Turn off MathJax
Article Contents
Minyu Han, Jinning Mao, Guodong Liu, Peng Xue. Advancements in pharmaceutical research on traditional Chinese medicine-metal complexes[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101548
Citation: Minyu Han, Jinning Mao, Guodong Liu, Peng Xue. Advancements in pharmaceutical research on traditional Chinese medicine-metal complexes[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101548

Advancements in pharmaceutical research on traditional Chinese medicine-metal complexes

doi: 10.1016/j.jpha.2026.101548
Funds:

Key Research and Development Project of Sichuan Provincial Science and Technology Plan, China (Grant No.: 2024YFFK0249), Open Research Project from Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, China (Grant No.: KFKT202405), Science and Technology Innovation Key R&

D Program of Chongqing (Grant No.: CSTB2025TIAD-STX0010), Demonstration Project for the Application of Ultrasonic Cutting and Hemostatic Knife System (Grant No.: CQEIC2024MDAD-035), Joint Training Base for Graduate Students of Chongqing (Grant No.: lpjd202409).

  • Received Date: Apr. 20, 2025
  • Accepted Date: Jan. 03, 2026
  • Rev Recd Date: Dec. 31, 2025
  • Available Online: Jan. 06, 2026
  • Traditional Chinese medicine (TCM) has gained significant recognition as an adjuvant treatment modality for cancer, infections, and inflammatory diseases, owing to its outstanding antitumor, antimicrobial, and anti-inflammatory properties. With the advancement of TCM-based coordination chemistry, TCM-metal complexes have attracted growing interest in recent years. These novel compounds, formed by integrating traditional TCM components with metal ions, not only enhance the therapeutic efficacy of TCM but also exhibit unique biological activities. This review highlights the design strategies and pharmaceutical applications of various categories of TCM-metal complexes, including those based on polyphenols, alkaloids, and other drug-metal conjugates. By applying modern nanobiotechnology alongside TCM principles, TCM-metal complexes demonstrate considerable potential for the diagnosis and treatment of major diseases. Finally, this review discusses the challenges and future prospects of TCM-metal complexes in clinical applications, providing valuable insights to guide further research and development in this emerging field.
  • loading
  • [1]
    Z. Chen, K. Gu, Y. Zheng, et al., The use of complementary and alternative medicine among Chinese women with breast cancer, J. Altern. Complement. Med. 14 (2008) 1049-1055.
    [2]
    G. Chen, T. Qiao, H. Ding, et al., Use of Chinese herbal medicine therapies in comprehensive hospitals in Central China: A parallel survey in cancer patients and clinicians, J. Huazhong Univ. Sci. Technolog. Med. Sci. 35 (2015) 808-814.
    [3]
    Y. Han, H. Wang, W. Xu, et al., Chinese herbal medicine as maintenance therapy for improving the quality of life for advanced non-small cell lung cancer patients, Complement. Ther. Med. 24 (2016) 81-89.
    [4]
    R. Liu, S.L. He, Y.C. Zhao, et al., Chinese herbal decoction based on syndrome differentiation as maintenance therapy in patients with extensive-stage small-cell lung cancer: An exploratory and small prospective cohort study, Evid. Based Complement. Alternat. Med. 2015 (2015), 601067.
    [5]
    S.G. Li, H.Y. Chen, C.S. Ou-Yang, et al., The efficacy of Chinese herbal medicine as an adjunctive therapy for advanced non-small cell lung cancer: A systematic review and meta-analysis, PLoS One 8 (2013), e57604.
    [6]
    S. Chen, A. Flower, A. Ritchie, et al., Oral Chinese herbal medicine (CHM) as an adjuvant treatment during chemotherapy for non-small cell lung cancer: A systematic review, Lung Cancer 68 (2010) 137-145.
    [7]
    H.C. Owen, S. Appiah, N. Hasan, et al., Phytochemical modulation of apoptosis and autophagy: Strategies to overcome chemoresistance in leukemic stem cells in the bone marrow microenvironment, Int. Rev. Neurobiol. 135 (2017) 249-278.
    [8]
    Y. Hu, S. Wang, X. Wu, et al., Chinese herbal medicine-derived compounds for cancer therapy: A focus on hepatocellular carcinoma, J. Ethnopharmacol. 149 (2013) 601-612.
    [9]
    M. Zhu, Y. Sun, H. Bai, et al., Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review, Front. Pharmacol. 14 (2023), 1159985.
    [10]
    R. Wu, X. Mei, Y. Ye, et al., Zn(II)-curcumin solid dispersion impairs hepatocellular carcinoma growth and enhances chemotherapy by modulating gut microbiota-mediated zinc homeostasis, Pharmacol. Res. 150 (2019), 104454.
    [11]
    Z. Hu, Y. Guan, W. Hu, et al., An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways, Iran. J. Basic Med. Sci. 25 (2022) 14-26.
    [12]
    K. Sabry, Z. Jamshidi, S.A. Emami, et al., Potential therapeutic effects of baicalin and baicalein, Avicenna J. Phytomed. 14 (2024) 23-49.
    [13]
    X. Ma, L. Zhang, F. Gao, et al., Salvia miltiorrhiza and Tanshinone IIA reduce endothelial inflammation and atherosclerotic plaque formation through inhibiting COX-2, Biomed. Pharmacother. 167 (2023), 115501.
    [14]
    T.C. Lu, Y.H. Wu, W. Chen, et al., Targeting oxidative stress and endothelial dysfunction using tanshinone IIA for the treatment of tissue inflammation and fibrosis, Oxid. Med. Cell. Longev. 2022 (2022), 2811789.
    [15]
    Y. Guo, L. Lin, Y. Wang, Chemistry and pharmacology of the herb pair Flos lonicerae japonicae-Forsythiae fructus, Chin. Med. 10 (2015), 16.
    [16]
    H. Zhang, L. Chen, X. Sun, et al., Matrine: A promising natural product with various pharmacological activities, Front. Pharmacol. 11 (2020), 588.
    [17]
    Y. Tu, Artemisinin-a gift from traditional Chinese medicine to the world (Nobel lecture), Angew. Chem. Int. Ed 55 (2016) 10210-10226.
    [18]
    Y. Li, X. Zhang, Y. Li, et al., Preparation methods, structural characteristics, and biological activity of polysaccharides from Salvia miltiorrhiza: A review, J. Ethnopharmacol. 305 (2023), 116090.
    [19]
    K.K. Auyeung, Q. Han, J.K. Ko, Astragalus membranaceus: A review of its protection against inflammation and gastrointestinal cancers, Am. J. Chin. Med. 44 (2016) 1-22.
    [20]
    C. Li, Y. Liu, Y. Zhang, et al., Astragalus polysaccharide: A review of its immunomodulatory effect, Arch. Pharm. Res. 45 (2022) 367-389.
    [21]
    H. Zhu, I. Ali, H. Hussain, et al., Extraction and purification of Cis/trans asarone from Acorus tatarinowii Schott: Accelerated solvent extraction and silver ion coordination high-speed counter-current chromatography, J. Chromatogr. A 1643 (2021), 462080.
    [22]
    Y. Qi, G. Duan, G. Fan, et al., Effect of Lycium barbarum polysaccharides on cell signal transduction pathways, Biomed. Pharmacother. 147 (2022), 112620.
    [23]
    X. Tian, T. Liang, Y. Liu, et al., Extraction, structural characterization, and biological functions of Lycium barbarum polysaccharides: A review, Biomolecules 9 (2019), 389.
    [24]
    L. Li, R. Zheng, R. Sun, Multicomponent self-assembly based on bioactive molecules of traditional Chinese medicine (TCM), Pharmacol. Res. Mod. Chin. Med. 4 (2022), 100158.
    [25]
    Y. Sun, Y. Zhao, S.A. Xue, et al., The theory development of traditional Chinese medicine constitution: A review, J. Tradit. Chin. Med. Sci. 5 (2018) 16-28.
    [26]
    L. Yang, J. Tan, B. Wang, et al., Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex, Chin. J. Nat. Med. 12 (2014) 937-942.
    [27]
    N. Ozenver, M. Saeed, L.O. Demirezer, et al., Aloe-emodin as drug candidate for cancer therapy, Oncotarget 9 (2018) 17770-17796.
    [28]
    M. Guo, X. Gao, H. Song, et al., Anti-tumor effect of synthetic baicalin-rare earth metal complex drugs on SMMC-7721 cells, Environ. Geochem. Health 42 (2020) 3851-3864.
    [29]
    M. Khater, D. Ravishankar, F. Greco, et al., Metal complexes of flavonoids: Their synthesis, characterization and enhanced antioxidant and anticancer activities, Future Med. Chem. 11 (2019) 2845-2867.
    [30]
    S. Selvaraj, S. Krishnaswamy, V. Devashya, et al., Flavonoid-metal ion complexes: A novel class of therapeutic agents, Med. Res. Rev. 34 (2014) 677-702.
    [31]
    P. Maleki Dana, F. Sadoughi, Z. Asemi, et al., The role of polyphenols in overcoming cancer drug resistance: A comprehensive review, Cell. Mol. Biol. Lett. 27 (2022), 1.
    [32]
    N. Shen, T. Wang, Q. Gan, et al., Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity, Food Chem. 383 (2022), 132531.
    [33]
    J. Qin, N. Guo, J. Yang, et al., Recent advances of metal-polyphenol coordination polymers for biomedical applications, Biosensors 13 (2023), 776.
    [34]
    S. Wanninger, V. Lorenz, A. Subhan, et al., Metal complexes of curcumin: Synthetic strategies, structures and medicinal applications, Chem. Soc. Rev. 44 (2015) 4986-5002.
    [35]
    J. Li, X. Wang, C. Li, et al., Viewing molecular and interface interactions of curcumin amorphous solid dispersions for comprehending dissolution mechanisms, Mol. Pharm. 14 (2017) 2781-2792.
    [36]
    M. Heger, R.F. van Golen, M. Broekgaarden, et al., The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer, Pharmacol. Rev. 66 (2013) 222-307.
    [37]
    K. Mokrzycki, Anti-atherosclerotic efficacy of quercetin and sodium phenylbutyrate in rabbits, Ann. Acad. Med. Stetin. 46 (2000) 189-200.
    [38]
    C. Kandaswami, L.T. Lee, P.H. Lee, et al., The antitumor activities of flavonoids, In Vivo 19 (2005) 895-909.
    [39]
    M.H. Pan, C.S. Lai, C.T. Ho, Anti-inflammatory activity of natural dietary flavonoids, Food Funct. 1 (2010) 15-31.
    [40]
    D. Prochazkova, I. Bousova, N. Wilhelmova, Antioxidant and prooxidant properties of flavonoids, Fitoterapia 82 (2011) 513-523.
    [41]
    P. Bansal, P. Paul, J. Mudgal, et al., Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice, Exp. Toxicol. Pathol. 64 (2012) 651-658.
    [42]
    M. Miyazawa, M. Hisama, Antimutagenic activity of flavonoids from Chrysanthemum morifolium, Biosci. Biotechnol. Biochem. 67 (2003) 2091-2099.
    [43]
    S. Goto, S. Handa, Antithrombotic effects of flavonoid, Circulation 103 (2001), E23.
    [44]
    J. Duarte, F.P. Vizcaino, P. Utrilla, et al., Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships, Gen. Pharmacol. 24 (1993) 857-862.
    [45]
    M. Wleklik, M. Luczak, W. Panasiak, et al., Structural basis for antiviral activity of flavonoids-naturally occurring compounds, Acta Virol. 32 (1988) 522-525.
    [46]
    A. Mohan, S. Narayanan, S. Sethuraman, et al., Combinations of plant polyphenols & anti-cancer molecules: A novel treatment strategy for cancer chemotherapy, Anticancer Agents Med. Chem. 13 (2013) 281-295.
    [47]
    M. Nakamura, D. Urakawa, Z. He, et al., Apoptosis induction in HepG2 and HCT116 cells by a novel quercetin-zinc (II) complex: Enhanced absorption of quercetin and zinc (II), Int. J. Mol. Sci. 24 (2023), 17457.
    [48]
    Z. Li, J. Zhu, H. Ouyang, Research progress of traditional Chinese medicine in improving hepatic fibrosis based on inhibiting pathological angiogenesis, Front. Pharmacol. 14 (2023), 1303012.
    [49]
    L. Peng, M. Yuan, Z. Wu, et al., Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses, Sci. Rep. 9 (2019), 4063.
    [50]
    L. Huang, Y. Yao, Z. Ruan, et al., Baicalin nanodelivery system based on functionalized metal-organic framework for targeted therapy of osteoarthritis by modulating macrophage polarization, J. Nanobiotechnology 22 (2024), 221.
    [51]
    J.J. Martinez Medina, L.G. Naso, A.L. Perez, et al., Antioxidant and anticancer effects and bioavailability studies of the flavonoid baicalin and its oxidovanadium(IV) complex, J. Inorg. Biochem. 166 (2017) 150-161.
    [52]
    Z. Yan, Y. Zhong, Y. Duan, et al., Antioxidant mechanism of tea polyphenols and its impact on health benefits, Anim. Nutr. 6 (2020) 115-123.
    [53]
    M. Shahwan, F. Alhumaydhi, G.M. Ashraf, et al., Role of polyphenols in combating Type 2 Diabetes and insulin resistance, Int. J. Biol. Macromol. 206 (2022) 567-579.
    [54]
    Y. Chen, J. Chen, X. Sun, et al., Evaluation of the neuroprotective effect of EGCG: A potential mechanism of mitochondrial dysfunction and mitochondrial dynamics after subarachnoid hemorrhage, Food Funct. 9 (2018) 6349-6359.
    [55]
    B. Mirzaei-Behbahani, A.A. Meratan, B. Moosakhani, et al., Efficient inhibition of amyloid fibrillation and cytotoxicity of α-synuclein and human insulin using biosynthesized silver nanoparticles decorated by green tea polyphenols, Sci. Rep. 14 (2024), 3907.
    [56]
    X. Wang, Y. Feng, C. Chen, et al., Preparation, characterization and activity of tea polyphenols-zinc complex, LWT 131 (2020), 109810.
    [57]
    J. Guo, Y. Wang, J. Li, et al., Overview and recent progress on the biosynthesis and regulation of flavonoids in Ginkgo biloba L, Int. J. Mol. Sci. 24 (2023), 14604.
    [58]
    S. Nie, S. Zhang, Y. Wang, et al., Extraction, purification, structural characterization, and bioactivities of Ginkgo biloba leave polysaccharides: A review, Int. J. Biol. Macromol. 281 (2024), 136280.
    [59]
    S.K. Singh, S. Srivastav, R.J. Castellani, et al., Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders, Neurotherapeutics 16 (2019) 666-674.
    [60]
    C. Zhang, H. Yuan, H. Shen, et al., Synthesis, light-controlled antibacterial and anti-tumor activities of Ginkgo biloba leaves polyprenols-based polypyridine metal complexes, Heliyon 10 (2024), e35479.
    [61]
    J.P.E. Spencer, Flavonoids and brain health: Multiple effects underpinned by common mechanisms, Genes Nutr. 4 (2009) 243-250.
    [62]
    D. Malesev, V. Kuntic, Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions, J. Serb. Chem. Soc. 72 (2007) 921-939.
    [63]
    S. Bhambhani, K.R. Kondhare, A.P. Giri, Diversity in chemical structures and biological properties of plant alkaloids, Molecules 26 (2021), 3374.
    [64]
    Y. Lu, S. Wang, M. Li, et al., Cyclometalated iridium(III) complex based on isoquinoline alkaloid synergistically elicits the ICD response and IDO inhibition via autophagy-dependent ferroptosis, Acta Pharm. Sin. B 15 (2025) 424-437.
    [65]
    M.S. Parvin, J. Chlebek, A. Hostalkova, et al., Interactions of isoquinoline alkaloids with transition metals iron and copper, Molecules 27 (2022), 6429.
    [66]
    M. Remichkova, P. Dimitrova, S. Philipov, et al., Toll-like receptor-mediated anti-inflammatory action of glaucine and oxoglaucine, Fitoterapia 80 (2009) 411-414.
    [67]
    I. Jantan, S.M. Raweh, Y.H. Yasin, et al., Antiplatelet activity of aporphine and phenanthrenoid alkaloids from Aromadendron elegans Blume, Phytother. Res. 20 (2006) 493-496.
    [68]
    F. Chang, T.J. Hsieh, T.L. Huang, et al., Cytotoxic constituents of the stem bark of Neolitsea acuminatissima, J. Nat. Prod. 65 (2002) 255-258.
    [69]
    N. Ivanovska, M. Hristova, S. Philipov, Immunosuppression and recovery of drug-impaired host resistance against Candida albicans infection by oxoglaucine, Pharmacol. Res. 41 (2000) 99-105.
    [70]
    N. Ivanovska, M. Hristova, Treatment with oxoglaucine can enhance host resistance to Candida albicans infection of mice with adjuvant arthritis, Diagn. Microbiol. Infect. Dis. 38 (2000) 17-20.
    [71]
    A.M. Clark, E.S. Watson, M.K. Ashfaq, et al., In vivo efficacy of antifungal oxoaporphine alkaloids in experimental disseminated candidiasis, Pharm. Res. 4 (1987) 495-498.
    [72]
    Z. Chen, Y. Shi, Y. Liu, et al., TCM active ingredient oxoglaucine metal complexes: Crystal structure, cytotoxicity, and interaction with DNA, Inorg. Chem. 51 (2012) 1998-2009.
    [73]
    L. Mao, Q. Chen, K. Gong, et al., Berberine decelerates glucose metabolism via suppression of mTOR-dependent HIF-1α protein synthesis in colon cancer cells, Oncol. Rep. 39 (2018) 2436-2442.
    [74]
    Y. Sun, K. Xun, Y. Wang, et al., A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs, Anticancer Drugs 20 (2009) 757-769.
    [75]
    N. Puthdee, W. Seubwai, K. Vaeteewoottacharn, et al., Berberine induces cell cycle arrest in cholangiocarcinoma cell lines via inhibition of NF-κB and STAT3 pathways, Biol. Pharm. Bull. 40 (2017) 751-757.
    [76]
    Z. Shen, J. Wang, W. Tan, et al., Berberine inhibits colorectal tumor growth by suppressing SHH secretion, Acta Pharmacol. Sin. 42 (2021) 1190-1194.
    [77]
    A. Mansour, S.M. Sajjadi-Jazi, H. Gerami, et al., The efficacy and safety of berberine in combination with cinnamon supplementation in patients with type 2 diabetes: A randomized clinical trial, Eur. J. Nutr. 64 (2025) 102.
    [78]
    Y. Wang, S. Zhang, Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2, Biomed. Pharmacother. 103 (2018) 1287-1293.
    [79]
    X. Ma, J. Zhou, C. Zhang, et al., Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes, Biomaterials 34 (2013) 4452-4465.
    [80]
    C.Y. Hsu, H. Pallathadka, J. Gupta, et al., Berberine and berberine nanoformulations in cancer therapy: Focusing on lung cancer, Phytother. Res. 38 (2024) 4336-4350.
    [81]
    A.M. Khaled, M.S. Othman, S.T. Obeidat, et al., Green-synthesized silver and selenium nanoparticles using berberine: A comparative assessment of in vitro anticancer potential on human hepatocellular carcinoma cell line (HepG2), Cells 13 (2024), 287.
    [82]
    E.H.M. Hassanein, E.O. Kamel, F.E.M. Ali, et al., Berberine and/or zinc protect against methotrexate-induced intestinal damage: Role of GSK-3β/NRF2 and JAK1/STAT-3 signaling pathways, Life Sci. 281 (2021), 119754.
    [83]
    G. Ye, H. Zhu, Z. Li, et al., LC-MS characterization of efficacy substances in serum of experimental animals treated with Sophora flavescens extracts, Biomed. Chromatogr. 21 (2007) 655-660.
    [84]
    S. Chen, S. Wu, B. Lin, The potential therapeutic value of the natural plant compounds matrine and oxymatrine in cardiovascular diseases, Front. Cardiovasc. Med. 11 (2024), 1417672.
    [85]
    Z. Chen, L. Mao, L. Liu, et al., Potential new inorganic antitumour agents from combining the anticancer traditional Chinese medicine (TCM) matrine with Ga(III), Au(III), Sn(IV) ions, and DNA binding studies, J. Inorg. Biochem. 105 (2011) 171-180.
    [86]
    Y. Yu, M. Shen, Q. Song, et al., Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review, Carbohydr. Polym. 183 (2018) 91-101.
    [87]
    S. Ullah, A.A. Khalil, F. Shaukat, et al., Sources, extraction and biomedical properties of polysaccharides, Foods 8 (2019), 304.
    [88]
    C. Chen, L.J. You, A.M. Abbasi, et al., Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro, Food Funct. 7 (2016) 530-539.
    [89]
    N. Jia, H. Qiao, W. Zhu, et al., Antioxidant, immunomodulatory, oxidative stress inhibitory and iron supplementation effect of Astragalus membranaceus polysaccharide-iron (III) complex on iron-deficiency Anemia mouse model, Int. J. Biol. Macromol. 132 (2019) 213-221.
    [90]
    L. Wang, L. Wang, C. Su, et al., Characterization and digestion features of a novel polysaccharide-Fe(III) complex as an iron supplement, Carbohydr. Polym. 249 (2020), 116812.
    [91]
    Z. Cui, Z. Zheng, L. Lin, et al., Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery, Adv. Polym. Technol. 37 (2018) 1917-1928.
    [92]
    Q. Lu, L. Xu, Y. Meng, et al., Preparation and characterization of a novel Astragalus membranaceus polysaccharide-iron (III) complex, Int. J. Biol. Macromol. 93 (2016) 208-216.
    [93]
    H. Feng, J. Fan, Z. Song, et al., Characterization and immunoenhancement activities of Eucommia ulmoides polysaccharides, Carbohydr. Polym. 136 (2016) 803-811.
    [94]
    Y. Deng, F. Ma, L.I. Ruiz-Ortega, et al., Fabrication of strontium Eucommia ulmoides polysaccharides and in vitro evaluation of their osteoimmunomodulatory property, Int. J. Biol. Macromol. 140 (2019) 727-735.
    [95]
    F.B. Ma, N. Liu, N. Hu, et al., Synthesis of strontium chondroitin sulfate and the evaluation of its capability to attenuate osteoarthritis, Carbohydr. Polym. 170 (2017) 217-225.
    [96]
    C. Wang, Z. Chen, Y. Pan, et al., Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice, Food Chem. Toxicol. 108 (2017) 498-509.
    [97]
    C. Wang, X. Gao, R.K. Santhanam, et al., Effects of polysaccharides from Inonotus obliquus and its chromium (III) complex on advanced glycation end-products formation, α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic L02 cells, Food Chem. Toxicol. 116 (2018) 335-345.
    [98]
    J. Diao, F. Bai, Y. Wang, et al., Engineering of pectin-dopamine nano-conjugates for carrying ruthenium complex: A potential tool for biomedical applications, J. Inorg. Biochem. 191 (2019) 135-142.
    [99]
    Y. Wang, Q. Han, F. Bai, et al., The assembly and antitumor activity of Lycium barbarum polysaccharide-platinum-based conjugates, J. Inorg. Biochem. 205 (2020), 111001.
    [100]
    T. Gao, S. Ma, J. Song, et al., Antioxidant and immunological activities of water-soluble polysaccharides from Aconitum kusnezoffii Reichb, Int. J. Biol. Macromol. 49 (2011) 580-586.
    [101]
    H. Fuchs, N. Niesler, A. Trautner, et al., Glycosylated triterpenoids as endosomal escape enhancers in targeted tumor therapies, Biomedicines 5 (2017), 14.
    [102]
    J.M. Augustin, V. Kuzina, S.B. Andersen, et al., Molecular activities, biosynthesis and evolution of triterpenoid saponins, Phytochemistry 72 (2011) 435-457.
    [103]
    F.R.S. Passos, H.G. Araujo-Filho, B.S. Monteiro, et al., Anti-inflammatory and modulatory effects of steroidal saponins and sapogenins on cytokines: A review of pre-clinical research, Phytomedicine 96 (2022), 153842.
    [104]
    D. Spiteller, Plant defense strategies, in: Jørgensen, Fath (Eds.), Encyclopedia of ecology, Academic Press, Oxford, 2008, pp. 2798-2811.
    [105]
    J. Hurh, J. Markus, Y.J. Kim, et al., Facile reduction and stabilization of ginsenoside-functionalized gold nanoparticles: Optimization, characterization, and in vitro cytotoxicity studies, J. Nanopart. Res. 19 (2017), 313.
    [106]
    S. Emirdag-Ozturk, I. Babahan, A. Ozmen, Synthesis, characterization and in vitro anti-neoplastic activity of gypsogenin derivatives, Bioorg. Chem. 53 (2014) 15-23.
    [107]
    K. Cho, X. Wang, S. Nie, et al., Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res. 14 (2008) 1310-1316.
    [108]
    K. Rugbjerg, L. Mellemkjaer, J.D. Boice, et al., Cardiovascular disease in survivors of adolescent and young adult cancer: A Danish cohort study, 1943-2009, JNCI J. Natl. Cancer Inst. 106 (2014) dju110.
    [109]
    Q. Zhou, J. Xiang, N. Qiu, et al., Tumor abnormality-oriented nanomedicine design, Chem. Rev. 123 (2023) 10920-10989.
    [110]
    D. Wu, Q. Chen, X. Chen, et al., The blood-brain barrier: Structure, regulation, and drug delivery, Signal Transduct. Target. Ther. 8 (2023), 217.
    [111]
    G.D. Leonard, T. Fojo, S.E. Bates, The role of ABC transporters in clinical practice, Oncologist 8 (2003) 411-424.
    [112]
    M.A. Moses, H. Brem, R. Langer, Advancing the field of drug delivery: Taking aim at cancer, Cancer Cell 4 (2003) 337-341.
    [113]
    B. Balaji, B. Balakrishnan, S. Perumalla, et al., Photoactivated cytotoxicity of ferrocenyl-terpyridine oxovanadium(IV) complexes of curcuminoids, Eur. J. Med. Chem. 85 (2014) 458-467.
    [114]
    S. Roy, S. Banerjee, T. Chakraborty, Vanadium quercetin complex attenuates mammary cancer by regulating the P53, Akt/mTOR pathway and downregulates cellular proliferation correlated with increased apoptotic events, Biometals 31 (2018) 647-671.
    [115]
    D. Xu, M. Hu, Y. Wang, et al., Antioxidant activities of quercetin and its complexes for medicinal application, Molecules 24 (2019), 1123.
    [116]
    K. Li, G. Xiao, J.J. Richardson, et al., Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nano complexes comprised of green tea catechin, Adv. Sci. 6 (2019), 1801688.
    [117]
    D. Shah, M. Gandhi, A. Kumar, et al., Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention, Crit. Rev. Food Sci. Nutr. 63 (2023) 1755-1791.
    [118]
    L. Ponnusamy, P.K.S. Mahalingaiah, K.P. Singh, Chapter Five Epigenetic reprogramming and potential application of epigenetic-modifying drugs in acquired chemotherapeutic resistance, Adv. Clin. Chem. 94 (2020) 219-259.
    [119]
    J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: Mechanisms, molecular targets and applications, Nat. Rev. Microbiol. 11 (2013) 371-384.
    [120]
    Y. Yang, T. Zhao, T. Zhang, Synthesis of silver nanoparticles via traditional Chinese medicine and evaluation of their antibacterial activities, RSC Adv. 11 (2021) 29519-29526.
    [121]
    W. Sun, D. Qu, Y. Ma, et al., Enhanced stability and antibacterial efficacy of a traditional Chinese medicine-mediated silver nanoparticle delivery system, Int. J. Nanomedicine 9 (2014) 5491-5502.
    [122]
    A. Raza, X. Xu, L. Xia, et al., Quercetin-iron complex: Synthesis, characterization, antioxidant, DNA binding, DNA cleavage, and antibacterial activity studies, J. Fluoresc. 26 (2016) 2023-2031.
    [123]
    P.K. Walencik, R. Choinska, E. Golebiewska, M. Kalinowska, Metal-flavonoid interactions-From simple complexes to advanced systems, Molecules, 29 (2024), 2573.
    [124]
    Z. Xiao, Y. Guo, J. Li, et al., Harnessing traditional Chinese medicine polysaccharides for combatting COVID-19, Carbohydr. Polym. 346 (2024), 122605.
    [125]
    Y.P. Timilsena, A. Phosanam, R. Stockmann, Perspectives on saponins: Food functionality and applications, Int. J. Mol. Sci. 24 (2023), 13538.
    [126]
    J. Li, L. Wang, H. Bai, et al., Synthesis, characterization, and anti-inflammatory activities of rare earth metal complexes of luteolin, Med. Chem. Res. 20 (2011) 88-92.
    [127]
    M. Zhang, H. Zhao, Y. Shen, et al., Preparation, characterization and antioxidant activity evaluation in vitro of Fritillaria ussuriensis polysaccharide-zinc complex, Int. J. Biol. Macromol. 146 (2020) 462-474.
    [128]
    C.H. Leung, S. Lin, H. Zhong, et al., Metal complexes as potential modulators of inflammatory and autoimmune responses, Chem. Sci. 6 (2015) 871-884.
    [129]
    R.M. Pereira, N.E. Andrades, N. Paulino, et al., Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity, Molecules 12 (2007) 1352-1366.
    [130]
    H. Yang, Y. Lu, X. Zeng, et al., Antichronic gastric ulcer effect of zinc-baicalin complex on the acetic acid-induced chronic gastric ulcer rat model, Gastroenterol. Res. Pract. 2018 (2018), 1275486.
    [131]
    A. Zha, R. Tu, Z. Cui, et al., Baicalin-zinc complex alleviates inflammatory responses and hormone profiles by microbiome in deoxynivalenol induced piglets, Front. Nutr. 8 (2021), 738281.
    [132]
    Q. Wang, Y. Wang, S. Pu, et al., Zinc coupling potentiates anti-HIV-1 activity of baicalin, Biochem. Biophys. Res. Commun. 324 (2004) 605-610.
    [133]
    C. Yang, C. Qian, W. Zheng, et al., Ginsenoside Rh2 enhances immune surveillance of natural killer (NK) cells via inhibition of ERp5 in breast cancer, Phytomedicine 123 (2024), 155180.
    [134]
    F. Ahmadi, A.A. Alizadeh, N. Shahabadi, et al., Study binding of Al-curcumin complex to ds-DNA, monitoring by multispectroscopic and voltammetric techniques, Spectrochim. Acta A Mol. Biomol. Spectrosc. 79 (2011) 1466-1474.
    [135]
    S. Prasad, D. DuBourdieu, A. Srivastava, et al., Metal-curcumin complexes in therapeutics: An approach to enhance pharmacological effects of curcumin, Int. J. Mol. Sci. 22 (2021), 7094.
    [136]
    J. Guo, Y. Ping, H. Ejima, et al., Engineering multifunctional capsules through the assembly of metal-phenolic networks, Angew. Chem. Int. Ed 53 (2014) 5546-5551.
    [137]
    T. Liu, M. Zhang, W. Liu, et al., Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications, ACS Nano 12 (2018) 3917-3927.
    [138]
    M. Jarosz, M. Olbert, G. Wyszogrodzka, et al., Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling, Inflammopharmacology 25 (2017) 11-24.
    [139]
    T. Wang, J. Liu, X. Luo, et al., Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds, Pharmacol. Ther. 224 (2021), 107824.
    [140]
    C.I. Chukwuma, S.S. Mashele, K.C. Eze, et al., A comprehensive review on zinc(II) complexes as anti-diabetic agents: The advances, scientific gaps and prospects, Pharmacol. Res. 155 (2020), 104744.
    [141]
    L.H. Cazarolli, L. Zanatta, A.P. Jorge, et al., Follow-up studies on glycosylated flavonoids and their complexes with vanadium: Their anti-hyperglycemic potential role in diabetes, Chem. Biol. Interact. 163 (2006) 177-191.
    [142]
    W.O. Carter, P.K. Narayanan, J.P. Robinson, Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells, J. Leukoc. Biol. 55 (1994) 253-258.
    [143]
    L.D. Mello, R.M.S. Pereira, A.C.H.F. Sawaya, et al., Electrochemical and spectroscopic characterization of the interaction between DNA and Cu(II)-naringin complex, J. Pharm. Biomed. Anal. 45 (2007) 706-713.
    [144]
    Y. Li, Z. Yang, T. Li, Synthesis, characterization, antioxidative activity and DNA binding properties of the copper(II), zinc(II), nickel(II) complexes with 1, 2-Di(4'-iminonaringenin)ethane, Chem. Pharm. Bull. 56 (2008) 1528-1534.
    [145]
    M. Tan, J. Zhu, Y. Pan, et al., Synthesis, cytotoxic activity, and DNA binding properties of copper (II) complexes with hesperetin, naringenin, and apigenin, Bioinorg. Chem. Appl. 2009 (2009), 347872.
    [146]
    Y. Li, Z. Yang, M. Wang, Synthesis, characterization, DNA binding properties, fluorescence studies and antioxidant activity of transition metal complexes with hesperetin-2-hydroxy benzoyl hydrazone, J. Fluoresc. 20 (2010) 891-905.
    [147]
    Y. Li, Z. Yang, M. Wang, Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(III) complexes with hesperetin-4-one-(benzoyl) hydrazone, Eur. J. Med. Chem. 44 (2009) 4585-4595.
    [148]
    M.J. Hynes, M. O’Coinceanainn, The kinetics and mechanisms of reactions of iron(III) with caffeic acid, chlorogenic acid, sinapic acid, ferulic acid and naringin, J. Inorg. Biochem. 98 (2004) 1457-1464.
    [149]
    V. Kuntic, I. Filipovic, Z. Vujic, Effects of rutin and hesperidin and their Al(III) and Cu(II) complexes on in vitro plasma coagulation assays, Molecules 16 (2011) 1378-1388.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (42) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return