Turn off MathJax
Article Contents
Min Wang, Yanjie Cheng, Manyao Zhang, Shuang Liu, Linyuan Luo, Xiang Han, Jingdi Chen, Zhining Xia, Hongli Luo. Multifunctional MOF composites for advanced drug identification and screening: Innovations, applications and challenges[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101543
Citation: Min Wang, Yanjie Cheng, Manyao Zhang, Shuang Liu, Linyuan Luo, Xiang Han, Jingdi Chen, Zhining Xia, Hongli Luo. Multifunctional MOF composites for advanced drug identification and screening: Innovations, applications and challenges[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101543

Multifunctional MOF composites for advanced drug identification and screening: Innovations, applications and challenges

doi: 10.1016/j.jpha.2025.101543
Funds:

This work was supported by Research Initiation Fund Grants of the Affiliated Hospital of Southwest Medical University, and Applied Basic Research Program of Southwest Medical University (Grant No.: 2024ZKY063).

  • Received Date: Jun. 30, 2025
  • Accepted Date: Dec. 30, 2025
  • Rev Recd Date: Dec. 25, 2025
  • Available Online: Jan. 04, 2026
  • Drug identification and screening are crucial in precision medicine and pharmaceutical research, yet they face challenges such as interference from complex biological matrices, insufficient sensitivity for trace detection, and poor specificity. Multifunctional metal-organic framework (MOF) composites, leveraging their tunable pore structures, high specific surface area, and modular functional integration capabilities, have emerged as promising solutions to address these issues. Despite rapid progress, a systematic review comprehensively consolidating these advances remains absent. This review systematically summarizes the design strategies and performance advantages of four representative types of MOF composites (carbon dots-MOFs, magnetic nanoparticles-MOFs, biomacromolecules-MOFs, covalent organic frameworks-MOFs), along with their applications in multimodal sensing (fluorescence, electrochemical, colorimetric, and surface-enhanced Raman scattering) and high-efficiency screening platforms (offline ligand fishing and immobilized enzyme microreactors). Collective findings demonstrate that rationally engineered multifunctional MOF composites can significantly meet the stringent requirements of drug analysis regarding sensitivity, selectivity, and stability. This review also provides an in-depth discussion of current challenges and future directions in the field, including stability, structure-activity relationships, biocompatibility, and scalable fabrication, aiming to offer design insights for the development of drug identification and screening technologies and to fill the gap in systematic reviews in this area.
  • loading
  • [1]
    Y. Gao, G. Yu, K. Liu, et al., Luminescent mixed-crystal Ln-MOF thin film for the recognition and detection of pharmaceuticals, Sens. Actuat. B Chem. 257 (2018) 931-935.
    [2]
    Y. Peng, L. Gautam, S.W. Hall, The detection of drugs of abuse and pharmaceuticals in drinking water using solid-phase extraction and liquid chromatography-mass spectrometry, Chemosphere 223 (2019) 438-447.
    [3]
    L. Flores, S. Hargrave, A. Clifford, et al., Detection of doping peptides and basic drugs in equine urine using liquid chromatography-mass spectrometry, Drug Test. Anal. 16 (2024) 406-419.
    [4]
    Y. Chen, S. Hong, H.H. Wu, et al., Rapid Formation of nanoclusters for detection of drugs in urine using surface-enhanced Raman spectroscopy, Nanomaterials 11 (2021), 1789.
    [5]
    O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature 378 (1995) 703-706.
    [6]
    Z. Wang, X. Jin, L. Yan, et al., Recent research progress in CDs@MOFs composites: Fabrication, property modulation, and application, Mikrochim. Acta 190 (2022), 28.
    [7]
    F. Rezaei, M. Masrournia, M. Pordel, Simultaneous determination of four aflatoxins using dispersive micro solid phase extraction with magnetic bimetallic MOFs composite as a sorbent and high-performance liquid chromatography with fluorescence detection, Microchem. J. 189 (2023), 108506.
    [8]
    Y. Yin, C. Gao, Q. Xiao, et al., Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform, ACS Appl. Mater. Interfaces 8 (2016) 29052-29061.
    [9]
    C. Guo, F. Duan, S. Zhang, et al., Heterostructured hybrids of metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), J. Mater. Chem. A 10 (2022) 475-507.
    [10]
    Y. Lu, X. Dong, G. Ji, et al., Anchor carbon dots inside NH2-MIL-88B via ship-in-a-bottle strategy for dual signal enhancement in colorimetric-fluorescent sensors, Sens. Actuat. B Chem. 424 (2025), 136877.
    [11]
    Y. He, S. Wang, J. Wang, Fluorescence ratio nanoprobe consisting of a carbon nanodots-quantum dots composite for visual detection of folic acid in dry milk powders, Food Anal. Meth. 14 (2021) 1637-1644.
    [12]
    F. Maya, C. Palomino Cabello, R.M. Frizzarin, et al., Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons, Trac Trends Anal. Chem. 90 (2017) 142-152.
    [13]
    D. Zhou, Q. Liu, M. Chen, et al., The synthesis, application and mechanism of a novel Zr-based magnetic MOFs adsorption material, J. Environ. Chem. Eng. 11 (2023), 109666.
    [14]
    M. Yan, D. Wang, H. Liao, et al., High-efficiency enzyme assay and screening of enzyme-inhibiting nanomaterials using capillary electrophoresis with hierarchically porous metal-organic framework-based immobilized enzyme microreactor, Anal. Chem. 96 (2024) 17300-17309.
    [15]
    L. Dong, Y. Xiong, X. Xiang, et al., Kinetic and stability studies of amino acid metal-organic frameworks for encapsulating of amino acid dehydrogenase, J. Biotechnol. 391 (2024) 50-56.
    [16]
    S. Lin, B. Liang, Z. Zhao, et al., Fabrication of a magnetic metal-organic framework/covalent organic framework composite for simultaneous magnetic solid-phase extraction of seventeen trace quinolones residues in meats, J. Chromatogr. A 1709 (2023), 464403.
    [17]
    N. Zhang, T. Bao, Y. Gao, et al., Growth of MOF@COF on corncob as effective adsorbent for enhancing adsorption of sulfonamides and its mechanism, Appl. Surf. Sci. 580 (2022), 152285.
    [18]
    S. Li, S. Shan, S. Chen, et al., Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review, J. Environ. Chem. Eng. 9 (2021), 105967.
    [19]
    G. Lin, B. Zeng, J. Li, et al., A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism, Chem. Eng. J. 460 (2023), 141710.
    [20]
    C. Wang, X. Liu, T. Yang, et al., An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants, Sep. Purif. Technol. 320 (2023), 124144.
    [21]
    J. Cui, S. Ren, B. Sun, et al., Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges, Coord. Chem. Rev. 370 (2018) 22-41.
    [22]
    L. Geng, J. Huang, M. Fang, et al., Recent progress of the research of metal-organic frameworks-molecularly imprinted polymers (MOFs-MIPs) in food safety detection field, Food Chem. 458 (2024), 140330.
    [23]
    D. Li, N. Li, W. Liu, et al., Highly water-stable MOF-74 synthesized by in-situ trace polymer modification, Polymer 281 (2023), 126112.
    [24]
    Z. Weng, Z. Xie, X. Wu, et al., Water-stable MIL-MOFs developed through a novel sacrifice-protection strategy inspired by butterfly wings' scales for long-term turn-on fluorescence sensing of H(2)S, Small Methods 9 (2025), e2500277.
    [25]
    K.W. Jung, J.H. Kim, J.W. Choi, Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride, Compos. Part B Eng. 187 (2020), 107867.
    [26]
    J. Zhang, S. Xiang, P. Wu, et al., Recent advances in performance improvement of Metal-organic Frameworks to remove antibiotics: Mechanism and evaluation, Sci. Total Environ. 811 (2022), 152351.
    [27]
    L. He, Y. Dong, Y. Zheng, et al., A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light, J. Hazard. Mater. 361 (2019) 85-94.
    [28]
    W. Duan, Z. Zhao, H. An, et al., State-of-the-art and prospects of biomolecules: Incorporation in functional metal-organic frameworks, Top. Curr. Chem. 377 (2019), 34.
    [29]
    P.N. Nomngongo, S.K. Selahle, A. Mpupa, et al., Molecularly imprinted polymers @ metal and covalent organic frameworks: From synthesis to application in analytical chemistry, Trac Trends Anal. Chem. 179 (2024), 117906.
    [30]
    J. Xu, J. Ma, Y. Peng, et al., Applications of metal nanoparticles/metal-organic frameworks composites in sensing field, Chin. Chem. Lett. 34 (2023), 107527.
    [31]
    M. Jiang, J. Liao, C. Liu, et al., Metal-organic frameworks/metal nanoparticles as smart nanosensing interfaces for electrochemical sensors applications: A mini-review, Front. Bioeng. Biotechnol. 11 (2023), 1251713.
    [32]
    F. Yan, X. Wang, Y. Wang, et al., Sensing performance and mechanism of carbon dots encapsulated into metal-organic frameworks, Mikrochim. Acta 189 (2022), 379.
    [33]
    T. Kitao, Y. Zhang, S. Kitagawa, et al., Hybridization of MOFs and polymers, Chem. Soc. Rev. 46 (2017) 3108-3133.
    [34]
    X. Tong, J. Liu, Y. Zhao, et al., Metal-organic framework supported carbon quantum dots as white light-emitting phosphor, Chin. Chem. Lett. 36 (2025), 111058.
    [35]
    S. Wu, C. Chen, J. Chen, et al., Construction of carbon dots/metal-organic framework composite for ratiometric sensing of norfloxacin, J. Mater. Chem. C 10 (2022) 15508-15515.
    [36]
    Y. Zhang, M. Sun, M. Peng, et al., The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: State of the art review, Chin. Chem. Lett. 34 (2023), 107478.
    [37]
    C. Yao, Y. Xu, Z. Xia, A carbon dot-encapsulated UiO-type metal organic framework as a multifunctional fluorescent sensor for temperature, metal ion and pH detection, J. Mater. Chem. C 6 (2018) 4396-4399.
    [38]
    R. Jalili, A. Khataee, M.R. Rashidi, et al., Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione, Sens. Actuat. B Chem. 297 (2019), 126775.
    [39]
    G. Li, X. Wang, J. Zhang, Carbon dots for promoting the growth of ZIF-8 crystals to obtain fluorescent powders and their application for latent fingerprint imaging, CrystEngComm 20 (2018) 5056-5060.
    [40]
    J. Liu, X. Li, Y. Han, et al., Synergetic effect of tetraethylammonium bromide addition on the morphology evolution and enhanced photoluminescence of rare-earth metal-organic frameworks, Inorg. Chem. 59 (2020) 14318-14325.
    [41]
    Z. Gu, D. Li, C. Zheng, et al., MOF-templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications, Angew. Chem. Int. Ed. 56 (2017) 6853-6858.
    [42]
    F. Ke, J. Yuan, C. Zhang, et al., Core-shell nanostructured metal-organic frameworks with encapsulated magnetic nanoparticles for magnetically recyclable catalysis, Coord. Chem. Rev. 518 (2024), 216116.
    [43]
    L. Li, Y. Xu, D. Zhong, et al., CTAB-surface-functionalized magnetic MOF@MOF composite adsorbent for Cr(VI) efficient removal from aqueous solution, Colloids Surf. A Physicochem. Eng. Aspects 586 (2020), 124255.
    [44]
    Y. Ma, X. Jiang, Y. Lv, Recent advances in preparation and applications of magnetic framework composites, Chem. 14 (2019) 3515-3530.
    [45]
    Y. Wu, M. Zhou, S. Li, et al., Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery, Small 10 (2014) 2927-2936.
    [46]
    Q. Yang, Q. Zhao, S. Ren, et al., Fabrication of core-shell Fe3O4@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution, J. Solid State Chem. 244 (2016) 25-30.
    [47]
    L. Chen, X. Ding, J. Huo, et al., Facile synthesis of magnetic macroporous polymer/MOF composites as separable catalysts, J. Mater. Sci. 54 (2019) 370-382.
    [48]
    P. Tan, X. Xie, X. Liu, et al., Fabrication of magnetically responsive HKUST-1/Fe(3)O(4) composites by dry gel conversion for deep desulfurization and denitrogenation, J. Hazard. Mater. 321 (2017) 344-352.
    [49]
    M. Bellusci, P. Guglielmi, A. Masi, et al., Magnetic metal-organic framework composite by fast and facile mechanochemical process, Inorg. Chem. 57 (2018) 1806-1814.
    [50]
    M.E. Silvestre, M. Franzreb, P.G. Weidler, et al., Magnetic cores with porous coatings: Growth of metal-organic frameworks on particles using liquid phase epitaxy, Adv. Funct. Mater. 23 (2013) 1210-1213.
    [51]
    H. Sun, Y. Li, S. Yu, et al., Metal-organic frameworks (MOFs) for biopreservation: From biomacromolecules, living organisms to biological devices, Nano Today 35 (2020), 100985.
    [52]
    Y. Li, H. Chai, Z. Yuan, et al., Metal-organic framework-engineered enzyme/nanozyme composites: Preparation, functionality, and sensing mechanisms, Chem. Eng. J. 496 (2024), 153884.
    [53]
    T.J. Pisklak, M. Macias, D.H. Coutinho, et al., Hybrid materials for immobilization of MP-11 catalyst, Top. Catal. 38 (2006) 269-278.
    [54]
    V. Lykourinou, Y. Chen, X. Wang, et al., Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: A new platform for enzymatic catalysis, J. Am. Chem. Soc. 133 (2011) 10382-10385.
    [55]
    Y.H. Shih, S.H. Lo, N.S. Yang, et al., Trypsin-immobilized metal-organic framework as a biocatalyst in proteomics analysis, ChemPlusChem 77 (2012) 982-986.
    [56]
    Z. Zhang, Y. Li, Z. Yuan, et al., MOF nanozymes: Active sites and sensing applications, Inorg. Chem. Front. 12 (2025) 400-429.
    [57]
    F. Lyu, Y. Zhang, R.N. Zare, et al., One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, Nano Lett. 14 (2014) 5761-5765.
    [58]
    P.A. Sontz, J.B. Bailey, S. Ahn, et al., A metal organic framework with spherical protein nodes: Rational chemical design of 3D protein crystals, J. Am. Chem. Soc. 137 (2015) 11598-11601.
    [59]
    D. Feng, T. Liu, J. Su, et al., Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation, Nat. Commun. 6 (2015), 5979.
    [60]
    P. Li, Q. Chen, T.C. Wang, et al., Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems, Chem 4 (2018) 1022-1034.
    [61]
    S. Gao, J. Hou, Z. Deng, et al., Improving the acidic stability of zeolitic imidazolate frameworks by biofunctional molecules, Chem 5 (2019) 1597-1608.
    [62]
    C. Tudisco, G. Zolubas, B. Seoane, et al., Covalent immobilization of glucose oxidase on amino MOFs via post-synthetic modification, RSC Adv. 6 (2016) 108051-108055.
    [63]
    N.K. Maddigan, A. Tarzia, D.M. Huang, et al., Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8, Chem. Sci. 9 (2018) 4217-4223.
    [64]
    G. Chen, X. Kou, S. Huang, et al., Modulating the biofunctionality of metal-organic-framework-encapsulated enzymes through controllable embedding patterns, Angew. Chem. Int. Ed. 59 (2020) 2867-2874.
    [65]
    W. Liang, H. Xu, F. Carraro, et al., Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks, J. Am. Chem. Soc. 141 (2019) 2348-2355.
    [66]
    J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks: A new class of porous materials, Microporous Mesoporous Mater. 73 (2004) 3-14.
    [67]
    R. Zheng, Y. Yang, C. Yang, et al., Core-shell MOF@COFs used as an adsorbent and matrix for the detection of nonsteroidal anti-inflammatory drugs by MALDI-TOF MS, Mikrochim. Acta 188 (2021), 179.
    [68]
    X. Liu, M. Hu, M. Wang, et al., Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin, Biosens. Bioelectron. 123 (2019) 59-68.
    [69]
    Y. Yao, R. Zhang, T. Liu, et al., Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework, Inorg. Chem. Commun. 101 (2019) 160-163.
    [70]
    M. Zhang, J. Chang, Y. Chen, et al., Controllable synthesis of COFs-based multicomponent nanocomposites from core-shell to yolk-shell and hollow-sphere structure for artificial photosynthesis, Adv. Mater. 33 (2021), e2105002.
    [71]
    L. Garzon-Tovar, J. Perez-Carvajal, A. Yazdi, et al., A MOF@COF composite with enhanced uptake through interfacial pore generation, Angew. Chem. Int. Ed. 58 (2019) 9512-9516.
    [72]
    H. Zhang, Q. Zhu, R. Yuan, et al., Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection, Sens. Actuat. B Chem. 329 (2021), 129144.
    [73]
    Z. Shi, L. Han, Y. Dong, Electrochemical sensor based on reduced graphene oxide paste electrode for detection of gemcitabine as a chemotherapy drug in breast cancer, Alex. Eng. J. 102 (2024) 49-57.
    [74]
    G.T. Tran, T.T.T. Nguyen, T. Van Tran, Synthesis strategies, functionalization, and biomedical applications of MOF/MXene hybrid composites, Coord. Chem. Rev. 544 (2025), 217002.
    [75]
    Y. Liu, H. Zhang, D. Xie, et al., Optimized synthesis of molecularly imprinted polymers coated magnetic UIO-66 MOFs for simultaneous specific removal and determination of multi types of macrolide antibiotics in water, J. Environ. Chem. Eng. 10 (2022), 108094.
    [76]
    Y. Zhang, B. Li, X. Wei, et al., Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework, Mikrochim. Acta 188 (2021), 286.
    [77]
    S. Hu, H. Zhao, M. Liang, et al., Interconversion and functional composites of metal-organic frameworks and hydrogen-bonded organic frameworks, Chem. Commun. 60 (2024) 8140-8152.
    [78]
    M. Xin, Y. Fu, Y. Zhou, et al., The surface-enhanced Raman scattering of all-inorganic perovskite quantum dots of CsPbBr3 encapsulated in a ZIF-8 metal-organic framework, New J. Chem. 44 (2020) 17570-17576.
    [79]
    B. Lerma-Berlanga, N.M. Padial, M. Galbiati, et al., Wrapping up metal-organic framework crystals with carbon nanotubes (adv. funct. mater. 41/2023), Adv. Funct. Mater. 33 (2023), 2370243.
    [80]
    X. Liu, W.P. Lustig, J. Li, Functionalizing luminescent metal-organic frameworks for enhanced photoluminescence, ACS Energy Lett. 5 (2020) 2671-2680.
    [81]
    R. Jalili, M.H. Irani-Nezhad, A. Khataee, et al., A ratiometric fluorescent probe based on carbon dots and gold nanocluster encapsulated metal-organic framework for detection of cephalexin residues in milk, Spectrochim. Acta A Mol. Biomol. Spectrosc. 262 (2021), 120089.
    [82]
    Y. Yu, G. Huang, X. Luo, et al., Carbon dots@Cu metal-organic frameworks hybrids for ratiometric fluorescent determination of pesticide thiophanate-methyl, Mikrochim. Acta 189 (2022), 325.
    [83]
    Q. Wang, X. Qi, H. Chen, et al., Fluorescence determination of chloramphenicol in milk powder using carbon dot decorated silver metal-organic frameworks, Mikrochim. Acta 189 (2022), 272.
    [84]
    J. Chi, Y. Song, L. Feng, A ratiometric fluorescence sensor with different responsive modes based on carbon dots-embedded Tb-MOFs for the determination of norfloxacin and levofloxacin, Talanta 280 (2024), 126763.
    [85]
    M. Wang, M. Zhou, M. Wang, et al., Fabrication of a bifunctional fluorescent chiral composite based on magnetic Fe(3)O(4)/chiral carbon dots@hierarchical porous metal-organic framework, Talanta 266 (2024), 125113.
    [86]
    J. Zhang, Y. Li, L. Teng, et al., A molecularly imprinted fluorescence sensor for sensitive detection of tetracycline using nitrogen-doped carbon dots-embedded zinc-based metal-organic frameworks as signal-amplifying tags, Anal. Chim. Acta 1251 (2023), 341032.
    [87]
    X. Quan, B. Yan, In situ generated Dye@MOF/COF heterostructure for fluorescence detection of chloroquine phosphate and folic acid via different luminescent channels, ACS Appl. Mater. Interfaces 15 (2023) 54634-54642.
    [88]
    Y. Hui, Y. Wei, H. Guo, et al., An artificial neural network model based on CDs@MOF/COF composites for the ultra-sensitive fluorescence detection of glyphosate, Food Chem. 492 (2025), 145361.
    [89]
    S. Tajik, H. Beitollahi, F.G. Nejad, et al., Recent electrochemical applications of metal-organic framework-based materials, Cryst. Growth Des. 20 (2020) 7034-7064.
    [90]
    F. Li, M. Luo, Y. Tan, et al., A dual-mode electrochemical and fluorescence aptasensor based on CDs@Cu/Al-MOF and Ti(3)C(2) for the detection of kanamycin in milk, Mikrochim. Acta 192 (2025), 519.
    [91]
    L. Zhang, C. Qiao, X. Cai, et al., Microcalorimetry-guided pore-microenvironment optimization to improve sensitivity of Ni-MOF electrochemical biosensor for chiral galantamine, Chem. Eng. J. 426 (2021), 130730.
    [92]
    J. Xiao, C. Fan, T. Xu, et al., An electrochemical wearable sensor for levodopa quantification in sweat based on a metal-Organic framework/graphene oxide composite with integrated enzymes, Sens. Actuat. B Chem. 359 (2022), 131586.
    [93]
    P Li, S Zhang, X Yang, et al., Integrating Au@MOF@COF nanocomposites for electrochemical aptasensing of trace oxytetracycline, Nano Res. 18 (2025), 94907590.
    [94]
    R. Bhardwaj, R.P. Rao, I. Mukherjee, et al., Layered construction of nano immuno-hybrid embedded MOF as an electrochemical sensor for rapid quantification of total pesticides load in vegetable extract, J. Electroanal. Chem. 873 (2020), 114386.
    [95]
    M. Yang, Z. Sun, H. Jin, et al., Sulfur nanoparticle-encapsulated MOF and boron nanosheet-ferrocene complex modified electrode platform for ratiometric electrochemical sensing of adriamycin and real-time monitoring of drug release, Microchem. J. 177 (2022), 107319.
    [96]
    K. Fu, R. Zhang, J. He, et al., Sensitive detection of ketamine with an electrochemical sensor based on UV-induced polymerized molecularly imprinted membranes at graphene and MOFs modified electrode, Biosens. Bioelectron. 143 (2019), 111636.
    [97]
    D. Duan, J. Wang, P. Han, et al., Dual-monomer molecularly imprinted electrochemical sensor based on amino-functionalized MOFs and graphene for trace determination of taurine, Mikrochim. Acta 190 (2023), 162.
    [98]
    W. Yan, X. Wang, X. Gao, et al., A smart fluorescent colorimetric dual-response sensing for the determination of tetracycline antibiotics, J. Photochem. Photobiol. A Chem. 447 (2024), 115217.
    [99]
    X. Luo, G. Huang, C. Bai, et al., A versatile platform for colorimetric, fluorescence and photothermal multi-mode glyphosate sensing by carbon dots anchoring ferrocene metal-organic framework nanosheet, J. Hazard. Mater. 443 (2023), 130277.
    [100]
    Y. Shen, L. Liu, T. Li, et al., An ingenious integrated metal-organic frameworks-based ratiometric sensing platform for efficient, sensitive and real-time detection of tetracyclines, Food Chem. 472 (2025), 142892.
    [101]
    M. Liu, Y. Liu, J. Xiao, et al., Colorimetric-ratiometric fluorescence sensors dual-mode detection of ofloxacin based on Fe-Ni bimetallic metal-organic frameworks and carbon dots, Food Control 169 (2025), 110989.
    [102]
    P. Kukkar, D. Kukkar, S.A. Younis, et al., Colorimetric biosensing of organophosphate pesticides using enzymatic nanoreactor built on zeolitic imdiazolate-8, Microchem. J. 166 (2021), 106242.
    [103]
    H. Chai, Y. Li, K. Yu, et al., Two-site enhanced porphyrinic metal-organic framework nanozymes and nano-/bioenzyme confined catalysis for colorimetric/chemiluminescent dual-mode visual biosensing, Anal. Chem. 95 (2023) 16383-16391.
    [104]
    X. He, Y. Wang, Q. Xue, et al., Molecularly imprinted MOF nanozymes: Demonstration of smartphone-integrated dual-mode platform for ratiometric fluorescent/colorimetric detection of chloramphenicol, Food Chem. X 26 (2025), 102322.
    [105]
    L. Zhang, M. Shen, Z. Li, et al., A dual-mode sensor based on surface molecularly imprinted metal-organic framework for the highly accurate and selective detection of tetracycline, Sens. Actuat. B Chem. 432 (2025), 137445.
    [106]
    C. Yuan, L. Sun, Z. Wang, et al., Prussian blue nanosphere/Fe-metal organic frameworks/Ce nanocomposite as a colorimetric sensing platform for direct detection in organophosphorus pesticides in fetal bovine serum, Langmuir 41 (2025) 11046-11055.
    [107]
    M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163-166.
    [108]
    Y. Zhao, X. Hu, C. Li, et al., Magnetic COF on MOF heterojunction assisted surface-enhanced Raman spectroscopy for 17β-estradiol analysis, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 341 (2025), 126434.
    [109]
    J. Feng, P. Zhou, C. Qin, et al., Magnetic solid-phase extraction-based surface-enhanced Raman spectroscopy for label-free therapeutic drug monitoring of carbamazepine and clozapine in human serum, Spectrochim. Acta A Mol. Biomol. Spectrosc. 310 (2024), 123924.
    [110]
    R. Chen, Q. Chen, Y. Wang, et al., Ultrasensitive SERS substrate for label-free therapeutic drug monitoring of chlorpromazine hydrochloride and aminophylline in human serum, Anal. Bioanal. Chem. 415 (2023) 1803-1815.
    [111]
    Q. Zhang, S. Mi, Y. Xie, et al., Core-shell Au@MIL-100 (Fe) as an enhanced substrate for flunixin meglumine ultra-sensitive detection, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 287 (2023), 122018.
    [112]
    O. Guselnikova, H. Lim, J. Na, et al., Enantioselective SERS sensing of pseudoephedrine in blood plasma biomatrix by hierarchical mesoporous Au films coated with a homochiral MOF, Biosens. Bioelectron. 180 (2021), 113109.
    [113]
    Y. Zhao, X. Wang, Y. Chen, et al., Electrochemical synthesis of Co/Ni bimetal-organic frameworks: A high-performance SERS platform for detection of tetracycline, Spectrochim. Acta A Mol. Biomol. Spectrosc. 285 (2023), 121843.
    [114]
    S. Zhi, A. Liang, Z. Jiang, A novel nanogold sol SERS/RRS dual-mode assay for trace imidacloprid with Ti3C2Tx@Ti-MOFs/peptide bifunctional nanoprobe, J. Environ. Chem. Eng. 11 (2023), 111276.
    [115]
    W. Xiu, P. Zhao, Y. Pan, et al., Flexible SERS strip based on HKUST-1(cu)/biomimetic antibodies composite multilayer for trace determination of ethephon, Anal. Chim. Acta 1253 (2023), 341097.
    [116]
    R. Zhang, Q. Zhang, J. Yang, et al., Ultrasensitive detection strategy for CAP by molecularity imprinted SERS sensor based on multiple synergistic enhancement of SiO(2)@AuAg with MOFs@Au signal carrier, Food Chem. 445 (2024), 138717.
    [117]
    K. Sun, T. Deng, J. Sun, et al., Ratiometric fluorescence detection of artemisinin based on photoluminescent Zn-MOF combined with hemin as catalyst, Spectrochim. Acta A Mol. Biomol. Spectrosc. 289 (2023), 122253.
    [118]
    T. Jiang, X. Sun, L. Wei, et al., Electrochemical determination of artemisinin based on signal inhibition for the reduction of hemin, Anal. Bioanal. Chem. 413 (2021) 565-576.
    [119]
    C. Wang, X. Luo, W. Lin, et al., Epitaxial self-assembly of Bimetallic MOF heterostructure for fluorescent and colorimetric detection of tetracyclines, Dyes Pigm. 214 (2023), 111229.
    [120]
    J. Li, C. Yu, Y. Wu, et al., Novel sensing platform based on gold nanoparticle-aptamer and Fe-metal-organic framework for multiple antibiotic detection and signal amplification, Environ. Int. 125 (2019) 135-141.
    [121]
    X. Liu, D. Hong, D. Zhang, et al., Carbon dots-functionalized metal-organic framework for the dual detection of tetracycline and norfloxacin, J. Mol. Struct. 1312 (2024), 138567.
    [122]
    J. Chen, F. Xu, Q. Zhang, et al., Tetracycline antibiotics and NH(4)(+) detection by Zn-organic framework fluorescent probe, Analyst 146 (2021) 6883-6892.
    [123]
    H. Lai, H. Dai, G. Li, et al., Rapid determination of pesticide residues in fruit and vegetable using Au@AgNPs decorated 2D Ni-MOF nanosheets as efficient surface-enhanced Raman scattering substrate, Sens. Actuat. B Chem. 369 (2022), 132360.
    [124]
    N. Duan, Y. Chang, T. Su, et al., Generation of a specific aptamer for accurate detection of sarafloxacin based on fluorescent/colorimetric/SERS triple-readout sensor, Biosens. Bioelectron. 249 (2024), 116022.
    [125]
    M. Ye, T. Su, J. Li, et al., Multifunctional Ce-MOF@PdNPs with colorimetric fluorescent electrochemical activity for ultrasensitive and accurate detection of diethylstilbestrol, Nano Res. 17 (2024) 9990-9998.
    [126]
    Z. Ji, X. Li, Y. Dong, et al., Immobilization of enzyme with MOF enhances colorimetric performance for fast, sensitive, and economical detection of chloramphenicol, J. Hazard. Mater. 497 (2025), 139617.
    [127]
    S. Liu, J. Bai, Y. Huo, et al., A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol, Biosens. Bioelectron. 149 (2020), 111801.
    [128]
    X. Chen, S. Xue, Y. Lin, et al., Immobilization of porcine pancreatic lipase onto a metal-organic framework, PPL@MOF: A new platform for efficient ligand discovery from natural herbs, Anal. Chim. Acta 1099 (2020) 94-102.
    [129]
    J. Xu, P. Cao, Z. Fan, et al., Rapid screening of lipase inhibitors in Scutellaria baicalensis by using porcine pancreatic lipase immobilized on magnetic core-shell metal-organic frameworks, Molecules 27 (2022), 3475.
    [130]
    W. Hu, J. Li, X. Zhang, et al., Integrating sodium cholate-modified MOF hybrid lipase and solubilization of hydrophobic candidates into a step for liganding fishing lipase inhibitors from Nelumbinis Folium, J. Pharm. Biomed. Anal. 251 (2024), 116430.
    [131]
    X. Chen, L. Hong, Y. Wu, et al., A dual recognition-based strategy employing Ni-modified metal-organic framework for in situ screening of SIRT1 inhibitors from Chinese herbs, Talanta 274 (2024), 125975.
    [132]
    M. Wang, Y. Chen, H. Luo, et al., Construction of enzyme-MOFs composite with carbon dots: A strategy to enhance the activity and increase the growth rate of the enzyme-ZIF-8 composite, Int. J. Biol. Macromol. 291 (2025), 139985.
    [133]
    N. Wen, G. Wan, K. Sun, et al., α-Glucosidase immobilization on the metal-organic framework composite membrane for enzyme inhibitor screening, New J. Chem. 48 (2024) 11496-11505.
    [134]
    X. Chen, Y. Wu, S. Wu, et al., Paper-based ligand fishing method for rapid screening and real-time capturing of α-glucosidase inhibitors from the Chinese herbs, J. Pharm. Biomed. Anal. 242 (2024), 116037.
    [135]
    B. Zhang, Z. Chen, Screening of cathepsin B inhibitors in traditional Chinese medicine by capillary electrophoresis with immobilized enzyme microreactor, J. Pharm. Biomed. Anal. 176 (2019), 112811.
    [136]
    H. Hu, Y. Wang, Recent advances in metal-organic frameworks as emerging platforms for immunoassays, Trac Trends Anal. Chem. 171 (2024), 117520.
    [137]
    Y. Zhong, L. Yu, Q. He, et al., Bifunctional hybrid enzyme-catalytic metal organic framework reactors for α-glucosidase inhibitor screening, ACS Appl. Mater. Interfaces 11 (2019) 32769-32777.
    [138]
    G. Wan, X. Ma, L. Jin, et al., α-glucosidase immobilization on magnetic core-shell metal-organic frameworks for inhibitor screening from traditional Chinese medicines, Colloids Surf. B Biointerfaces 205 (2021), 111847.
    [139]
    J. Liu, R. Ma, W. Ha, et al., An MnO2-ZIF-67 immobilized acetylcholinesterase method for acetylcholinesterase activity assay and inhibitor screening from Inula macrophylla based on capillary electrophoresis, Talanta 253 (2023), 124025.
    [140]
    F. Wang, M. Liu, X. Niu, et al., Dextran-assisted ultrasonic exfoliation of two-dimensional metal-organic frameworks to evaluate acetylcholinesterase activity and inhibitor screening, Anal. Chim. Acta 1243 (2023), 340815.
    [141]
    R. Liu, G. Yi, B. Ji, et al., Metal-organic frameworks-based immobilized enzyme microreactors integrated with capillary electrochromatography for high-efficiency enzyme assay, Anal. Chem. 94 (2022) 6540-6547.
    [142]
    W. Li, X. Cui, Z. Chen, The screening of lipase inhibitors based on the metal-organic framework Zeolitic Imidazolate Framework-8-immobilized enzyme microreactor, J. Chromatogr. A 1706 (2023), 464257.
    [143]
    E. Wang, H. Zhang, X. Li, et al., Acetylcholinesterase immobilized on MIL-88B-NH2 MOF for rapid screening inhibitors from herbal medicines: Ligand fishing coupled with mass spectrometry, J. Pharm. Biomed. Anal. 265 (2025), 117067.
    [144]
    H. Li, H. Zhao, L. Chen, et al., Rapid screening of acetylcholinesterase inhibitors in Qi-Fu-Yin using magnetic metal-organic frameworks immobilized with acetylcholinesterase, Bioorg. Chem. 156 (2025), 108183.
    [145]
    C. Wu, N. Zhang, H. Li, et al., Preparation of immobilized xanthine oxidase with magnetic metal-organic framework and its application in screening of active ingredients in traditional Chinese medicine, Mikrochim. Acta 192 (2025), 319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (46) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return