| Citation: | Min Wang, Yanjie Cheng, Manyao Zhang, Shuang Liu, Linyuan Luo, Xiang Han, Jingdi Chen, Zhining Xia, Hongli Luo. Multifunctional MOF composites for advanced drug identification and screening: Innovations, applications and challenges[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101543 |
| [1] |
Y. Gao, G. Yu, K. Liu, et al., Luminescent mixed-crystal Ln-MOF thin film for the recognition and detection of pharmaceuticals, Sens. Actuat. B Chem. 257 (2018) 931-935.
|
| [2] |
Y. Peng, L. Gautam, S.W. Hall, The detection of drugs of abuse and pharmaceuticals in drinking water using solid-phase extraction and liquid chromatography-mass spectrometry, Chemosphere 223 (2019) 438-447.
|
| [3] |
L. Flores, S. Hargrave, A. Clifford, et al., Detection of doping peptides and basic drugs in equine urine using liquid chromatography-mass spectrometry, Drug Test. Anal. 16 (2024) 406-419.
|
| [4] |
Y. Chen, S. Hong, H.H. Wu, et al., Rapid Formation of nanoclusters for detection of drugs in urine using surface-enhanced Raman spectroscopy, Nanomaterials 11 (2021), 1789.
|
| [5] |
O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature 378 (1995) 703-706.
|
| [6] |
Z. Wang, X. Jin, L. Yan, et al., Recent research progress in CDs@MOFs composites: Fabrication, property modulation, and application, Mikrochim. Acta 190 (2022), 28.
|
| [7] |
F. Rezaei, M. Masrournia, M. Pordel, Simultaneous determination of four aflatoxins using dispersive micro solid phase extraction with magnetic bimetallic MOFs composite as a sorbent and high-performance liquid chromatography with fluorescence detection, Microchem. J. 189 (2023), 108506.
|
| [8] |
Y. Yin, C. Gao, Q. Xiao, et al., Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform, ACS Appl. Mater. Interfaces 8 (2016) 29052-29061.
|
| [9] |
C. Guo, F. Duan, S. Zhang, et al., Heterostructured hybrids of metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), J. Mater. Chem. A 10 (2022) 475-507.
|
| [10] |
Y. Lu, X. Dong, G. Ji, et al., Anchor carbon dots inside NH2-MIL-88B via ship-in-a-bottle strategy for dual signal enhancement in colorimetric-fluorescent sensors, Sens. Actuat. B Chem. 424 (2025), 136877.
|
| [11] |
Y. He, S. Wang, J. Wang, Fluorescence ratio nanoprobe consisting of a carbon nanodots-quantum dots composite for visual detection of folic acid in dry milk powders, Food Anal. Meth. 14 (2021) 1637-1644.
|
| [12] |
F. Maya, C. Palomino Cabello, R.M. Frizzarin, et al., Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons, Trac Trends Anal. Chem. 90 (2017) 142-152.
|
| [13] |
D. Zhou, Q. Liu, M. Chen, et al., The synthesis, application and mechanism of a novel Zr-based magnetic MOFs adsorption material, J. Environ. Chem. Eng. 11 (2023), 109666.
|
| [14] |
M. Yan, D. Wang, H. Liao, et al., High-efficiency enzyme assay and screening of enzyme-inhibiting nanomaterials using capillary electrophoresis with hierarchically porous metal-organic framework-based immobilized enzyme microreactor, Anal. Chem. 96 (2024) 17300-17309.
|
| [15] |
L. Dong, Y. Xiong, X. Xiang, et al., Kinetic and stability studies of amino acid metal-organic frameworks for encapsulating of amino acid dehydrogenase, J. Biotechnol. 391 (2024) 50-56.
|
| [16] |
S. Lin, B. Liang, Z. Zhao, et al., Fabrication of a magnetic metal-organic framework/covalent organic framework composite for simultaneous magnetic solid-phase extraction of seventeen trace quinolones residues in meats, J. Chromatogr. A 1709 (2023), 464403.
|
| [17] |
N. Zhang, T. Bao, Y. Gao, et al., Growth of MOF@COF on corncob as effective adsorbent for enhancing adsorption of sulfonamides and its mechanism, Appl. Surf. Sci. 580 (2022), 152285.
|
| [18] |
S. Li, S. Shan, S. Chen, et al., Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review, J. Environ. Chem. Eng. 9 (2021), 105967.
|
| [19] |
G. Lin, B. Zeng, J. Li, et al., A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism, Chem. Eng. J. 460 (2023), 141710.
|
| [20] |
C. Wang, X. Liu, T. Yang, et al., An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants, Sep. Purif. Technol. 320 (2023), 124144.
|
| [21] |
J. Cui, S. Ren, B. Sun, et al., Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges, Coord. Chem. Rev. 370 (2018) 22-41.
|
| [22] |
L. Geng, J. Huang, M. Fang, et al., Recent progress of the research of metal-organic frameworks-molecularly imprinted polymers (MOFs-MIPs) in food safety detection field, Food Chem. 458 (2024), 140330.
|
| [23] |
D. Li, N. Li, W. Liu, et al., Highly water-stable MOF-74 synthesized by in-situ trace polymer modification, Polymer 281 (2023), 126112.
|
| [24] |
Z. Weng, Z. Xie, X. Wu, et al., Water-stable MIL-MOFs developed through a novel sacrifice-protection strategy inspired by butterfly wings' scales for long-term turn-on fluorescence sensing of H(2)S, Small Methods 9 (2025), e2500277.
|
| [25] |
K.W. Jung, J.H. Kim, J.W. Choi, Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride, Compos. Part B Eng. 187 (2020), 107867.
|
| [26] |
J. Zhang, S. Xiang, P. Wu, et al., Recent advances in performance improvement of Metal-organic Frameworks to remove antibiotics: Mechanism and evaluation, Sci. Total Environ. 811 (2022), 152351.
|
| [27] |
L. He, Y. Dong, Y. Zheng, et al., A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light, J. Hazard. Mater. 361 (2019) 85-94.
|
| [28] |
W. Duan, Z. Zhao, H. An, et al., State-of-the-art and prospects of biomolecules: Incorporation in functional metal-organic frameworks, Top. Curr. Chem. 377 (2019), 34.
|
| [29] |
P.N. Nomngongo, S.K. Selahle, A. Mpupa, et al., Molecularly imprinted polymers @ metal and covalent organic frameworks: From synthesis to application in analytical chemistry, Trac Trends Anal. Chem. 179 (2024), 117906.
|
| [30] |
J. Xu, J. Ma, Y. Peng, et al., Applications of metal nanoparticles/metal-organic frameworks composites in sensing field, Chin. Chem. Lett. 34 (2023), 107527.
|
| [31] |
M. Jiang, J. Liao, C. Liu, et al., Metal-organic frameworks/metal nanoparticles as smart nanosensing interfaces for electrochemical sensors applications: A mini-review, Front. Bioeng. Biotechnol. 11 (2023), 1251713.
|
| [32] |
F. Yan, X. Wang, Y. Wang, et al., Sensing performance and mechanism of carbon dots encapsulated into metal-organic frameworks, Mikrochim. Acta 189 (2022), 379.
|
| [33] |
T. Kitao, Y. Zhang, S. Kitagawa, et al., Hybridization of MOFs and polymers, Chem. Soc. Rev. 46 (2017) 3108-3133.
|
| [34] |
X. Tong, J. Liu, Y. Zhao, et al., Metal-organic framework supported carbon quantum dots as white light-emitting phosphor, Chin. Chem. Lett. 36 (2025), 111058.
|
| [35] |
S. Wu, C. Chen, J. Chen, et al., Construction of carbon dots/metal-organic framework composite for ratiometric sensing of norfloxacin, J. Mater. Chem. C 10 (2022) 15508-15515.
|
| [36] |
Y. Zhang, M. Sun, M. Peng, et al., The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: State of the art review, Chin. Chem. Lett. 34 (2023), 107478.
|
| [37] |
C. Yao, Y. Xu, Z. Xia, A carbon dot-encapsulated UiO-type metal organic framework as a multifunctional fluorescent sensor for temperature, metal ion and pH detection, J. Mater. Chem. C 6 (2018) 4396-4399.
|
| [38] |
R. Jalili, A. Khataee, M.R. Rashidi, et al., Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione, Sens. Actuat. B Chem. 297 (2019), 126775.
|
| [39] |
G. Li, X. Wang, J. Zhang, Carbon dots for promoting the growth of ZIF-8 crystals to obtain fluorescent powders and their application for latent fingerprint imaging, CrystEngComm 20 (2018) 5056-5060.
|
| [40] |
J. Liu, X. Li, Y. Han, et al., Synergetic effect of tetraethylammonium bromide addition on the morphology evolution and enhanced photoluminescence of rare-earth metal-organic frameworks, Inorg. Chem. 59 (2020) 14318-14325.
|
| [41] |
Z. Gu, D. Li, C. Zheng, et al., MOF-templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications, Angew. Chem. Int. Ed. 56 (2017) 6853-6858.
|
| [42] |
F. Ke, J. Yuan, C. Zhang, et al., Core-shell nanostructured metal-organic frameworks with encapsulated magnetic nanoparticles for magnetically recyclable catalysis, Coord. Chem. Rev. 518 (2024), 216116.
|
| [43] |
L. Li, Y. Xu, D. Zhong, et al., CTAB-surface-functionalized magnetic MOF@MOF composite adsorbent for Cr(VI) efficient removal from aqueous solution, Colloids Surf. A Physicochem. Eng. Aspects 586 (2020), 124255.
|
| [44] |
Y. Ma, X. Jiang, Y. Lv, Recent advances in preparation and applications of magnetic framework composites, Chem. 14 (2019) 3515-3530.
|
| [45] |
Y. Wu, M. Zhou, S. Li, et al., Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery, Small 10 (2014) 2927-2936.
|
| [46] |
Q. Yang, Q. Zhao, S. Ren, et al., Fabrication of core-shell Fe3O4@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution, J. Solid State Chem. 244 (2016) 25-30.
|
| [47] |
L. Chen, X. Ding, J. Huo, et al., Facile synthesis of magnetic macroporous polymer/MOF composites as separable catalysts, J. Mater. Sci. 54 (2019) 370-382.
|
| [48] |
P. Tan, X. Xie, X. Liu, et al., Fabrication of magnetically responsive HKUST-1/Fe(3)O(4) composites by dry gel conversion for deep desulfurization and denitrogenation, J. Hazard. Mater. 321 (2017) 344-352.
|
| [49] |
M. Bellusci, P. Guglielmi, A. Masi, et al., Magnetic metal-organic framework composite by fast and facile mechanochemical process, Inorg. Chem. 57 (2018) 1806-1814.
|
| [50] |
M.E. Silvestre, M. Franzreb, P.G. Weidler, et al., Magnetic cores with porous coatings: Growth of metal-organic frameworks on particles using liquid phase epitaxy, Adv. Funct. Mater. 23 (2013) 1210-1213.
|
| [51] |
H. Sun, Y. Li, S. Yu, et al., Metal-organic frameworks (MOFs) for biopreservation: From biomacromolecules, living organisms to biological devices, Nano Today 35 (2020), 100985.
|
| [52] |
Y. Li, H. Chai, Z. Yuan, et al., Metal-organic framework-engineered enzyme/nanozyme composites: Preparation, functionality, and sensing mechanisms, Chem. Eng. J. 496 (2024), 153884.
|
| [53] |
T.J. Pisklak, M. Macias, D.H. Coutinho, et al., Hybrid materials for immobilization of MP-11 catalyst, Top. Catal. 38 (2006) 269-278.
|
| [54] |
V. Lykourinou, Y. Chen, X. Wang, et al., Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: A new platform for enzymatic catalysis, J. Am. Chem. Soc. 133 (2011) 10382-10385.
|
| [55] |
Y.H. Shih, S.H. Lo, N.S. Yang, et al., Trypsin-immobilized metal-organic framework as a biocatalyst in proteomics analysis, ChemPlusChem 77 (2012) 982-986.
|
| [56] |
Z. Zhang, Y. Li, Z. Yuan, et al., MOF nanozymes: Active sites and sensing applications, Inorg. Chem. Front. 12 (2025) 400-429.
|
| [57] |
F. Lyu, Y. Zhang, R.N. Zare, et al., One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, Nano Lett. 14 (2014) 5761-5765.
|
| [58] |
P.A. Sontz, J.B. Bailey, S. Ahn, et al., A metal organic framework with spherical protein nodes: Rational chemical design of 3D protein crystals, J. Am. Chem. Soc. 137 (2015) 11598-11601.
|
| [59] |
D. Feng, T. Liu, J. Su, et al., Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation, Nat. Commun. 6 (2015), 5979.
|
| [60] |
P. Li, Q. Chen, T.C. Wang, et al., Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems, Chem 4 (2018) 1022-1034.
|
| [61] |
S. Gao, J. Hou, Z. Deng, et al., Improving the acidic stability of zeolitic imidazolate frameworks by biofunctional molecules, Chem 5 (2019) 1597-1608.
|
| [62] |
C. Tudisco, G. Zolubas, B. Seoane, et al., Covalent immobilization of glucose oxidase on amino MOFs via post-synthetic modification, RSC Adv. 6 (2016) 108051-108055.
|
| [63] |
N.K. Maddigan, A. Tarzia, D.M. Huang, et al., Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8, Chem. Sci. 9 (2018) 4217-4223.
|
| [64] |
G. Chen, X. Kou, S. Huang, et al., Modulating the biofunctionality of metal-organic-framework-encapsulated enzymes through controllable embedding patterns, Angew. Chem. Int. Ed. 59 (2020) 2867-2874.
|
| [65] |
W. Liang, H. Xu, F. Carraro, et al., Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks, J. Am. Chem. Soc. 141 (2019) 2348-2355.
|
| [66] |
J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks: A new class of porous materials, Microporous Mesoporous Mater. 73 (2004) 3-14.
|
| [67] |
R. Zheng, Y. Yang, C. Yang, et al., Core-shell MOF@COFs used as an adsorbent and matrix for the detection of nonsteroidal anti-inflammatory drugs by MALDI-TOF MS, Mikrochim. Acta 188 (2021), 179.
|
| [68] |
X. Liu, M. Hu, M. Wang, et al., Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin, Biosens. Bioelectron. 123 (2019) 59-68.
|
| [69] |
Y. Yao, R. Zhang, T. Liu, et al., Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework, Inorg. Chem. Commun. 101 (2019) 160-163.
|
| [70] |
M. Zhang, J. Chang, Y. Chen, et al., Controllable synthesis of COFs-based multicomponent nanocomposites from core-shell to yolk-shell and hollow-sphere structure for artificial photosynthesis, Adv. Mater. 33 (2021), e2105002.
|
| [71] |
L. Garzon-Tovar, J. Perez-Carvajal, A. Yazdi, et al., A MOF@COF composite with enhanced uptake through interfacial pore generation, Angew. Chem. Int. Ed. 58 (2019) 9512-9516.
|
| [72] |
H. Zhang, Q. Zhu, R. Yuan, et al., Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection, Sens. Actuat. B Chem. 329 (2021), 129144.
|
| [73] |
Z. Shi, L. Han, Y. Dong, Electrochemical sensor based on reduced graphene oxide paste electrode for detection of gemcitabine as a chemotherapy drug in breast cancer, Alex. Eng. J. 102 (2024) 49-57.
|
| [74] |
G.T. Tran, T.T.T. Nguyen, T. Van Tran, Synthesis strategies, functionalization, and biomedical applications of MOF/MXene hybrid composites, Coord. Chem. Rev. 544 (2025), 217002.
|
| [75] |
Y. Liu, H. Zhang, D. Xie, et al., Optimized synthesis of molecularly imprinted polymers coated magnetic UIO-66 MOFs for simultaneous specific removal and determination of multi types of macrolide antibiotics in water, J. Environ. Chem. Eng. 10 (2022), 108094.
|
| [76] |
Y. Zhang, B. Li, X. Wei, et al., Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework, Mikrochim. Acta 188 (2021), 286.
|
| [77] |
S. Hu, H. Zhao, M. Liang, et al., Interconversion and functional composites of metal-organic frameworks and hydrogen-bonded organic frameworks, Chem. Commun. 60 (2024) 8140-8152.
|
| [78] |
M. Xin, Y. Fu, Y. Zhou, et al., The surface-enhanced Raman scattering of all-inorganic perovskite quantum dots of CsPbBr3 encapsulated in a ZIF-8 metal-organic framework, New J. Chem. 44 (2020) 17570-17576.
|
| [79] |
B. Lerma-Berlanga, N.M. Padial, M. Galbiati, et al., Wrapping up metal-organic framework crystals with carbon nanotubes (adv. funct. mater. 41/2023), Adv. Funct. Mater. 33 (2023), 2370243.
|
| [80] |
X. Liu, W.P. Lustig, J. Li, Functionalizing luminescent metal-organic frameworks for enhanced photoluminescence, ACS Energy Lett. 5 (2020) 2671-2680.
|
| [81] |
R. Jalili, M.H. Irani-Nezhad, A. Khataee, et al., A ratiometric fluorescent probe based on carbon dots and gold nanocluster encapsulated metal-organic framework for detection of cephalexin residues in milk, Spectrochim. Acta A Mol. Biomol. Spectrosc. 262 (2021), 120089.
|
| [82] |
Y. Yu, G. Huang, X. Luo, et al., Carbon dots@Cu metal-organic frameworks hybrids for ratiometric fluorescent determination of pesticide thiophanate-methyl, Mikrochim. Acta 189 (2022), 325.
|
| [83] |
Q. Wang, X. Qi, H. Chen, et al., Fluorescence determination of chloramphenicol in milk powder using carbon dot decorated silver metal-organic frameworks, Mikrochim. Acta 189 (2022), 272.
|
| [84] |
J. Chi, Y. Song, L. Feng, A ratiometric fluorescence sensor with different responsive modes based on carbon dots-embedded Tb-MOFs for the determination of norfloxacin and levofloxacin, Talanta 280 (2024), 126763.
|
| [85] |
M. Wang, M. Zhou, M. Wang, et al., Fabrication of a bifunctional fluorescent chiral composite based on magnetic Fe(3)O(4)/chiral carbon dots@hierarchical porous metal-organic framework, Talanta 266 (2024), 125113.
|
| [86] |
J. Zhang, Y. Li, L. Teng, et al., A molecularly imprinted fluorescence sensor for sensitive detection of tetracycline using nitrogen-doped carbon dots-embedded zinc-based metal-organic frameworks as signal-amplifying tags, Anal. Chim. Acta 1251 (2023), 341032.
|
| [87] |
X. Quan, B. Yan, In situ generated Dye@MOF/COF heterostructure for fluorescence detection of chloroquine phosphate and folic acid via different luminescent channels, ACS Appl. Mater. Interfaces 15 (2023) 54634-54642.
|
| [88] |
Y. Hui, Y. Wei, H. Guo, et al., An artificial neural network model based on CDs@MOF/COF composites for the ultra-sensitive fluorescence detection of glyphosate, Food Chem. 492 (2025), 145361.
|
| [89] |
S. Tajik, H. Beitollahi, F.G. Nejad, et al., Recent electrochemical applications of metal-organic framework-based materials, Cryst. Growth Des. 20 (2020) 7034-7064.
|
| [90] |
F. Li, M. Luo, Y. Tan, et al., A dual-mode electrochemical and fluorescence aptasensor based on CDs@Cu/Al-MOF and Ti(3)C(2) for the detection of kanamycin in milk, Mikrochim. Acta 192 (2025), 519.
|
| [91] |
L. Zhang, C. Qiao, X. Cai, et al., Microcalorimetry-guided pore-microenvironment optimization to improve sensitivity of Ni-MOF electrochemical biosensor for chiral galantamine, Chem. Eng. J. 426 (2021), 130730.
|
| [92] |
J. Xiao, C. Fan, T. Xu, et al., An electrochemical wearable sensor for levodopa quantification in sweat based on a metal-Organic framework/graphene oxide composite with integrated enzymes, Sens. Actuat. B Chem. 359 (2022), 131586.
|
| [93] |
P Li, S Zhang, X Yang, et al., Integrating Au@MOF@COF nanocomposites for electrochemical aptasensing of trace oxytetracycline, Nano Res. 18 (2025), 94907590.
|
| [94] |
R. Bhardwaj, R.P. Rao, I. Mukherjee, et al., Layered construction of nano immuno-hybrid embedded MOF as an electrochemical sensor for rapid quantification of total pesticides load in vegetable extract, J. Electroanal. Chem. 873 (2020), 114386.
|
| [95] |
M. Yang, Z. Sun, H. Jin, et al., Sulfur nanoparticle-encapsulated MOF and boron nanosheet-ferrocene complex modified electrode platform for ratiometric electrochemical sensing of adriamycin and real-time monitoring of drug release, Microchem. J. 177 (2022), 107319.
|
| [96] |
K. Fu, R. Zhang, J. He, et al., Sensitive detection of ketamine with an electrochemical sensor based on UV-induced polymerized molecularly imprinted membranes at graphene and MOFs modified electrode, Biosens. Bioelectron. 143 (2019), 111636.
|
| [97] |
D. Duan, J. Wang, P. Han, et al., Dual-monomer molecularly imprinted electrochemical sensor based on amino-functionalized MOFs and graphene for trace determination of taurine, Mikrochim. Acta 190 (2023), 162.
|
| [98] |
W. Yan, X. Wang, X. Gao, et al., A smart fluorescent colorimetric dual-response sensing for the determination of tetracycline antibiotics, J. Photochem. Photobiol. A Chem. 447 (2024), 115217.
|
| [99] |
X. Luo, G. Huang, C. Bai, et al., A versatile platform for colorimetric, fluorescence and photothermal multi-mode glyphosate sensing by carbon dots anchoring ferrocene metal-organic framework nanosheet, J. Hazard. Mater. 443 (2023), 130277.
|
| [100] |
Y. Shen, L. Liu, T. Li, et al., An ingenious integrated metal-organic frameworks-based ratiometric sensing platform for efficient, sensitive and real-time detection of tetracyclines, Food Chem. 472 (2025), 142892.
|
| [101] |
M. Liu, Y. Liu, J. Xiao, et al., Colorimetric-ratiometric fluorescence sensors dual-mode detection of ofloxacin based on Fe-Ni bimetallic metal-organic frameworks and carbon dots, Food Control 169 (2025), 110989.
|
| [102] |
P. Kukkar, D. Kukkar, S.A. Younis, et al., Colorimetric biosensing of organophosphate pesticides using enzymatic nanoreactor built on zeolitic imdiazolate-8, Microchem. J. 166 (2021), 106242.
|
| [103] |
H. Chai, Y. Li, K. Yu, et al., Two-site enhanced porphyrinic metal-organic framework nanozymes and nano-/bioenzyme confined catalysis for colorimetric/chemiluminescent dual-mode visual biosensing, Anal. Chem. 95 (2023) 16383-16391.
|
| [104] |
X. He, Y. Wang, Q. Xue, et al., Molecularly imprinted MOF nanozymes: Demonstration of smartphone-integrated dual-mode platform for ratiometric fluorescent/colorimetric detection of chloramphenicol, Food Chem. X 26 (2025), 102322.
|
| [105] |
L. Zhang, M. Shen, Z. Li, et al., A dual-mode sensor based on surface molecularly imprinted metal-organic framework for the highly accurate and selective detection of tetracycline, Sens. Actuat. B Chem. 432 (2025), 137445.
|
| [106] |
C. Yuan, L. Sun, Z. Wang, et al., Prussian blue nanosphere/Fe-metal organic frameworks/Ce nanocomposite as a colorimetric sensing platform for direct detection in organophosphorus pesticides in fetal bovine serum, Langmuir 41 (2025) 11046-11055.
|
| [107] |
M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163-166.
|
| [108] |
Y. Zhao, X. Hu, C. Li, et al., Magnetic COF on MOF heterojunction assisted surface-enhanced Raman spectroscopy for 17β-estradiol analysis, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 341 (2025), 126434.
|
| [109] |
J. Feng, P. Zhou, C. Qin, et al., Magnetic solid-phase extraction-based surface-enhanced Raman spectroscopy for label-free therapeutic drug monitoring of carbamazepine and clozapine in human serum, Spectrochim. Acta A Mol. Biomol. Spectrosc. 310 (2024), 123924.
|
| [110] |
R. Chen, Q. Chen, Y. Wang, et al., Ultrasensitive SERS substrate for label-free therapeutic drug monitoring of chlorpromazine hydrochloride and aminophylline in human serum, Anal. Bioanal. Chem. 415 (2023) 1803-1815.
|
| [111] |
Q. Zhang, S. Mi, Y. Xie, et al., Core-shell Au@MIL-100 (Fe) as an enhanced substrate for flunixin meglumine ultra-sensitive detection, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 287 (2023), 122018.
|
| [112] |
O. Guselnikova, H. Lim, J. Na, et al., Enantioselective SERS sensing of pseudoephedrine in blood plasma biomatrix by hierarchical mesoporous Au films coated with a homochiral MOF, Biosens. Bioelectron. 180 (2021), 113109.
|
| [113] |
Y. Zhao, X. Wang, Y. Chen, et al., Electrochemical synthesis of Co/Ni bimetal-organic frameworks: A high-performance SERS platform for detection of tetracycline, Spectrochim. Acta A Mol. Biomol. Spectrosc. 285 (2023), 121843.
|
| [114] |
S. Zhi, A. Liang, Z. Jiang, A novel nanogold sol SERS/RRS dual-mode assay for trace imidacloprid with Ti3C2Tx@Ti-MOFs/peptide bifunctional nanoprobe, J. Environ. Chem. Eng. 11 (2023), 111276.
|
| [115] |
W. Xiu, P. Zhao, Y. Pan, et al., Flexible SERS strip based on HKUST-1(cu)/biomimetic antibodies composite multilayer for trace determination of ethephon, Anal. Chim. Acta 1253 (2023), 341097.
|
| [116] |
R. Zhang, Q. Zhang, J. Yang, et al., Ultrasensitive detection strategy for CAP by molecularity imprinted SERS sensor based on multiple synergistic enhancement of SiO(2)@AuAg with MOFs@Au signal carrier, Food Chem. 445 (2024), 138717.
|
| [117] |
K. Sun, T. Deng, J. Sun, et al., Ratiometric fluorescence detection of artemisinin based on photoluminescent Zn-MOF combined with hemin as catalyst, Spectrochim. Acta A Mol. Biomol. Spectrosc. 289 (2023), 122253.
|
| [118] |
T. Jiang, X. Sun, L. Wei, et al., Electrochemical determination of artemisinin based on signal inhibition for the reduction of hemin, Anal. Bioanal. Chem. 413 (2021) 565-576.
|
| [119] |
C. Wang, X. Luo, W. Lin, et al., Epitaxial self-assembly of Bimetallic MOF heterostructure for fluorescent and colorimetric detection of tetracyclines, Dyes Pigm. 214 (2023), 111229.
|
| [120] |
J. Li, C. Yu, Y. Wu, et al., Novel sensing platform based on gold nanoparticle-aptamer and Fe-metal-organic framework for multiple antibiotic detection and signal amplification, Environ. Int. 125 (2019) 135-141.
|
| [121] |
X. Liu, D. Hong, D. Zhang, et al., Carbon dots-functionalized metal-organic framework for the dual detection of tetracycline and norfloxacin, J. Mol. Struct. 1312 (2024), 138567.
|
| [122] |
J. Chen, F. Xu, Q. Zhang, et al., Tetracycline antibiotics and NH(4)(+) detection by Zn-organic framework fluorescent probe, Analyst 146 (2021) 6883-6892.
|
| [123] |
H. Lai, H. Dai, G. Li, et al., Rapid determination of pesticide residues in fruit and vegetable using Au@AgNPs decorated 2D Ni-MOF nanosheets as efficient surface-enhanced Raman scattering substrate, Sens. Actuat. B Chem. 369 (2022), 132360.
|
| [124] |
N. Duan, Y. Chang, T. Su, et al., Generation of a specific aptamer for accurate detection of sarafloxacin based on fluorescent/colorimetric/SERS triple-readout sensor, Biosens. Bioelectron. 249 (2024), 116022.
|
| [125] |
M. Ye, T. Su, J. Li, et al., Multifunctional Ce-MOF@PdNPs with colorimetric fluorescent electrochemical activity for ultrasensitive and accurate detection of diethylstilbestrol, Nano Res. 17 (2024) 9990-9998.
|
| [126] |
Z. Ji, X. Li, Y. Dong, et al., Immobilization of enzyme with MOF enhances colorimetric performance for fast, sensitive, and economical detection of chloramphenicol, J. Hazard. Mater. 497 (2025), 139617.
|
| [127] |
S. Liu, J. Bai, Y. Huo, et al., A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol, Biosens. Bioelectron. 149 (2020), 111801.
|
| [128] |
X. Chen, S. Xue, Y. Lin, et al., Immobilization of porcine pancreatic lipase onto a metal-organic framework, PPL@MOF: A new platform for efficient ligand discovery from natural herbs, Anal. Chim. Acta 1099 (2020) 94-102.
|
| [129] |
J. Xu, P. Cao, Z. Fan, et al., Rapid screening of lipase inhibitors in Scutellaria baicalensis by using porcine pancreatic lipase immobilized on magnetic core-shell metal-organic frameworks, Molecules 27 (2022), 3475.
|
| [130] |
W. Hu, J. Li, X. Zhang, et al., Integrating sodium cholate-modified MOF hybrid lipase and solubilization of hydrophobic candidates into a step for liganding fishing lipase inhibitors from Nelumbinis Folium, J. Pharm. Biomed. Anal. 251 (2024), 116430.
|
| [131] |
X. Chen, L. Hong, Y. Wu, et al., A dual recognition-based strategy employing Ni-modified metal-organic framework for in situ screening of SIRT1 inhibitors from Chinese herbs, Talanta 274 (2024), 125975.
|
| [132] |
M. Wang, Y. Chen, H. Luo, et al., Construction of enzyme-MOFs composite with carbon dots: A strategy to enhance the activity and increase the growth rate of the enzyme-ZIF-8 composite, Int. J. Biol. Macromol. 291 (2025), 139985.
|
| [133] |
N. Wen, G. Wan, K. Sun, et al., α-Glucosidase immobilization on the metal-organic framework composite membrane for enzyme inhibitor screening, New J. Chem. 48 (2024) 11496-11505.
|
| [134] |
X. Chen, Y. Wu, S. Wu, et al., Paper-based ligand fishing method for rapid screening and real-time capturing of α-glucosidase inhibitors from the Chinese herbs, J. Pharm. Biomed. Anal. 242 (2024), 116037.
|
| [135] |
B. Zhang, Z. Chen, Screening of cathepsin B inhibitors in traditional Chinese medicine by capillary electrophoresis with immobilized enzyme microreactor, J. Pharm. Biomed. Anal. 176 (2019), 112811.
|
| [136] |
H. Hu, Y. Wang, Recent advances in metal-organic frameworks as emerging platforms for immunoassays, Trac Trends Anal. Chem. 171 (2024), 117520.
|
| [137] |
Y. Zhong, L. Yu, Q. He, et al., Bifunctional hybrid enzyme-catalytic metal organic framework reactors for α-glucosidase inhibitor screening, ACS Appl. Mater. Interfaces 11 (2019) 32769-32777.
|
| [138] |
G. Wan, X. Ma, L. Jin, et al., α-glucosidase immobilization on magnetic core-shell metal-organic frameworks for inhibitor screening from traditional Chinese medicines, Colloids Surf. B Biointerfaces 205 (2021), 111847.
|
| [139] |
J. Liu, R. Ma, W. Ha, et al., An MnO2-ZIF-67 immobilized acetylcholinesterase method for acetylcholinesterase activity assay and inhibitor screening from Inula macrophylla based on capillary electrophoresis, Talanta 253 (2023), 124025.
|
| [140] |
F. Wang, M. Liu, X. Niu, et al., Dextran-assisted ultrasonic exfoliation of two-dimensional metal-organic frameworks to evaluate acetylcholinesterase activity and inhibitor screening, Anal. Chim. Acta 1243 (2023), 340815.
|
| [141] |
R. Liu, G. Yi, B. Ji, et al., Metal-organic frameworks-based immobilized enzyme microreactors integrated with capillary electrochromatography for high-efficiency enzyme assay, Anal. Chem. 94 (2022) 6540-6547.
|
| [142] |
W. Li, X. Cui, Z. Chen, The screening of lipase inhibitors based on the metal-organic framework Zeolitic Imidazolate Framework-8-immobilized enzyme microreactor, J. Chromatogr. A 1706 (2023), 464257.
|
| [143] |
E. Wang, H. Zhang, X. Li, et al., Acetylcholinesterase immobilized on MIL-88B-NH2 MOF for rapid screening inhibitors from herbal medicines: Ligand fishing coupled with mass spectrometry, J. Pharm. Biomed. Anal. 265 (2025), 117067.
|
| [144] |
H. Li, H. Zhao, L. Chen, et al., Rapid screening of acetylcholinesterase inhibitors in Qi-Fu-Yin using magnetic metal-organic frameworks immobilized with acetylcholinesterase, Bioorg. Chem. 156 (2025), 108183.
|
| [145] |
C. Wu, N. Zhang, H. Li, et al., Preparation of immobilized xanthine oxidase with magnetic metal-organic framework and its application in screening of active ingredients in traditional Chinese medicine, Mikrochim. Acta 192 (2025), 319.
|