susceptible and-resistant Candida albicans, Curr. Med. Mycol. 3 (2017) 1-6.
|
| [93] |
S. Khan, M. Imran, M. Imran, et al., Antimicrobial activity of various ethanolic plant extracts against pathogenic multi drug resistant Candida spp, Bioinformation 13 (2017) 67-72.
|
| [94] |
Z. Khorram, S.M. Hakimaneh, A. Naeini, et al., The antifungal effects of two herbal essences in comparison with nystatin on the Candida Strains isolated from the edentulous patients, J. Contemp. Dent. Pract. 20 (2019) 716-719.
|
| [95] |
S. Ksouri, S. Djebir, A.A. Bentorki, et al., Antifungal activity of essential oils extract from Origanum floribundum Munby, Rosmarinus officinalis L. and Thymus ciliatus Desf. against Candida albicans isolated from bovine clinical mastitis, J. Mycol. Med. 27 (2017) 245-249.
|
| [96] |
G. Laskai, A. Sienkiewicz, J.K. Zjawiony, et al., Antifungal activity of the root extracts of Pulsatilla patens against Candida glabrata, Acta Pol. Pharm. 74 (2017) 179-185.
|
| [97] |
L. W Figueira, J.R. de Oliveira, A. AL Netto, et al., Curcuma LongaL. helps macrophages to control opportunistic micro-organisms during host-microbe interactions, Future Microbiol. 15 (2020) 1237-1248.
|
| [98] |
H. Li, Y. Kong, W. Hu, et al., Litsea cubeba essential oil: Component analysis, anti-Candida albicans activity and mechanism based on molecular docking, J. Oleo Sci. 71 (2022) 1221-1228.
|
| [99] |
J. Murugesh, R.G. Annigeri, G.K. Mangala, et al., Evaluation of the antifungal efficacy of different concentrations of Curcuma longa on Candida albicans: An in vitro study, J. Oral Maxillofac. Pathol. 23 (2019), 305.
|
| [100] |
A. Naeini, N.J. Naderi, H. Shokri, Analysis and in vitro anti-Candida antifungal activity of Cuminum cyminum and Salvadora persica herbs extracts against pathogenic Candida strains, J. Mycol. Med. 24 (2014) 13-18.
|
| [101] |
J. de Araujo Oliveira, I.C.G. da Silva, L.A. Trindade, et al., Safety and tolerability of essential oil from Cinnamomum zeylanicum blume leaves with action on oral candidosis and its effect on the physical properties of the acrylic resin, Evid. Based Complement. Alternat. Med. 2014 (2014), 325670.
|
| [102] |
G. Pandey, S. Khatoon, M.M. Pandey, et al., Altitudinal variation of berberine, total phenolics and flavonoid content in Thalictrum foliolosum and their correlation with antimicrobial and antioxidant activities, J. Ayurveda Integr. Med. 9 (2018) 169-176.
|
| [103] |
M. Politi, C. Ferrante, L. Menghini, et al., Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation, Plants 11 (2022), 349.
|
| [104] |
K. Rebickova, T. Bajer, D. Silha, et al., Comparison of chemical composition and biological properties of essential oils obtained by hydrodistillation and steam distillation of Laurus nobilis L, Plant Foods Hum. Nutr. 75 (2020) 495-504.
|
| [105] |
R. Rolta, A. Sharma, A. Sourirajan, et al., Combination between antibacterial and antifungal antibiotics with phytocompounds of Artemisia annua L: A strategy to control drug resistance pathogens, J. Ethnopharmacol. 266 (2021), 113420.
|
| [106] |
G. Shaheen, A. Ashfaq, T. Shamim, et al., Antioxidant, antimicrobial, phytochemical and FTIR analysis of Peganum harmala (fruit) ethanolic extract from cholistan desert, Pakistan, Dose Response 20 (2022), 15593258221126832.
|
| [107] |
N. Sharma, N. Gupta, R. Orfali, et al., Evaluation of the antifungal, antioxidant, and anti-diabetic potential of the essential oil of Curcuma longa leaves from the north-western Himalayas by in vitro and in silico analysis, Molecules 27 (2022), 7664.
|
| [108] |
N. Songsang, C. Anunmana, M. Pudla, et al., Effects of Litsea cubeba essential oil incorporated into denture soft lining materials, Polymers 14 (2022), 3261.
|
| [109] |
G. Stefanova, T. Girova, V. Gochev, et al., Comparative study on the chemical composition of laurel (Laurus nobilis L.) leaves from Greece and Georgia and the antibacterial activity of their essential oil, Heliyon 6 (2020), e05491.
|
| [110] |
J. Sun, X. Wang, P. Wang, et al., Antimicrobial, antioxidant and cytotoxic properties of essential oil from Dictamnus angustifolius, J. Ethnopharmacol. 159 (2015) 296-300.
|
| [111] |
I. Ullah, A. Rauf, A.A. Khalil, et al., Peganum harmala L. extract-based Gold (Au) and Silver (Ag) nanoparticles (NPs): Green synthesis, characterization, and assessment of antibacterial and antifungal properties, Food Sci. Nutr. 12 (2024) 4459-4472.
|
| [112] |
J.N. Vieira, C.L. Goncalves, J.P.V. Villarreal, et al., Chemical composition of essential oils from the Apiaceae family, cytotoxicity, and their antifungal activity in vitro against Candida species from oral cavity, Braz. J. Biol. 79 (2019) 432-437.
|
| [113] |
N. Wang, J. An, Z. Zhang, et al., The antimicrobial activity and characterization of bioactive compounds in Peganum harmala L. based on HPLC and HS-SPME-GC-MS, Front. Microbiol. 13 (2022), 916371.
|
| [114] |
B. Xiao, J. Wang, C. Zhou, et al., Ethno-medicinal study of Artemisia ordosica Krasch. (traditional Chinese/Mongolian medicine) extracts for the treatment of allergic rhinitis and nasosinusitis, J. Ethnopharmacol. 248 (2020), 112262.
|
| [115] |
E. Yabalak, F. Ibrahim, E.A. Erdogan Eliuz, Natural sanitizer potential of Cuminum cyminum and applicable approach for calculation of Kovats retention index of its compounds, Int. J. Environ. Health Res. 33 (2023) 158-169.
|
| [116] |
L. Zhang, Z. Yang, D. Chen, et al., Variation on composition and bioactivity of essential oils of four common Curcuma Herbs, Chem. Biodivers. 14 (2017), e1700280.
|
| [117] |
S. Zhang, Q. Zhao, W. Xue, et al., The isolation and identification of Candida glabrata from avian species and a study of the antibacterial activities of Chinese herbal medicine in vitro, Poult. Sci. 100 (2021), 101003.
|
| [118] |
C. Zhao, C. Wang, Y. Zhou, et al., Discovery of potential anti-microbial molecules and spectrum correlation effect of Ardisia crenata Sims via high-performance liquid chromatography fingerprints and molecular docking, Molecules 29 (2024), 1178.
|
| [119] |
A. Khan, A. Ahmad, L.A. Khan, et al., Ocimum sanctum (L.) essential oil and its lead molecules induce apoptosis in Candida albicans, Res. Microbiol. 165 (2014) 411-419.
|
| [120] |
M. Bao, Q. Bu, M. Pan, et al., Coptidis rhizoma extract alleviates oropharyngeal candidiasis by gC1qR-EGFR/ERK/c-fos axis-induced endocytosis of oral epithelial cells, J. Ethnopharmacol. 331 (2024), 118305.
|
| [121] |
Q. Xu, J. Liu, J. Xu, et al., Antimicrobial diterpenoids from Rosmarinus officinalis, Steroids 217 (2025), 109589.
|
| [122] |
H. Chen, X. Zhou, B. Ren, et al., The regulation of hyphae growth in Candida albicans, Virulence 11 (2020) 337-348.
|
| [123] |
P.E. Sudbery, Growth of Candida albicans hyphae, Nat. Rev. Microbiol. 9 (2011) 737-748.
|
| [124] |
R.K. Orlandini, D.A.N. Bepu, M. da Conceicao Pereira Saraiva, et al., Are Candida albicans isolates from the oral cavity of HIV-infected patients more virulent than from non-HIV-infected patients? Systematic review and meta-analysis, Microb. Pathog. 149 (2020), 104477.
|
| [125] |
K. McEvoy, T.G. Normile, M. Del Poeta, Antifungal drug development: Targeting the fungal sphingolipid pathway, J. Fungi 6 (2020), 142.
|
| [126] |
Y. Peng, B. Chen, Role of cell membrane homeostasis in the pathogenicity of pathogenic filamentous fungi, Virulence 15 (2024), 2299183.
|
| [127] |
T. Rui, J.P. Latge, V. Aimanianda, Undressing the fungal cell wall/cell membrane: The antifungal drug targets, Curr. Pharm. Des. 19 (2013) 3738-3747.
|
| [128] |
C. Shang, H. Lin, X. Fang, et al., Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes, Food Funct. 12 (2021) 12194-12220.
|
| [129] |
D. Jiang, R. Wang, M. Yu, et al., Establishment of an antiplatelet aggregation efficacy-oriented effect-constituent index for quality evaluation of Curcumae Rhizoma from different species (Curcuma phaeocaulis Val, Curcuma kWangsiensis S. G. Lee et C. F. Liang and Curcuma wenyujin Y. H. Chen et C. Ling), Fitoterapia 178 (2024), 106169.
|
| [130] |
R. Chandini, R. Saranya, K. Mohideen, et al., Anti-candidal effect of Ocimum sanctum: A systematic review on microbial studies, Cureus 14 (2022), e24749.
|
| [131] |
L. Chi, H. Niu, Y. Niu, et al., Trigonella foenum-graecum-graecum L. ameliorates metabolism-associated fatty liver disease in type 2 diabetic mice: A multi-omics mechanism analysis, J. Ethnopharmacol. 348 (2025), 119862.
|
| [132] |
H. Tao, Y. Zhou, X. Yin, et al., Two new phenolic glycosides with lactone structural units from leaves of Ardisia crenata Sims with antibacterial and anti-inflammatory activities, Molecules 27 (2022), 4903.
|
| [133] |
A. Gielecinska, M. Kciuk, E.B. Yahya, et al., Apoptosis, necroptosis, and pyroptosis as alternative cell death pathways induced by chemotherapeutic agents? Biochim. Biophys. Acta Rev. Cancer 1878 (2023), 189024.
|
| [134] |
T. Atriwal, M. Chawla, A. Hussain, et al., Reactive oxygen mediated apoptosis as a therapeutic approach against opportunistic Candida albicans, Adv. Protein Chem. Struct. Biol. 125 (2021) 25-49.
|
| [135] |
K.H.G. Mills, IL-17 and IL-17-producing cells in protection versus pathology, Nat. Rev. Immunol. 23 (2023) 38-54.
|
| [136] |
L.P. Erwig, N.A.R. Gow, Interactions of fungal pathogens with phagocytes, Nat. Rev. Microbiol. 14 (2016) 163-176.
|
| [137] |
F. Zhang, N. Lian, M. Li, Macrophage pyroptosis induced by Candida albicans, Pathog. Dis. 82 (2024), ftae003.
|
| [138] |
C. Rodriguez-Cerdeira, M.C. Gregorio, A. Molares-Vila, et al., Biofilms and vulvovaginal candidiasis, Colloids Surf. B Biointerfaces 174 (2019) 110-125.
|
| [139] |
Q.T. Phan, J. Lin, N.V. Solis, et al., The globular C1q receptor is required for epidermal growth factor receptor signaling during Candida albicans infection, mBio 12 (2021) e02716-e02721.
|
| [140] |
Y. Tong, J. Wen, T. Yang, et al., Clinical efficacy and safety of Tanreqing injection combined with antibiotics versus antibiotics alone in the treatment of pulmonary infection patients after chemotherapy with lung cancer: A systematic review and meta-analysis, Phytother. Res. 35 (2021) 122-137.
|
| [141] |
J. Xie, S. Huang, H. Huang, et al., Advances in the application of natural products and the novel drug delivery systems for psoriasis, Front. Pharmacol. 12 (2021), 644952.
|
| [142] |
M. Tian, X. Wu, Y. Hong, et al., Comparison of chemical composition and bioactivities of essential oils from fresh and dry rhizomes of Zingiber zerumbet (L.) Smith, Biomed Res. Int. 2020 (2020), 9641284.
|
| [143] |
N. Rattanachitthawat, P. Sriamornsak, V. Puri, et al., Bioactivity assessment of Zingiber zerumbet Linn rhizome extract for topical treatment of skin diseases, J. Appl. Pharm. Sci. (2022) 168-174.
|
| [144] |
J. Wheeler, B. Coppock, C. Chen, Does the burning of moxa (Artemisia vulgaris) in traditional Chinese medicine constitute a health hazard? Acupunct. Med. 27 (2009) 16-20.
|
| [145] |
Z. Weng, Q. Wei, C. Ye, et al., Traditional herb (moxa) modified zinc oxide nanosheets for quick, efficient and high tissue penetration therapy of fungal infection, ACS Nano 18 (2024) 5180-5195.
|
| [146] |
R. Sultana, S. Mohanto, A. Bhunia, et al., Current progress and emerging role of essential oils in drug delivery therapeutics, Curr. Drug Deliv. 22 (2025) 332-357.
|
| [147] |
Y. Long, S. Yu, D. Li, et al., Preparation, characterization and safety evaluation of Ligusticum chuanxiong essential oils liposomes for treatment of cerebral ischemia-reperfusion injury, Food Chem. Toxicol. 175 (2023), 113723.
|
| [148] |
C. Huang, C. Wang, W. Zhang, et al., Preparation, in vitro and in vivo evaluation of nanoemulsion in situ gel for transnasal delivery of traditional Chinese medicine volatile oil from Ligusticum sinense oliv.cv. Chaxiong, Molecules 27 (2022), 7644.
|
| [149] |
Q. Peng, F. Wen, X. Tang, et al., Carboxymethyl chitosan-gelatin based films filled with whey protein-stabilized nanoscale essential oil for skin wound healing: in vivo and in vitro studies, Int. J. Biol. Macromol. 305 (2025), 141119.
|