| Citation: | Minyu Han, Jinning Mao, Guodong Liu, Peng Xue. Advancements in pharmaceutical research on traditional Chinese medicine-metal complexes[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101548 |
| [1] |
Z. Chen, K. Gu, Y. Zheng, et al., The use of complementary and alternative medicine among Chinese women with breast cancer, J. Altern. Complement. Med. 14 (2008) 1049-1055.
|
| [2] |
G. Chen, T. Qiao, H. Ding, et al., Use of Chinese herbal medicine therapies in comprehensive hospitals in Central China: A parallel survey in cancer patients and clinicians, J. Huazhong Univ. Sci. Technolog. Med. Sci. 35 (2015) 808-814.
|
| [3] |
Y. Han, H. Wang, W. Xu, et al., Chinese herbal medicine as maintenance therapy for improving the quality of life for advanced non-small cell lung cancer patients, Complement. Ther. Med. 24 (2016) 81-89.
|
| [4] |
R. Liu, S.L. He, Y.C. Zhao, et al., Chinese herbal decoction based on syndrome differentiation as maintenance therapy in patients with extensive-stage small-cell lung cancer: An exploratory and small prospective cohort study, Evid. Based Complement. Alternat. Med. 2015 (2015), 601067.
|
| [5] |
S.G. Li, H.Y. Chen, C.S. Ou-Yang, et al., The efficacy of Chinese herbal medicine as an adjunctive therapy for advanced non-small cell lung cancer: A systematic review and meta-analysis, PLoS One 8 (2013), e57604.
|
| [6] |
S. Chen, A. Flower, A. Ritchie, et al., Oral Chinese herbal medicine (CHM) as an adjuvant treatment during chemotherapy for non-small cell lung cancer: A systematic review, Lung Cancer 68 (2010) 137-145.
|
| [7] |
H.C. Owen, S. Appiah, N. Hasan, et al., Phytochemical modulation of apoptosis and autophagy: Strategies to overcome chemoresistance in leukemic stem cells in the bone marrow microenvironment, Int. Rev. Neurobiol. 135 (2017) 249-278.
|
| [8] |
Y. Hu, S. Wang, X. Wu, et al., Chinese herbal medicine-derived compounds for cancer therapy: A focus on hepatocellular carcinoma, J. Ethnopharmacol. 149 (2013) 601-612.
|
| [9] |
M. Zhu, Y. Sun, H. Bai, et al., Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review, Front. Pharmacol. 14 (2023), 1159985.
|
| [10] |
R. Wu, X. Mei, Y. Ye, et al., Zn(II)-curcumin solid dispersion impairs hepatocellular carcinoma growth and enhances chemotherapy by modulating gut microbiota-mediated zinc homeostasis, Pharmacol. Res. 150 (2019), 104454.
|
| [11] |
Z. Hu, Y. Guan, W. Hu, et al., An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways, Iran. J. Basic Med. Sci. 25 (2022) 14-26.
|
| [12] |
K. Sabry, Z. Jamshidi, S.A. Emami, et al., Potential therapeutic effects of baicalin and baicalein, Avicenna J. Phytomed. 14 (2024) 23-49.
|
| [13] |
X. Ma, L. Zhang, F. Gao, et al., Salvia miltiorrhiza and Tanshinone IIA reduce endothelial inflammation and atherosclerotic plaque formation through inhibiting COX-2, Biomed. Pharmacother. 167 (2023), 115501.
|
| [14] |
T.C. Lu, Y.H. Wu, W. Chen, et al., Targeting oxidative stress and endothelial dysfunction using tanshinone IIA for the treatment of tissue inflammation and fibrosis, Oxid. Med. Cell. Longev. 2022 (2022), 2811789.
|
| [15] |
Y. Guo, L. Lin, Y. Wang, Chemistry and pharmacology of the herb pair Flos lonicerae japonicae-Forsythiae fructus, Chin. Med. 10 (2015), 16.
|
| [16] |
H. Zhang, L. Chen, X. Sun, et al., Matrine: A promising natural product with various pharmacological activities, Front. Pharmacol. 11 (2020), 588.
|
| [17] |
Y. Tu, Artemisinin-a gift from traditional Chinese medicine to the world (Nobel lecture), Angew. Chem. Int. Ed 55 (2016) 10210-10226.
|
| [18] |
Y. Li, X. Zhang, Y. Li, et al., Preparation methods, structural characteristics, and biological activity of polysaccharides from Salvia miltiorrhiza: A review, J. Ethnopharmacol. 305 (2023), 116090.
|
| [19] |
K.K. Auyeung, Q. Han, J.K. Ko, Astragalus membranaceus: A review of its protection against inflammation and gastrointestinal cancers, Am. J. Chin. Med. 44 (2016) 1-22.
|
| [20] |
C. Li, Y. Liu, Y. Zhang, et al., Astragalus polysaccharide: A review of its immunomodulatory effect, Arch. Pharm. Res. 45 (2022) 367-389.
|
| [21] |
H. Zhu, I. Ali, H. Hussain, et al., Extraction and purification of Cis/trans asarone from Acorus tatarinowii Schott: Accelerated solvent extraction and silver ion coordination high-speed counter-current chromatography, J. Chromatogr. A 1643 (2021), 462080.
|
| [22] |
Y. Qi, G. Duan, G. Fan, et al., Effect of Lycium barbarum polysaccharides on cell signal transduction pathways, Biomed. Pharmacother. 147 (2022), 112620.
|
| [23] |
X. Tian, T. Liang, Y. Liu, et al., Extraction, structural characterization, and biological functions of Lycium barbarum polysaccharides: A review, Biomolecules 9 (2019), 389.
|
| [24] |
L. Li, R. Zheng, R. Sun, Multicomponent self-assembly based on bioactive molecules of traditional Chinese medicine (TCM), Pharmacol. Res. Mod. Chin. Med. 4 (2022), 100158.
|
| [25] |
Y. Sun, Y. Zhao, S.A. Xue, et al., The theory development of traditional Chinese medicine constitution: A review, J. Tradit. Chin. Med. Sci. 5 (2018) 16-28.
|
| [26] |
L. Yang, J. Tan, B. Wang, et al., Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex, Chin. J. Nat. Med. 12 (2014) 937-942.
|
| [27] |
N. Ozenver, M. Saeed, L.O. Demirezer, et al., Aloe-emodin as drug candidate for cancer therapy, Oncotarget 9 (2018) 17770-17796.
|
| [28] |
M. Guo, X. Gao, H. Song, et al., Anti-tumor effect of synthetic baicalin-rare earth metal complex drugs on SMMC-7721 cells, Environ. Geochem. Health 42 (2020) 3851-3864.
|
| [29] |
M. Khater, D. Ravishankar, F. Greco, et al., Metal complexes of flavonoids: Their synthesis, characterization and enhanced antioxidant and anticancer activities, Future Med. Chem. 11 (2019) 2845-2867.
|
| [30] |
S. Selvaraj, S. Krishnaswamy, V. Devashya, et al., Flavonoid-metal ion complexes: A novel class of therapeutic agents, Med. Res. Rev. 34 (2014) 677-702.
|
| [31] |
P. Maleki Dana, F. Sadoughi, Z. Asemi, et al., The role of polyphenols in overcoming cancer drug resistance: A comprehensive review, Cell. Mol. Biol. Lett. 27 (2022), 1.
|
| [32] |
N. Shen, T. Wang, Q. Gan, et al., Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity, Food Chem. 383 (2022), 132531.
|
| [33] |
J. Qin, N. Guo, J. Yang, et al., Recent advances of metal-polyphenol coordination polymers for biomedical applications, Biosensors 13 (2023), 776.
|
| [34] |
S. Wanninger, V. Lorenz, A. Subhan, et al., Metal complexes of curcumin: Synthetic strategies, structures and medicinal applications, Chem. Soc. Rev. 44 (2015) 4986-5002.
|
| [35] |
J. Li, X. Wang, C. Li, et al., Viewing molecular and interface interactions of curcumin amorphous solid dispersions for comprehending dissolution mechanisms, Mol. Pharm. 14 (2017) 2781-2792.
|
| [36] |
M. Heger, R.F. van Golen, M. Broekgaarden, et al., The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer, Pharmacol. Rev. 66 (2013) 222-307.
|
| [37] |
K. Mokrzycki, Anti-atherosclerotic efficacy of quercetin and sodium phenylbutyrate in rabbits, Ann. Acad. Med. Stetin. 46 (2000) 189-200.
|
| [38] |
C. Kandaswami, L.T. Lee, P.H. Lee, et al., The antitumor activities of flavonoids, In Vivo 19 (2005) 895-909.
|
| [39] |
M.H. Pan, C.S. Lai, C.T. Ho, Anti-inflammatory activity of natural dietary flavonoids, Food Funct. 1 (2010) 15-31.
|
| [40] |
D. Prochazkova, I. Bousova, N. Wilhelmova, Antioxidant and prooxidant properties of flavonoids, Fitoterapia 82 (2011) 513-523.
|
| [41] |
P. Bansal, P. Paul, J. Mudgal, et al., Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice, Exp. Toxicol. Pathol. 64 (2012) 651-658.
|
| [42] |
M. Miyazawa, M. Hisama, Antimutagenic activity of flavonoids from Chrysanthemum morifolium, Biosci. Biotechnol. Biochem. 67 (2003) 2091-2099.
|
| [43] |
S. Goto, S. Handa, Antithrombotic effects of flavonoid, Circulation 103 (2001), E23.
|
| [44] |
J. Duarte, F.P. Vizcaino, P. Utrilla, et al., Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships, Gen. Pharmacol. 24 (1993) 857-862.
|
| [45] |
M. Wleklik, M. Luczak, W. Panasiak, et al., Structural basis for antiviral activity of flavonoids-naturally occurring compounds, Acta Virol. 32 (1988) 522-525.
|
| [46] |
A. Mohan, S. Narayanan, S. Sethuraman, et al., Combinations of plant polyphenols & anti-cancer molecules: A novel treatment strategy for cancer chemotherapy, Anticancer Agents Med. Chem. 13 (2013) 281-295.
|
| [47] |
M. Nakamura, D. Urakawa, Z. He, et al., Apoptosis induction in HepG2 and HCT116 cells by a novel quercetin-zinc (II) complex: Enhanced absorption of quercetin and zinc (II), Int. J. Mol. Sci. 24 (2023), 17457.
|
| [48] |
Z. Li, J. Zhu, H. Ouyang, Research progress of traditional Chinese medicine in improving hepatic fibrosis based on inhibiting pathological angiogenesis, Front. Pharmacol. 14 (2023), 1303012.
|
| [49] |
L. Peng, M. Yuan, Z. Wu, et al., Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses, Sci. Rep. 9 (2019), 4063.
|
| [50] |
L. Huang, Y. Yao, Z. Ruan, et al., Baicalin nanodelivery system based on functionalized metal-organic framework for targeted therapy of osteoarthritis by modulating macrophage polarization, J. Nanobiotechnology 22 (2024), 221.
|
| [51] |
J.J. Martinez Medina, L.G. Naso, A.L. Perez, et al., Antioxidant and anticancer effects and bioavailability studies of the flavonoid baicalin and its oxidovanadium(IV) complex, J. Inorg. Biochem. 166 (2017) 150-161.
|
| [52] |
Z. Yan, Y. Zhong, Y. Duan, et al., Antioxidant mechanism of tea polyphenols and its impact on health benefits, Anim. Nutr. 6 (2020) 115-123.
|
| [53] |
M. Shahwan, F. Alhumaydhi, G.M. Ashraf, et al., Role of polyphenols in combating Type 2 Diabetes and insulin resistance, Int. J. Biol. Macromol. 206 (2022) 567-579.
|
| [54] |
Y. Chen, J. Chen, X. Sun, et al., Evaluation of the neuroprotective effect of EGCG: A potential mechanism of mitochondrial dysfunction and mitochondrial dynamics after subarachnoid hemorrhage, Food Funct. 9 (2018) 6349-6359.
|
| [55] |
B. Mirzaei-Behbahani, A.A. Meratan, B. Moosakhani, et al., Efficient inhibition of amyloid fibrillation and cytotoxicity of α-synuclein and human insulin using biosynthesized silver nanoparticles decorated by green tea polyphenols, Sci. Rep. 14 (2024), 3907.
|
| [56] |
X. Wang, Y. Feng, C. Chen, et al., Preparation, characterization and activity of tea polyphenols-zinc complex, LWT 131 (2020), 109810.
|
| [57] |
J. Guo, Y. Wang, J. Li, et al., Overview and recent progress on the biosynthesis and regulation of flavonoids in Ginkgo biloba L, Int. J. Mol. Sci. 24 (2023), 14604.
|
| [58] |
S. Nie, S. Zhang, Y. Wang, et al., Extraction, purification, structural characterization, and bioactivities of Ginkgo biloba leave polysaccharides: A review, Int. J. Biol. Macromol. 281 (2024), 136280.
|
| [59] |
S.K. Singh, S. Srivastav, R.J. Castellani, et al., Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders, Neurotherapeutics 16 (2019) 666-674.
|
| [60] |
C. Zhang, H. Yuan, H. Shen, et al., Synthesis, light-controlled antibacterial and anti-tumor activities of Ginkgo biloba leaves polyprenols-based polypyridine metal complexes, Heliyon 10 (2024), e35479.
|
| [61] |
J.P.E. Spencer, Flavonoids and brain health: Multiple effects underpinned by common mechanisms, Genes Nutr. 4 (2009) 243-250.
|
| [62] |
D. Malesev, V. Kuntic, Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions, J. Serb. Chem. Soc. 72 (2007) 921-939.
|
| [63] |
S. Bhambhani, K.R. Kondhare, A.P. Giri, Diversity in chemical structures and biological properties of plant alkaloids, Molecules 26 (2021), 3374.
|
| [64] |
Y. Lu, S. Wang, M. Li, et al., Cyclometalated iridium(III) complex based on isoquinoline alkaloid synergistically elicits the ICD response and IDO inhibition via autophagy-dependent ferroptosis, Acta Pharm. Sin. B 15 (2025) 424-437.
|
| [65] |
M.S. Parvin, J. Chlebek, A. Hostalkova, et al., Interactions of isoquinoline alkaloids with transition metals iron and copper, Molecules 27 (2022), 6429.
|
| [66] |
M. Remichkova, P. Dimitrova, S. Philipov, et al., Toll-like receptor-mediated anti-inflammatory action of glaucine and oxoglaucine, Fitoterapia 80 (2009) 411-414.
|
| [67] |
I. Jantan, S.M. Raweh, Y.H. Yasin, et al., Antiplatelet activity of aporphine and phenanthrenoid alkaloids from Aromadendron elegans Blume, Phytother. Res. 20 (2006) 493-496.
|
| [68] |
F. Chang, T.J. Hsieh, T.L. Huang, et al., Cytotoxic constituents of the stem bark of Neolitsea acuminatissima, J. Nat. Prod. 65 (2002) 255-258.
|
| [69] |
N. Ivanovska, M. Hristova, S. Philipov, Immunosuppression and recovery of drug-impaired host resistance against Candida albicans infection by oxoglaucine, Pharmacol. Res. 41 (2000) 99-105.
|
| [70] |
N. Ivanovska, M. Hristova, Treatment with oxoglaucine can enhance host resistance to Candida albicans infection of mice with adjuvant arthritis, Diagn. Microbiol. Infect. Dis. 38 (2000) 17-20.
|
| [71] |
A.M. Clark, E.S. Watson, M.K. Ashfaq, et al., In vivo efficacy of antifungal oxoaporphine alkaloids in experimental disseminated candidiasis, Pharm. Res. 4 (1987) 495-498.
|
| [72] |
Z. Chen, Y. Shi, Y. Liu, et al., TCM active ingredient oxoglaucine metal complexes: Crystal structure, cytotoxicity, and interaction with DNA, Inorg. Chem. 51 (2012) 1998-2009.
|
| [73] |
L. Mao, Q. Chen, K. Gong, et al., Berberine decelerates glucose metabolism via suppression of mTOR-dependent HIF-1α protein synthesis in colon cancer cells, Oncol. Rep. 39 (2018) 2436-2442.
|
| [74] |
Y. Sun, K. Xun, Y. Wang, et al., A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs, Anticancer Drugs 20 (2009) 757-769.
|
| [75] |
N. Puthdee, W. Seubwai, K. Vaeteewoottacharn, et al., Berberine induces cell cycle arrest in cholangiocarcinoma cell lines via inhibition of NF-κB and STAT3 pathways, Biol. Pharm. Bull. 40 (2017) 751-757.
|
| [76] |
Z. Shen, J. Wang, W. Tan, et al., Berberine inhibits colorectal tumor growth by suppressing SHH secretion, Acta Pharmacol. Sin. 42 (2021) 1190-1194.
|
| [77] |
A. Mansour, S.M. Sajjadi-Jazi, H. Gerami, et al., The efficacy and safety of berberine in combination with cinnamon supplementation in patients with type 2 diabetes: A randomized clinical trial, Eur. J. Nutr. 64 (2025) 102.
|
| [78] |
Y. Wang, S. Zhang, Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2, Biomed. Pharmacother. 103 (2018) 1287-1293.
|
| [79] |
X. Ma, J. Zhou, C. Zhang, et al., Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes, Biomaterials 34 (2013) 4452-4465.
|
| [80] |
C.Y. Hsu, H. Pallathadka, J. Gupta, et al., Berberine and berberine nanoformulations in cancer therapy: Focusing on lung cancer, Phytother. Res. 38 (2024) 4336-4350.
|
| [81] |
A.M. Khaled, M.S. Othman, S.T. Obeidat, et al., Green-synthesized silver and selenium nanoparticles using berberine: A comparative assessment of in vitro anticancer potential on human hepatocellular carcinoma cell line (HepG2), Cells 13 (2024), 287.
|
| [82] |
E.H.M. Hassanein, E.O. Kamel, F.E.M. Ali, et al., Berberine and/or zinc protect against methotrexate-induced intestinal damage: Role of GSK-3β/NRF2 and JAK1/STAT-3 signaling pathways, Life Sci. 281 (2021), 119754.
|
| [83] |
G. Ye, H. Zhu, Z. Li, et al., LC-MS characterization of efficacy substances in serum of experimental animals treated with Sophora flavescens extracts, Biomed. Chromatogr. 21 (2007) 655-660.
|
| [84] |
S. Chen, S. Wu, B. Lin, The potential therapeutic value of the natural plant compounds matrine and oxymatrine in cardiovascular diseases, Front. Cardiovasc. Med. 11 (2024), 1417672.
|
| [85] |
Z. Chen, L. Mao, L. Liu, et al., Potential new inorganic antitumour agents from combining the anticancer traditional Chinese medicine (TCM) matrine with Ga(III), Au(III), Sn(IV) ions, and DNA binding studies, J. Inorg. Biochem. 105 (2011) 171-180.
|
| [86] |
Y. Yu, M. Shen, Q. Song, et al., Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review, Carbohydr. Polym. 183 (2018) 91-101.
|
| [87] |
S. Ullah, A.A. Khalil, F. Shaukat, et al., Sources, extraction and biomedical properties of polysaccharides, Foods 8 (2019), 304.
|
| [88] |
C. Chen, L.J. You, A.M. Abbasi, et al., Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro, Food Funct. 7 (2016) 530-539.
|
| [89] |
N. Jia, H. Qiao, W. Zhu, et al., Antioxidant, immunomodulatory, oxidative stress inhibitory and iron supplementation effect of Astragalus membranaceus polysaccharide-iron (III) complex on iron-deficiency Anemia mouse model, Int. J. Biol. Macromol. 132 (2019) 213-221.
|
| [90] |
L. Wang, L. Wang, C. Su, et al., Characterization and digestion features of a novel polysaccharide-Fe(III) complex as an iron supplement, Carbohydr. Polym. 249 (2020), 116812.
|
| [91] |
Z. Cui, Z. Zheng, L. Lin, et al., Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery, Adv. Polym. Technol. 37 (2018) 1917-1928.
|
| [92] |
Q. Lu, L. Xu, Y. Meng, et al., Preparation and characterization of a novel Astragalus membranaceus polysaccharide-iron (III) complex, Int. J. Biol. Macromol. 93 (2016) 208-216.
|
| [93] |
H. Feng, J. Fan, Z. Song, et al., Characterization and immunoenhancement activities of Eucommia ulmoides polysaccharides, Carbohydr. Polym. 136 (2016) 803-811.
|
| [94] |
Y. Deng, F. Ma, L.I. Ruiz-Ortega, et al., Fabrication of strontium Eucommia ulmoides polysaccharides and in vitro evaluation of their osteoimmunomodulatory property, Int. J. Biol. Macromol. 140 (2019) 727-735.
|
| [95] |
F.B. Ma, N. Liu, N. Hu, et al., Synthesis of strontium chondroitin sulfate and the evaluation of its capability to attenuate osteoarthritis, Carbohydr. Polym. 170 (2017) 217-225.
|
| [96] |
C. Wang, Z. Chen, Y. Pan, et al., Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice, Food Chem. Toxicol. 108 (2017) 498-509.
|
| [97] |
C. Wang, X. Gao, R.K. Santhanam, et al., Effects of polysaccharides from Inonotus obliquus and its chromium (III) complex on advanced glycation end-products formation, α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic L02 cells, Food Chem. Toxicol. 116 (2018) 335-345.
|
| [98] |
J. Diao, F. Bai, Y. Wang, et al., Engineering of pectin-dopamine nano-conjugates for carrying ruthenium complex: A potential tool for biomedical applications, J. Inorg. Biochem. 191 (2019) 135-142.
|
| [99] |
Y. Wang, Q. Han, F. Bai, et al., The assembly and antitumor activity of Lycium barbarum polysaccharide-platinum-based conjugates, J. Inorg. Biochem. 205 (2020), 111001.
|
| [100] |
T. Gao, S. Ma, J. Song, et al., Antioxidant and immunological activities of water-soluble polysaccharides from Aconitum kusnezoffii Reichb, Int. J. Biol. Macromol. 49 (2011) 580-586.
|
| [101] |
H. Fuchs, N. Niesler, A. Trautner, et al., Glycosylated triterpenoids as endosomal escape enhancers in targeted tumor therapies, Biomedicines 5 (2017), 14.
|
| [102] |
J.M. Augustin, V. Kuzina, S.B. Andersen, et al., Molecular activities, biosynthesis and evolution of triterpenoid saponins, Phytochemistry 72 (2011) 435-457.
|
| [103] |
F.R.S. Passos, H.G. Araujo-Filho, B.S. Monteiro, et al., Anti-inflammatory and modulatory effects of steroidal saponins and sapogenins on cytokines: A review of pre-clinical research, Phytomedicine 96 (2022), 153842.
|
| [104] |
D. Spiteller, Plant defense strategies, in: Jørgensen, Fath (Eds.), Encyclopedia of ecology, Academic Press, Oxford, 2008, pp. 2798-2811.
|
| [105] |
J. Hurh, J. Markus, Y.J. Kim, et al., Facile reduction and stabilization of ginsenoside-functionalized gold nanoparticles: Optimization, characterization, and in vitro cytotoxicity studies, J. Nanopart. Res. 19 (2017), 313.
|
| [106] |
S. Emirdag-Ozturk, I. Babahan, A. Ozmen, Synthesis, characterization and in vitro anti-neoplastic activity of gypsogenin derivatives, Bioorg. Chem. 53 (2014) 15-23.
|
| [107] |
K. Cho, X. Wang, S. Nie, et al., Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res. 14 (2008) 1310-1316.
|
| [108] |
K. Rugbjerg, L. Mellemkjaer, J.D. Boice, et al., Cardiovascular disease in survivors of adolescent and young adult cancer: A Danish cohort study, 1943-2009, JNCI J. Natl. Cancer Inst. 106 (2014) dju110.
|
| [109] |
Q. Zhou, J. Xiang, N. Qiu, et al., Tumor abnormality-oriented nanomedicine design, Chem. Rev. 123 (2023) 10920-10989.
|
| [110] |
D. Wu, Q. Chen, X. Chen, et al., The blood-brain barrier: Structure, regulation, and drug delivery, Signal Transduct. Target. Ther. 8 (2023), 217.
|
| [111] |
G.D. Leonard, T. Fojo, S.E. Bates, The role of ABC transporters in clinical practice, Oncologist 8 (2003) 411-424.
|
| [112] |
M.A. Moses, H. Brem, R. Langer, Advancing the field of drug delivery: Taking aim at cancer, Cancer Cell 4 (2003) 337-341.
|
| [113] |
B. Balaji, B. Balakrishnan, S. Perumalla, et al., Photoactivated cytotoxicity of ferrocenyl-terpyridine oxovanadium(IV) complexes of curcuminoids, Eur. J. Med. Chem. 85 (2014) 458-467.
|
| [114] |
S. Roy, S. Banerjee, T. Chakraborty, Vanadium quercetin complex attenuates mammary cancer by regulating the P53, Akt/mTOR pathway and downregulates cellular proliferation correlated with increased apoptotic events, Biometals 31 (2018) 647-671.
|
| [115] |
D. Xu, M. Hu, Y. Wang, et al., Antioxidant activities of quercetin and its complexes for medicinal application, Molecules 24 (2019), 1123.
|
| [116] |
K. Li, G. Xiao, J.J. Richardson, et al., Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nano complexes comprised of green tea catechin, Adv. Sci. 6 (2019), 1801688.
|
| [117] |
D. Shah, M. Gandhi, A. Kumar, et al., Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention, Crit. Rev. Food Sci. Nutr. 63 (2023) 1755-1791.
|
| [118] |
L. Ponnusamy, P.K.S. Mahalingaiah, K.P. Singh, Chapter Five Epigenetic reprogramming and potential application of epigenetic-modifying drugs in acquired chemotherapeutic resistance, Adv. Clin. Chem. 94 (2020) 219-259.
|
| [119] |
J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: Mechanisms, molecular targets and applications, Nat. Rev. Microbiol. 11 (2013) 371-384.
|
| [120] |
Y. Yang, T. Zhao, T. Zhang, Synthesis of silver nanoparticles via traditional Chinese medicine and evaluation of their antibacterial activities, RSC Adv. 11 (2021) 29519-29526.
|
| [121] |
W. Sun, D. Qu, Y. Ma, et al., Enhanced stability and antibacterial efficacy of a traditional Chinese medicine-mediated silver nanoparticle delivery system, Int. J. Nanomedicine 9 (2014) 5491-5502.
|
| [122] |
A. Raza, X. Xu, L. Xia, et al., Quercetin-iron complex: Synthesis, characterization, antioxidant, DNA binding, DNA cleavage, and antibacterial activity studies, J. Fluoresc. 26 (2016) 2023-2031.
|
| [123] |
P.K. Walencik, R. Choinska, E. Golebiewska, M. Kalinowska, Metal-flavonoid interactions-From simple complexes to advanced systems, Molecules, 29 (2024), 2573.
|
| [124] |
Z. Xiao, Y. Guo, J. Li, et al., Harnessing traditional Chinese medicine polysaccharides for combatting COVID-19, Carbohydr. Polym. 346 (2024), 122605.
|
| [125] |
Y.P. Timilsena, A. Phosanam, R. Stockmann, Perspectives on saponins: Food functionality and applications, Int. J. Mol. Sci. 24 (2023), 13538.
|
| [126] |
J. Li, L. Wang, H. Bai, et al., Synthesis, characterization, and anti-inflammatory activities of rare earth metal complexes of luteolin, Med. Chem. Res. 20 (2011) 88-92.
|
| [127] |
M. Zhang, H. Zhao, Y. Shen, et al., Preparation, characterization and antioxidant activity evaluation in vitro of Fritillaria ussuriensis polysaccharide-zinc complex, Int. J. Biol. Macromol. 146 (2020) 462-474.
|
| [128] |
C.H. Leung, S. Lin, H. Zhong, et al., Metal complexes as potential modulators of inflammatory and autoimmune responses, Chem. Sci. 6 (2015) 871-884.
|
| [129] |
R.M. Pereira, N.E. Andrades, N. Paulino, et al., Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity, Molecules 12 (2007) 1352-1366.
|
| [130] |
H. Yang, Y. Lu, X. Zeng, et al., Antichronic gastric ulcer effect of zinc-baicalin complex on the acetic acid-induced chronic gastric ulcer rat model, Gastroenterol. Res. Pract. 2018 (2018), 1275486.
|
| [131] |
A. Zha, R. Tu, Z. Cui, et al., Baicalin-zinc complex alleviates inflammatory responses and hormone profiles by microbiome in deoxynivalenol induced piglets, Front. Nutr. 8 (2021), 738281.
|
| [132] |
Q. Wang, Y. Wang, S. Pu, et al., Zinc coupling potentiates anti-HIV-1 activity of baicalin, Biochem. Biophys. Res. Commun. 324 (2004) 605-610.
|
| [133] |
C. Yang, C. Qian, W. Zheng, et al., Ginsenoside Rh2 enhances immune surveillance of natural killer (NK) cells via inhibition of ERp5 in breast cancer, Phytomedicine 123 (2024), 155180.
|
| [134] |
F. Ahmadi, A.A. Alizadeh, N. Shahabadi, et al., Study binding of Al-curcumin complex to ds-DNA, monitoring by multispectroscopic and voltammetric techniques, Spectrochim. Acta A Mol. Biomol. Spectrosc. 79 (2011) 1466-1474.
|
| [135] |
S. Prasad, D. DuBourdieu, A. Srivastava, et al., Metal-curcumin complexes in therapeutics: An approach to enhance pharmacological effects of curcumin, Int. J. Mol. Sci. 22 (2021), 7094.
|
| [136] |
J. Guo, Y. Ping, H. Ejima, et al., Engineering multifunctional capsules through the assembly of metal-phenolic networks, Angew. Chem. Int. Ed 53 (2014) 5546-5551.
|
| [137] |
T. Liu, M. Zhang, W. Liu, et al., Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications, ACS Nano 12 (2018) 3917-3927.
|
| [138] |
M. Jarosz, M. Olbert, G. Wyszogrodzka, et al., Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling, Inflammopharmacology 25 (2017) 11-24.
|
| [139] |
T. Wang, J. Liu, X. Luo, et al., Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds, Pharmacol. Ther. 224 (2021), 107824.
|
| [140] |
C.I. Chukwuma, S.S. Mashele, K.C. Eze, et al., A comprehensive review on zinc(II) complexes as anti-diabetic agents: The advances, scientific gaps and prospects, Pharmacol. Res. 155 (2020), 104744.
|
| [141] |
L.H. Cazarolli, L. Zanatta, A.P. Jorge, et al., Follow-up studies on glycosylated flavonoids and their complexes with vanadium: Their anti-hyperglycemic potential role in diabetes, Chem. Biol. Interact. 163 (2006) 177-191.
|
| [142] |
W.O. Carter, P.K. Narayanan, J.P. Robinson, Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells, J. Leukoc. Biol. 55 (1994) 253-258.
|
| [143] |
L.D. Mello, R.M.S. Pereira, A.C.H.F. Sawaya, et al., Electrochemical and spectroscopic characterization of the interaction between DNA and Cu(II)-naringin complex, J. Pharm. Biomed. Anal. 45 (2007) 706-713.
|
| [144] |
Y. Li, Z. Yang, T. Li, Synthesis, characterization, antioxidative activity and DNA binding properties of the copper(II), zinc(II), nickel(II) complexes with 1, 2-Di(4'-iminonaringenin)ethane, Chem. Pharm. Bull. 56 (2008) 1528-1534.
|
| [145] |
M. Tan, J. Zhu, Y. Pan, et al., Synthesis, cytotoxic activity, and DNA binding properties of copper (II) complexes with hesperetin, naringenin, and apigenin, Bioinorg. Chem. Appl. 2009 (2009), 347872.
|
| [146] |
Y. Li, Z. Yang, M. Wang, Synthesis, characterization, DNA binding properties, fluorescence studies and antioxidant activity of transition metal complexes with hesperetin-2-hydroxy benzoyl hydrazone, J. Fluoresc. 20 (2010) 891-905.
|
| [147] |
Y. Li, Z. Yang, M. Wang, Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(III) complexes with hesperetin-4-one-(benzoyl) hydrazone, Eur. J. Med. Chem. 44 (2009) 4585-4595.
|
| [148] |
M.J. Hynes, M. O’Coinceanainn, The kinetics and mechanisms of reactions of iron(III) with caffeic acid, chlorogenic acid, sinapic acid, ferulic acid and naringin, J. Inorg. Biochem. 98 (2004) 1457-1464.
|
| [149] |
V. Kuntic, I. Filipovic, Z. Vujic, Effects of rutin and hesperidin and their Al(III) and Cu(II) complexes on in vitro plasma coagulation assays, Molecules 16 (2011) 1378-1388.
|