Turn off MathJax
Article Contents
Sulaiman Mohammed Alnasser, Abdulaziz Khaled Aldoaiji, Rakan Abdulrahman Alharbi, Hussain Qassem Alhajjoj, Waleed Talal Aldebassi, Abdulrahman Ahmed Almaiman, Abdulelah Hussain Almutairi. The role of stem cells in the pharmacological assessment of nanoparticles[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101547
Citation: Sulaiman Mohammed Alnasser, Abdulaziz Khaled Aldoaiji, Rakan Abdulrahman Alharbi, Hussain Qassem Alhajjoj, Waleed Talal Aldebassi, Abdulrahman Ahmed Almaiman, Abdulelah Hussain Almutairi. The role of stem cells in the pharmacological assessment of nanoparticles[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2026.101547

The role of stem cells in the pharmacological assessment of nanoparticles

doi: 10.1016/j.jpha.2026.101547
Funds:

The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2026)

  • Received Date: May 20, 2025
  • Accepted Date: Jan. 03, 2026
  • Rev Recd Date: Dec. 31, 2025
  • Available Online: Jan. 10, 2026
  • Stem cells aid in the pharmacological assessment of nanoparticles by serving as a human-relevant, dynamic, and scalable model. Their integration into nanoparticle research enhances toxicity screening and therapeutic optimization by evaluating absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters across models ranging from simple in vitro cultures to complex organoids. They provide insights into how nanoparticles interact with biological systems, guiding the rational design of safer, more effective nanomedicines. Conventional in vitro and animal models often fall short in recapitulating human-specific responses, as they cannot fully capture the complex interactions between nanoparticles and biological systems. This limitation significantly reduces the predictive accuracy of toxicity and efficacy assessments. In contrast, stem cell-based models offer a transformative platform by providing physiologically relevant, patient-specific and organotypic systems which help overcome critical challenges such as species differences, limited cellular diversity, and ethical concerns associated with animal testing. This review examines the fundamentals of nanoparticle and stem cell interactions, ADMET profiling, and the immunomodulatory properties of nanoparticles, all of which are pivotal for comprehensive pharmacological assessment. The key challenges such as standardization, long-term safety, and regulatory compliance that hinder clinical translation are also discussed.
  • loading
  • [1]
    S. Khan, M.K. Hossain, Classification and properties of nanoparticles. S.M. Rangappa, Parameswaranpillai, J., Gowda, T.G.Y., Siengchin, S., Seydibeyoglu, M.O., Nanoparticle-based polymer composites, Woodhead Publishing, 2022, pp. 15–54.
    [2]
    S. Campora, G. Ghersi, Recent developments and applications of smart nanoparticles in biomedicine, Nanotechnol. Rev. 11 (2022) 2595-2631.
    [3]
    A. Ahmad, M. Imran, N. Sharma, Precision nanotoxicology in drug development: Current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications, Pharmaceutics 14 (2022), 2463.
    [4]
    S.A. Arabiyat, Prospectus and concerns of immunomodulatory nanotechnologies and nanoparticles biocompatibility and toxicity. Nanotechnology Based Microbicides and Immune Stimulators, Springer Nature Singapore, (2024), pp. 65–189.
    [5]
    S. Pinho, M.H. Macedo, C. Rebelo, et al., Stem cells as vehicles and targets of nanoparticles, Drug Discov. Today 23 (2018) 1071-1078.
    [6]
    A. Sudulaguntla, S. Gurung, B.K. Nanjwade, et al., A review: Stem cells and classification of stem cells based on their origin, J. Pharm. Pharm. Sci. 15 (2016) 105-112.
    [7]
    X. Zhang, Y. Jiao, T. Shen, et al., Sulfated chitosan nanofibrous scaffolds seeded with adipose stem cells promote ischemic wound healing in a proangiogenic strategy, Cell Transplant. 33 (2024), 09636897241226847.
    [8]
    H. Jiang, Q. Zhao, X. Ye, Application of nanomaterials in heart transplantation: A narrative review, J. Thorac. Dis. 16 (2024) 3389-3405.
    [9]
    C. Chu, J. Deng, L. Liu, et al., Nanoparticles combined with growth factors: Recent progress and applications, RSC Adv. 6 (2016) 90856-90872.
    [10]
    X. Duan, Y. Li, Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking, Small 9 (2013) 1521-1532.
    [11]
    W.N. Zhao, C. Cheng, K.M. Theriault, et al., A high-throughput screen for Wnt/β-catenin signaling pathway modulators in human iPSC-derived neural progenitors, J. Biomol. Screen. 17 (2012) 1252-1263.
    [12]
    X. Zhou, L. Yuan, C. Wu, et al., Recent review of the effect of nanomaterials on stem cells, RSC Adv. 8 (2018) 17656-17676.
    [13]
    X. Yang, Y. Li, X. Liu, et al., Nanoparticles and their effects on differentiation of mesenchymal stem cells, Biomater. Transl. 1 (2020) 58-68.
    [14]
    M.C. Hofmann, Stem cells and nanomaterials, Nanomaterial. Springer Netherlands, (2014), pp 55–275.
    [15]
    Y. Dong, X. Wu, X. Chen, et al., Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook, Biomed. Pharmacother. 137 (2021), 111236.
    [16]
    N.A. Kratochwil, C. Meille, S. Fowler, et al., Metabolic profiling of human long-term liver models and hepatic clearance predictions from in vitro data using nonlinear mixed-effects modeling, AAPS J. 19 (2017) 534-550.
    [17]
    M. Saadat, F. Zahednezhad, P. Zakeri-Milani, et al., Drug targeting strategies based on charge dependent uptake of nanoparticles into cancer cells, J. Pharm. Pharm. Sci. 22 (2019) 191-220.
    [18]
    R. Augustine, A. Hasan, R. Primavera, et al., Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components, Mater. Today Commun. 25 (2020), 101692.
    [19]
    S. Behzadi, V. Serpooshan, W. Tao, et al., Cellular uptake of nanoparticles: Journey inside the cell, Chem. Soc. Rev. 46 (2017) 4218-4244.
    [20]
    P. Foroozandeh, A.A. Aziz, Insight into cellular uptake and intracellular trafficking of nanoparticles, Nanoscale Res. Lett. 13 (2018), 339.
    [21]
    X. Xie, J. Liao, X. Shao, et al., The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles, Sci. Rep. 7 (2017), 3827.
    [22]
    M. Mousa, Y.H. Kim, N.D. Evans, et al., Tracking cellular uptake, intracellular trafficking and fate of nanoclay particles in human bone marrow stromal cells, Nanoscale 15 (2023) 18457-18472.
    [23]
    L. Kou, J. Sun, Y. Zhai, et al., The endocytosis and intracellular fate of nanomedicines: Implication for rational design, Asian J. Pharm. Sci. 8 (2013) 1-10.
    [24]
    X.A. Wu, C.H.J. Choi, C. Zhang, et al., Intracellular fate of spherical nucleic acid nanoparticle conjugates, J. Am. Chem. Soc. 136 (2014) 7726-7733.
    [25]
    Z. Chu, S. Zhang, B. Zhang, et al., Unambiguous observation of shape effects on cellular fate of nanoparticles, Sci. Rep. 4 (2014), 4495.
    [26]
    K. Kik, B. Bukowska, P. Sicinska, Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms, Environ. Pollut. 262 (2020), 114297.
    [27]
    A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: Properties and perspectives for bioapplications, Crit. Rev. Solid State Mater. Sci. 34 (2009) 18-74.
    [28]
    Y. Portilla, V. Mulens-Arias, A. Paradela, et al., The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type, Biomaterials 281 (2022), 121365.
    [29]
    Y. Zhou, Q. Wang, B. Song, et al., A real-time documentation and mechanistic investigation of quantum dots-induced autophagy in live Caenorhabditis elegans, Biomaterials 72 (2015) 38-48.
    [30]
    L. Zhang, G. Feng, S. Yang, et al., Polyethylenimine-modified mesoporous silica nanoparticles induce a survival mechanism in vascular endothelial cells via microvesicle-mediated autophagosome release, ACS Nano 15 (2021) 10640-10658.
    [31]
    M. Wei, S. Li, W. Le, Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms, J. Nanobiotechnol. 15 (2017), 75.
    [32]
    R. Zhang, Y. Li, B. Hu, et al., Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for Alzheimer’s disease therapy, Adv. Mater. 28 (2016) 6345-6352.
    [33]
    K.J. Mehta, Iron oxide nanoparticles in mesenchymal stem cell detection and therapy, Stem Cell Rev. Rep. 18 (2022) 2234-2261.
    [34]
    H. Kim, Y.J. Lee, Y. Kwon, et al., Efficient generation of brain organoids using magnetized gold nanoparticles, Sci. Rep. 13 (2023), 21240.
    [35]
    S. Patel, K.B. Lee, Probing stem cell behavior using nanoparticle-based approaches, Wires Nanomed. Nanobiotechnol. 7 (2015) 759-778.
    [36]
    H.S. Hung, C.H. Chang, C.J. Chang, et al., In vitro study of a novel nanogold-collagen composite to enhance the mesenchymal stem cell behavior for vascular regeneration, PLoS One 9 (2014) e104019.
    [37]
    F. He, J. Cao, J. Qi, et al., Regulation of stem cell differentiation by inorganic nanomaterials: Recent advances in regenerative medicine, Front. Bioeng. Biotechnol. 9 (2021), 721581.
    [38]
    G.L. Lin, K.D. Hankenson, Integration of BMP, Wnt, and Notch signaling pathways in osteoblast differentiation, J. Cell. Biochem. 112 (2011) 3491-3501.
    [39]
    C. Li, Z. Li, Y. Zhang, et al., The role of the Wnt/β-catenin signaling pathway in the proliferation of gold nanoparticle-treated human periodontal ligament stem cells, Stem Cell Res. Ther. 9 (2018), 214.
    [40]
    Z. Wang, R. Cheng, K. Lee, et al., Nanoparticle-mediated expression of a Wnt pathway inhibitor ameliorates ocular neovascularization, Arterioscler. Thromb. Vasc. Biol. 35 (2015) 855-864.
    [41]
    H. Liang, X. Xu, X. Feng, et al., Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/β-catenin signaling pathway, Int. J. Nanomed. 14 (2019) 6151-6163.
    [42]
    J. Mao, Q. Saiding, S. Qian, et al., Front cover: Reprogramming stem cells in regenerative medicine (smart medicine 1/2022), Smart Med. 1 (2022), e38.
    [43]
    M.N. Andalib, Y. Dzenis, H.J. Donahue, et al., Biomimetic substrate control of cellular mechanotransduction, Biomater. Res. 20 (2016) 1-9.
    [44]
    L. Ouyang, M. Qi, S. Wang, et al., Osteogenesis and antibacterial activity of graphene oxide and dexamethasone coatings on porous polyetheretherketone via polydopamine-assisted chemistry, Coatings 8 (2018), 203.
    [45]
    A.F. Cruz, N.A. Fonseca, V. Moura, et al., Targeting cancer stem cells and non-stem cancer cells: The potential of lipid-based nanoparticles, Curr. Pharm. Des. 23 (2018) 6563-6572.
    [46]
    K. Sooklert, S. Nilyai, R. Rojanathanes, et al., N-acetylcysteine reverses the decrease of DNA methylation status caused by engineered gold, silicon, and chitosan nanoparticles, Int. J. Nanomed. 14 (2019) 4573-4587.
    [47]
    A. Valente, L. Vieira, M.J. Silva, et al., The effect of nanomaterials on DNA methylation: A review, Nanomaterials 13 (2023), 1880.
    [48]
    M. Pogribna, B. Word, B. Lyn-Cook, et al., Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines, Nanotoxicology 16 (2022) 409-424.
    [49]
    X. Liu, J. Li, L. Zhu, et al., Mechanistic insights into zinc oxide nanoparticles induced embryotoxicity via H3K9me3 modulation, Biomaterials 311 (2024), 122679.
    [50]
    C.D. Kim, K.M. Koo, H.J. Kim, et al., Recent advances in nanomaterials for modulation of stem cell differentiation and its therapeutic applications, Biosensors 14 (2024), 407.
    [51]
    L. Accomasso, C. Gallina, V. Turinetto, et al., Stem cell tracking with nanoparticles for regenerative medicine purposes: An overview, Stem Cells Int. 2016 (2016) 1-23.
    [52]
    Y. Wang, C. Xu, H. Ow, Commercial nanoparticles for stem cell labeling and tracking, Theranostics 3 (2013) 544-560.
    [53]
    M. Edmundson, N.T. Thanh, B. Song, Nanoparticles based stem cell tracking in regenerative medicine, Theranostics 3 (2013) 573-582.
    [54]
    S. Jain, J. Bhatt, S. Gupta, et al., Nanotechnology at the crossroads of stem cell medicine, Biomater. Sci. 13 (2025) 161-178.
    [55]
    X. Meng, H.C. Seton, L.T. Lu, et al., Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection, Nanoscale 3 (2011) 977-984.
    [56]
    I. Brustle, T. Simmet, G.U. Nienhaus, et al., Hematopoietic and mesenchymal stem cells: Polymeric nanoparticle uptake and lineage differentiation, Beilstein J. Nanotechnol. 6 (2015) 383-395.
    [57]
    V.S. Kotakadi, S.A. Gaddam, S.K. Venkata, et al., Biofabrication and spectral characterization of silver nanoparticles and their cytotoxic studies on human CD34+ ve stem cells, 3 Biotech 6 (2016) 216.
    [58]
    C. Sengstock, J. Diendorf, M. Epple, et al., Effect of silver nanoparticles on human mesenchymal stem cell differentiation, Beilstein J. Nanotechnol. 5 (2014) 2058-2069.
    [59]
    K. Adibkia, A. Ehsani, A. Jodaei, et al., Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension, Beilstein J. Nanotechnol. 12 (2021) 786-797.
    [60]
    Y. Sun, Y. Lu, L. Yin, et al., The roles of nanoparticles in stem cell-based therapy for cardiovascular disease, Front. Bioeng. Biotechnol. 8 (2020), 947.
    [61]
    A. Ito, E. Hibino, H. Honda, et al., A new methodology of mesenchymal stem cell expansion using magnetic nanoparticles, Biochem. Eng. J. 20 (2004) 119-125.
    [62]
    C. Mahapatra, R. Lee, M.K. Paul, Emerging role and promise of nanomaterials in organoid research, Drug Discov. Today 27 (2022) 890-899.
    [63]
    M. Prasad, R. Kumar, L. Buragohain, et al., Organoid technology: A reliable developmental biology tool for organ-specific nanotoxicity evaluation, Front. Cell. Dev. Biol. 9 (2021), 696668.
    [64]
    S.U. Nabi, S.I. Ali, M.A. Rather, et al., Organoids: A new approach in toxicity testing of nanotherapeutics, J. Appl. Toxicol. 42 (2022) 52-72.
    [65]
    A. Astashkina, D.W. Grainger, Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments, Adv. Drug Deliv. Rev. 69-70 (2014) 1-18.
    [66]
    A.I. Astashkina, C.F. Jones, G. Thiagarajan, et al., Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model, Biomaterials 35 (2014) 6323-6331.
    [67]
    J.G. Gonzalez-Vega, J.C. Garcia-Ramos, R.A. Chavez-Santoscoy, et al., Lung models to evaluate silver nanoparticles’ toxicity and their impact on human health, Nanomaterials 12 (2022), 2316.
    [68]
    Q. Yao, S. Cheng, Q. Pan, et al., Organoids: Development and applications in disease models, drug discovery, precision medicine, and regenerative medicine, MedComm 5 (2024), e735.
    [69]
    M. Stavrou, N. Phung, J. Grimm, et al., Organ-on-chip systems as a model for nanomedicine, Nanoscale 15 (2023) 9927-9940.
    [70]
    A. Baek, I.H. Kwon, D.H. Lee, et al., Novel organoid culture system for improved safety assessment of nanomaterials, Nano Lett. 24 (2024) 805-813.
    [71]
    E.C. Costa, V.M. Gaspar, J.G. Marques, et al., Evaluation of nanoparticle uptake in co-culture cancer models, PLoS One 8 (2013), e70072.
    [72]
    N.J. Braun, R.M. Galaska, M.E. Jewett, et al., Implementation of a dynamic co-culture model abated silver nanoparticle interactions and nanotoxicological outcomes in vitro, Nanomaterials 11 (2021), 1807.
    [73]
    D.E. Ingber, Human organs-on-chips for disease modelling, drug development and personalized medicine, Nat. Rev. Genet. 23 (2022) 467-491.
    [74]
    H. Lu, M.H. Stenzel, Multicellular tumor spheroids (MCTS) as a 3D in vitro evaluation tool of nanoparticles, Small 14 (2018), 1702858.
    [75]
    H. Khan, S.A. Khan, S. Parvez, Multiorgan-on-a-chip: Design and Applications. P.V. Mohanan, Human Organs-on-a-Chip Technology, Academic Press, 2024, pp. 459–483.
    [76]
    P. Thamarai, S. Karishma, R. Kamalesh, et al., Current advancements in nanotechnology for stem cells, Int. J. Surg. 110 (2024) 7456-7476.
    [77]
    E. Gaio, C. Conte, D. Esposito, et al., CD44 targeting mediated by polymeric nanoparticles and combination of chlorine TPCS2a-PDT and docetaxel-chemotherapy for efficient killing of breast differentiated and stem cancer cells in vitro, Cancers 12 (2020), 278.
    [78]
    S. Wang, Z. Sun, Y. Hou, Engineering nanoparticles toward the modulation of emerging cancer immunotherapy, Adv. Healthc. Mater. 10 (2021), 2000845.
    [79]
    Y.H. Lai, C.Y. Su, H.W. Cheng, et al., Stem cell-nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy, Nat. Commun. 14 (2023), 285.
    [80]
    K.N. Panchal, S. Mutalik, J. Manikkath, Biomimetic nanoparticle-driven strategies for targeted drug delivery in glioblastoma, J. Nanopart. Res. 26 (2024), 192.
    [81]
    M.H. Mohd-Zahid, R. Mohamud, C.A.C. Abdullah, et al., Colorectal cancer stem cells: A review of targeted drug delivery by gold nanoparticles, RSC Adv. 10 (2020) 973-985.
    [82]
    M. Pourmadadi, A. Ghaemi, A. Shamsabadipour, et al., Nanoparticles loaded with Daunorubicin as an advanced tool for cancer therapy, Eur. J. Med. Chem. 258 (2023) 115547.
    [83]
    F.M. Mickler, L. Mockl, N. Ruthardt, et al., Tuning nanoparticle uptake: Live-cell imaging reveals two distinct endocytosis mechanisms mediated by natural and artificial EGFR targeting ligand, Nano Lett. 12 (2012) 3417-3423.
    [84]
    P.D. Ly, K.N. Ly, H.L. Phan, et al., Recent advances in surface decoration of nanoparticles in drug delivery, Front. Nanotechnol. 6 (2024), 1456939.
    [85]
    A.O. El-Sadik, A. El-Ansary, S.M. Sabry, Nanoparticle-labeled stem cells: A novel therapeutic vehicle, Clin. Pharmacol. 2 (2010) 9-16.
    [86]
    E. Frohlich, The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles, Int. J. Nanomed. (2012) 5577-5591.
    [87]
    N. Wahajuddin, S. Arora, Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers, Int. J. Nanomed. 7 (2012) 3445-3471.
    [88]
    W. Wang, Z. Deng, X. Xu, et al., Functional nanoparticles and their interactions with mesenchymal stem cells, Curr. Pharm. Des. 23 (2017) 3814-3832.
    [89]
    A. Peserico, A. Canciello, G. Prencipe, et al., Optimization of a nanoparticle uptake protocol applied to amniotic-derived cells: unlocking the therapeutic potential, J. Mater. Chem. B 12 (2024) 8977-8992.
    [90]
    D. Chenthamara, S. Subramaniam, S.G. Ramakrishnan, et al., Therapeutic efficacy of nanoparticles and routes of administration, Biomater. Res. 23 (2019), 20.
    [91]
    M. Vitulo, E. Gnodi, R. Meneveri, et al., Interactions between nanoparticles and intestine, Int. J. Mol. Sci. 23 (2022), 4339.
    [92]
    A. Pietroiusti, E. Bergamaschi, M. Campagna, et al., The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: A consensus paper from a multidisciplinary working group, Part. Fibre Toxicol. 14 (2017), 47.
    [93]
    Y. Tong, Y. Ueyama-Toba, J. Yokota, H. Matsui, M. Kanai, H. Mizuguchi, Efficient hepatocyte differentiation of primary human hepatocyte-derived organoids using three-dimensional nanofibers (HYDROX) and their possible application in hepatotoxicity research, Sci. Rep. 14 (2024) 10846.
    [94]
    E. Cojocaru, O.R. Petris, C. Cojocaru, Nanoparticle-based drug delivery systems in inhaled therapy: improving respiratory medicine, Pharmaceuticals 17 (2024), 1059.
    [95]
    B. Chang, D. Chen, Y. Wang, et al., Bioresponsive controlled drug release based on mesoporous silica nanoparticles coated with reductively sheddable polymer shell, Chem. Mater. 25 (2013) 574-585.
    [96]
    S. Nagarajan, C. Pioche-Durieu, L.H. Tizei, et al., Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds, Nanoscale 8 (2016) 1158-11594.
    [97]
    R. Sun, J. Dittrich, M. Le-Huu, et al., Physical and biological characterization of superparamagnetic iron oxide-and ultrasmall superparamagnetic iron oxide-labeled cells: A comparison, Invest. Radiol. 40 (2005) 504-513.
    [98]
    E. Izak-Nau, K. Kenesei, K. Murali, et al., Interaction of differently functionalized fluorescent silica nanoparticles with neural stem-and tissue-type cells, Nanotoxicol. 8 (2014) 138-148.
    [99]
    A. Mohsin, M.H. Hussain, M.Z. Mohsin, et al., Recent advances of magnetic nanomaterials for bioimaging, drug delivery, and cell therapy, ACS Appl. Nano Mater. 5 (2022) 10118-10136.
    [100]
    Y. He, Y. Wang, L. Wang, et al., Understanding nanoparticle-liver interactions in nanomedicine, Expert Opin. Drug Deliv. 21 (2024) 829-843.
    [101]
    S.K. Das, K. Sen, B. Ghosh, et al., Molecular mechanism of nanomaterials induced liver injury: A review, World J. Hepatol. 16 (2024) 566-600.
    [102]
    K. Luyts, D. Napierska, B. Nemery, et al., How physico-chemical characteristics of nanoparticles cause their toxicity: Complex and unresolved interrelations, Environ. Sci. Process. Impacts 15 (2013) 23-38.
    [103]
    H.A. Al-Btoush, The interactions between metallic nanoparticles and cytochrome P450, alanine aminotransferase, and aspartate aminotransferase enzymes, J. Pure Appl. Microbiol. 17 (2023) 2024-2040.
    [104]
    N. Kahil, N.S. Abouzeinab, M.A. Hussein, et al., Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: A systematic review, Nanotoxicol. 18 (2024) 583-598.
    [105]
    Y. Pan, C.E. Ong, Y.F. Pung, et al., The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes - a literature-based review, Xenobiotica 49 (2019) 863-876.
    [106]
    M. Krzyzowska, E. Tomaszewska, K. Ranoszek-Soliwoda, et al., Tannic acid modification of metal nanoparticles: Possibility for new antiviral applications. Nanostructures for Oral Medicine. Elsevier, 2017, pp. 335–363.
    [107]
    M.Y. Al-Hamadani, A.M. Alzahrani, M.I. Yousef, et al., Gold nanoparticles perturb drug-metabolizing enzymes and antioxidants in the livers of male rats: Potential impact on drug interactions, Int. J. Nanomed.15 (2020) 5005-5016.
    [108]
    H. Tang, M. Xu, F. Shi, et al., Effects and mechanism of nano-copper exposure on hepatic cytochrome P450 enzymes in rats, Int. J. Mol. Sci. 19 (2018), 2140.
    [109]
    J.M. Carvalho-Silva, A.C.D. Reis, Anti-inflammatory action of silver nanoparticles in vivo: Systematic review and meta-analysis, Heliyon 10 (2024), e34564.
    [110]
    Z. Parang, D. Moghadamnia, Effects of silver nanoparticles on the functional tests of liver and its histological changes in adult male rats, Nanomed. Res. J. 3 (2018) 146-153.
    [111]
    J. Cai, J. Peng, J. Feng, et al., Antioxidant hepatic lipid metabolism can be promoted by orally administered inorganic nanoparticles, Nat. Commun. 14 (2023), 3643.
    [112]
    S.M. Elaidy, A. Moghazy, M.K.J. El-Kherbetawy, Evaluation of the therapeutic effects of Polyvinylpyrrolidone-capped silver nanoparticles on the Diethylnitrosamine/carbon tetrachloride-induced hepatocellular carcinoma in rats, Egypt. J. Basic Clin. Pharmacol. 7 (2017) 9-24.
    [113]
    Y.L. Wang, Y.H. Lee, C.L. Chou, et al., Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns, Environ. Pollut. 346 (2024), 123617.
    [114]
    A. Martin-Pardillos, P. Martin-Duque, Cellular alterations in carbohydrate and lipid metabolism due to interactions with nanomaterials, J. Funct. Biomater. 14 (2023), 274.
    [115]
    V.c. Barreto Garcia, L.H. Gasparotto, A.A. de Araujo, et al., Gold Nanoparticles (AuNPs) Coadministered with a β-Blocker Prevent Liver Fibrosis Caused by Ethanol and Methamphetamine in Rats by Downregulating the Expression of M2 Macrophages, ACS Omega 10 (2025) 14924-14939.
    [116]
    X. Qiao, L. Bao, G. Liu, et al., Nanomaterial journey in the gut: From intestinal mucosal interaction to systemic transport, Nanoscale 16 (2024) 19207-19220.
    [117]
    W. Poon, Y.N. Zhang, B. Ouyang, et al., Elimination pathways of nanoparticles, ACS Nano 13 (2019) 5785-5798.
    [118]
    H.S. Choi, W. Liu, P. Misra, et al., Renal clearance of nanoparticles, Nat. Biotechnol. 25 (2007) 1165-1170.
    [119]
    G.H. Zhu, A.B. Gray, H.K. Patra, Nanomedicine: Controlling nanoparticle clearance for translational success, Trends Pharmacol. Sci. 43 (2022) 709-711.
    [120]
    Y. Huang, J. Wang, K. Jiang, et al., Improving kidney targeting: The influence of nanoparticle physicochemical properties on kidney interactions, J. Control. Release 334 (2021) 127-137.
    [121]
    Y.N. Zhang, W. Poon, A.J. Tavares, et al., Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination, J. Control. Release 240 (2016) 332-348.
    [122]
    Y. Wang, Q. Wu, K. Sui, et al., A quantitative study of exocytosis of titanium dioxide nanoparticles from neural stem cells, Nanoscale 5 (2013) 4737-4743.
    [123]
    R. Sakhtianchi, R.F. Minchin, K.-B. Lee, et al., Exocytosis of nanoparticles from cells: Role in cellular retention and toxicity, Adv. Colloid Interface Sci. 201−202 (2013) 18-29.
    [124]
    B.S. Zolnik, A. Gonzalez-Fernandez, N. Sadrieh, et al., Minireview: Nanoparticles and the immune system, Endocrinology 151 (2010) 458-465.
    [125]
    L.F. Fransen, M.O. Leonard, Induced pluripotent and CD34+ stem cell derived myeloid cells display differential responses to particle and dust mite exposure, Sci. Rep. 13 (2023) 9375.
    [126]
    A. Klepikova, T. Nenasheva, O. Sheveleva, E. Protasova, D. Antonov, A. Gainullina, et al., iPSC-derived macrophages: the differentiation protocol affects cell immune characteristics and differentiation trajectories, Int. J. Mol. Sci. 23 (2022), 16087.
    [127]
    P. Ray, N. Haideri, I. Haque, et al., The impact of nanoparticles on the immune system: A gray zone of nanomedicine, J. Immunol. Sci. 5 (2021).
    [128]
    S.S. Jose, L.M. Forrester, Pluripotent stem cell derived macrophages: current applications, in: Macrophages: Celebrating 140 Years of Discovery, IntechOpen, 2022, p. 361.
    [129]
    N. Krishnan, J. Zhou, A. Mohapatra, C.J. Ventura, Y. Duan, J. Lee, et al., Universal prophylactic antitumor vaccination using stem cell membrane-coated nanoparticles, Adv. Mater. 37 (2025), 2501616.
    [130]
    Kumar, S., et al. (2023). iPSC-derived immune cells for nanoparticle-mediated immunotherapy. Nature Nanotechnology, 18(8), 892-901.
    [131]
    S. Joshi, S. Allabun, S. Ojo, M.S. Alqahtani, P.K. Shukla, M. Abbas, et al., Enhanced drug delivery system using mesenchymal stem cells and membrane-coated nanoparticles, Molecules 28 (2023) 2130.
    [132]
    D. Murugan, V. Murugesan, B. Panchapakesan, L. Rangasamy, Nanoparticle enhancement of natural killer (NK) cell-based immunotherapy, Cancers (Basel) 14 (2022), 5438.
    [133]
    X. Wei, C. Su, Y. Liu, N. Wei, K. Xiang, Q. Qian, Z. Xu, iPSC-derived NK cells for immunotherapy and therapeutic perspective, Mol. Med. Rep. 32 (2025), 222.
    [134]
    Z. Liu, X. Wang, X. Zhu, T. Zhang, Z. He, Z. Wu, et al., Enhancing antigen presentation in cancer stem cells via peptide-based nanoparticles for effective immunotherapy, J. Control. Release (2025), 114001.
    [135]
    M. Klimak, F. Guilak, Genetically engineered macrophages derived from iPSCs for self-regulating delivery of anti-inflammatory biologic drugs, J. Tissue Eng. Regen. Med. (2024), 6201728.
    [136]
    R. Mohammadinejad, M.A. Moosavi, S. Tavakol, et al., Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles, Autophagy 15 (2019) 4-33.
    [137]
    Y.N. Fan, G. Zhao, Y. Zhang, et al., Progress in nanoparticle-based regulation of immune cells, Med. Rev. 3 (2023) 152-179.
    [138]
    V. Mittelheisser, O. Lefebvre, M. Banerjee, et al., Nanomaterials trigger functional responses in primary human immune cells, bioRxiv. 2024. 2024.2010. 2017.618911.
    [139]
    A. Abdal Dayem, M.K. Hossain, S.B. Lee, et al., The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles, Int. J. Mol. Sci. 18 (2017) 120.
    [140]
    V.S. Periasamy, J. Athinarayanan, M.A. Alfawaz, et al., Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes, Chemosphere 144 (2016) 275-284.
    [141]
    G.P. Dantas, F.S. Ferraz, L.M. Andrade, et al., Male reproductive toxicity of inorganic nanoparticles in rodent models: A systematic review, Chem. Biol. Interact. 363 (2022), 110023.
    [142]
    K. Tabari, S. Hosseinpour, P. Parashos, et al., Cytotoxicity of selected nanoparticles on human dental pulp stem cells, Iran. Endod. J. 12 (2017) 137-142.
    [143]
    P. Rispoli, T. Scandiuzzi Piovesan, G. Decorti, et al., iPSCs as a groundbreaking tool for the study of adverse drug reactions: A new avenue for personalized therapy, WIREs Mech. Dis. 16 (2024), e1630.
    [144]
    X. Liu, Z. Yang, J. Sun, et al., A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine, Int. J. Nanomed. 14 (2019) 3875-3892.
    [145]
    H. Handral, C. Ashajyothi, G. Sriram, et al., Cytotoxicity and genotoxicity of metal oxide nanoparticles in human pluripotent stem cell-derived fibroblasts, Coatings 11 (2021), 107.
    [146]
    J.C.L. Chow, Biophysical insights into nanomaterial-induced DNA damage: Mechanisms, challenges, and future directions, AIMS Biophys. 11 (2024) 340-369.
    [147]
    B. Echalar, Impact of nanomaterials on mesenchymal stem cells and tissue regeneration Czech Republic: Univerzita Karlova, 2024.
    [148]
    T. Sasaki, M. Asakura, C. Ishioka, et al., In vitro chromosomal aberrations induced by various shapes of multi-walled carbon nanotubes (MWCNTs), J. Occup. Health 58 (2016) 622-631.
    [149]
    Y. Wang, M. Tang, Dysfunction of various organelles provokes multiple cell death after quantum dot exposure, Int. J. Nanomed. 13 (2018) 2729-2742.
    [150]
    S.R. Satapathy, P. Mohapatra, R. Preet, et al., Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53, Nanomed. 8 (2013) 1307-1322.
    [151]
    S. Wang, H. Alenius, H. El-Nezami, et al., A new look at the effects of engineered ZnO and TiO2 nanoparticles: evidence from transcriptomics studies, Nanomaterials 12 (2022), 1247.
    [152]
    S.C. Fitzpatrick, E. DABT, Predictive toxicology for regulatory decisions: Implementing new approaches at US Food and Drug Administration, Toxicol. In Vitro 63 (2020) 104659.
    [153]
    J. Lewis, S. Holm, Regulating organoid and organoid-related activities: An analysis of the regulatory gaps and areas of over-regulation, HYBRIDA, European Commission, 2022, 75 p.
    [154]
    S. Weber, A.L. Gerbes, Challenges and future of drug-induced liver injury research-laboratory tests, Int. J. Mol. Sci. 23 (2022) 6049.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (36) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return