Turn off MathJax
Article Contents
Xiangwei Li, Ting Xu, Shaochuang Wang, Long Ma, Xiangyou Yu, Yi Wang, Linlin Bai, Jun Cao, Zuyi Zhao, Meiting Du, Hao Wen, Kun Wu. Elucidation of ACAT1's role in hepatic ischemia-reperfusion injury: TFEB-mediated mitophagy and ferroptosis modulation as therapeutic targets[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101542
Citation: Xiangwei Li, Ting Xu, Shaochuang Wang, Long Ma, Xiangyou Yu, Yi Wang, Linlin Bai, Jun Cao, Zuyi Zhao, Meiting Du, Hao Wen, Kun Wu. Elucidation of ACAT1's role in hepatic ischemia-reperfusion injury: TFEB-mediated mitophagy and ferroptosis modulation as therapeutic targets[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101542

Elucidation of ACAT1's role in hepatic ischemia-reperfusion injury: TFEB-mediated mitophagy and ferroptosis modulation as therapeutic targets

doi: 10.1016/j.jpha.2025.101542
Funds:

This study was supported by National Natural Science Foundation of China (Grant No.: 82360380),and Huai’an Science and Technology Board Natural science research projects (Grant No.: HAB202304).

  • Received Date: Apr. 15, 2025
  • Accepted Date: Dec. 30, 2025
  • Rev Recd Date: Dec. 29, 2025
  • Available Online: Jan. 04, 2026
  • Hepatic ischemia-reperfusion injury (HIRI) remains a critical clinical challenge, significantly impacting the success of liver transplantation and postoperative recovery following resection. The study investigated the roles of mitochondrial acetyl-CoA acetyltransferase1 (ACAT1) and transcription factor EB (TFEB) in orchestrating cellular responses to HIRI, specifically focusing on mitophagy and ferroptosis pathways. Using a combination of in vivo models and cellular molecular techniques,we found that ACAT1 plays a pivotal hepatoprotective role.By fostering TFEB-mediated mitophagic processes and curtailing ferroptosis, ACAT1 emerges as a critical moderator of cellular resilience against oxidative stresses induced by reperfusion. These findings elucidate the molecular interplay underlying HIRI and identify ACAT1 as a potential therapeutic target for mitigating hepatic damage and enhancing patient outcomes in liver surgery and transplantation scenarios.
  • loading
  • [1]
    Z. Yao, N. Liu, H. Lin, Y. Zhou, Proanthocyanidin Alleviates Liver Ischemia/Reperfusion Injury by Suppressing Autophagy and Apoptosis via the PPARα/PGC1α Signaling Pathway, J Clin Transl Hepatol. 000 (2023) 000-000. https://doi.org/10.14218/jcth.2023.00071.
    [2]
    M. Fang,J. Xu, D. Wu, C. Zhong. Vitamin D receptor alleviates hepatic ischemia and reperfucion injury by mediating endoplasmic reticulum stress through autophagy,J Physiol Pharmaco. 5 (2021) 778-784.https://doi.org/10.26402/jpp.2021.5.12.
    [3]
    R. G. Bardallo, A. Panisello-Rosello, S. Sanchez-Nuno, N. Alva, J. Rosello-Catafau, T. Carbonell, Nrf2 and oxidative stress in liver ischemia/reperfusion injury, The FEBS Journal. 289 (2022) 5463-5479. https://doi.org/10.1111/febs.16336.
    [4]
    L. Gao, F. Qiu, H. Cao, H. Li, G. Dai, T. Ma, Y. Gong, W. Luo, D. Zhu, Z. Qiu, P. Zhu, S. Chu, H. Yang, Z. Liu, Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine, Theranostics. 13 (2023) 685-703. https://doi.org/10.7150/thno.73568.
    [5]
    H. Geng, J. Chen, K. Tu, H. Tuo, Q. Wu, J. Guo, Q. Zhu, Z. Zhang, Y. Zhang, D. Huang, M. Zhang, Q. Xu, Carbon dot nanozymes as free radicals scavengers for the management of hepatic ischemia-reperfusion injury by regulating the liver inflammatory network and inhibiting apoptosis, J Nanobiotechnol. 21 (2023). https://doi.org/10.1186/s12951-023-02234-1.
    [6]
    X. Ma, B. Pan, L. Wang, Z. Feng, C. Peng, Network pharmacology and molecular docking elucidate potential mechanisms of Eucommia ulmoides in hepatic ischemia-reperfusion injury, Sci Rep. 13 (2023). https://doi.org/10.1038/s41598-023-47918-8.
    [7]
    K.E. Havranek, L.A. White, J.-M. Lanchy, J.S. Lodmell, Transcriptome profiling in Rift Valley fever virus infected cells reveals modified transcriptional and alternative splicing programs, PLoS ONE. 14 (2019) e0217497. https://doi.org/10.1371/journal.pone.0217497.
    [8]
    X. Chang, Y. Zheng, K. Xu, Single-Cell RNA Sequencing: Technological Progress and Biomedical Application in Cancer Research, Mol Biotechnol. 66 (2023) 1497-1519. https://doi.org/10.1007/s12033-023-00777-0.
    [9]
    S. Huang, W. Shi, S. Li, Q. Fan, C. Yang, J. Cao, L. Wu, Advanced sequencing-based high-throughput and long-read single-cell transcriptome analysis, Lab Chip. 24 (2024) 2601-2621. https://doi.org/10.1039/d4lc00105b.
    [10]
    D. Shin, J. Choi, J.H. Lee, D. Bang, Onepot-Seq: capturing single-cell transcriptomes simultaneously in a continuous medium via transient localization of mRNA, Nucleic Acids Research. 50 (2022) 12621-12635. https://doi.org/10.1093/nar/gkac665.
    [11]
    C. Homberger, R.J. Hayward, L. Barquist, J. Vogel, Improved Bacterial Single-Cell RNA-Seq through Automated MATQ-Seq and Cas9-Based Removal of rRNA Reads, MBio. 14 (2023). https://doi.org/10.1128/mbio.03557-22.
    [12]
    S. Delaunay, G. Pascual, B. Feng, K. Klann, M. Behm, A. Hotz-Wagenblatt, K. Richter, K. Zaoui, E. Herpel, C. Munch, S. Dietmann, J. Hess, S.A. Benitah, M. Frye, Mitochondrial RNA modifications shape metabolic plasticity in metastasis, Nature. 607 (2022) 593-603. https://doi.org/10.1038/s41586-022-04898-5.
    [13]
    X. Chen, R. Kang, G. Kroemer, D. Tang, Organelle-specific regulation of ferroptosis, Cell Death Differ. 28 (2021) 2843-2856. https://doi.org/10.1038/s41418-021-00859-z.
    [14]
    C. Elsholtz, B. Klahn, G.F. Lipnik, Large subsets of $$\mathbb {Z}_mˆn$$ without arithmetic progressions, Des. Codes Cryptogr. 91 (2022) 1443-1452. https://doi.org/10.1007/s10623-022-01145-w.
    [15]
    M. Onishi, K. Yamano, M. Sato, N. Matsuda, K. Okamoto, Molecular mechanisms and physiological functions of mitophagy, The EMBO Journal. 40 (2021). https://doi.org/10.15252/embj.2020104705.
    [16]
    Z. Zeng, X. Zhou, Y. Wang, H. Cao, J. Guo, P. Wang, Y. Yang, Y. Wang, Mitophagy-A New Target of Bone Disease, Biomolecules. 12 (2022) 1420. https://doi.org/10.3390/biom12101420.
    [17]
    F. Yan, B. Mutembei, T. Valerio, G. Gunay, J.-H. Ha, Q. Zhang, C. Wang, E.R. Selvaraj Mercyshalinie, Z.A. Alhajeri, F. Zhang, L.E. Dockery, X. Li, R. Liu, D.N. Dhanasekaran, H. Acar, W.R. Chen, Q. Tang, Optical coherence tomography for multicellular tumor spheroid category recognition and drug screening classification via multi-spatial-superficial-parameter and machine learning, Biomed. Opt. Express. 15 (2024) 2014. https://doi.org/10.1364/boe.514079.
    [18]
    I. Pal, N.K. Pathak, S. Majumdar, G. Lepcha, A. Dey, S.K. Yatirajula, U. Tripathy, B. Dey, Comparative Vision of Nonlinear Thermo-Optical Features and Third-Order Susceptibility of Mechanically Flexible Metallosupramolecular Self-Repairing Networks with Isomeric Organic Acids, Inorg. Chem. 63 (2024) 12003-12016. https://doi.org/10.1021/acs.inorgchem.4c00763.
    [19]
    P. Puska, M. Daube, Impact assessment of the WHO Framework Convention on Tobacco Control: introduction, general findings and discussion, Tob Control. 28 (2018) s81-s83. https://doi.org/10.1136/tobaccocontrol-2018-054429.
    [20]
    Y. Xu, W. Wan, Acetylation in the regulation of autophagy, Autophagy. 19 (2022) 379-387. https://doi.org/10.1080/15548627.2022.2062112.
    [21]
    X. Sun, Y. Shu, G. Ye, C. Wu, M. Xu, R. Gao, D. Huang, J. Zhang, Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy, Acta Pharmaceutica Sinica B. 12 (2022) 838-852. https://doi.org/10.1016/j.apsb.2021.07.003.
    [22]
    W.-I. Liao, D. Maruyama, F. Kianian, C. Tat, X. Tian, J. Hellman, J.M. Dodd-o, A. Prakash, A Mouse Model of Orotracheal Intubation and Ventilated Lung Ischemia Reperfusion Surgery, JoVE. (2022). https://doi.org/10.3791/64383.
    [23]
    Z. Yang, Q. Zi, K. Xu, C. Wang, Q. Chi, Development of a macrophages-related 4-gene signature and nomogram for the overall survival prediction of hepatocellular carcinoma based on WGCNA and LASSO algorithm, International Immunopharmacology. 90 (2021) 107238. https://doi.org/10.1016/j.intimp.2020.107238.
    [24]
    X. Wu, K. Qin, C.D. Iroegbu, K. Xiang, J. Peng, J. Guo, J. Yang, C. Fan, Genetic analysis of potential biomarkers and therapeutic targets in ferroptosis from coronary artery disease, J Cellular Molecular Medi. 26 (2022) 2177-2190. https://doi.org/10.1111/jcmm.17239.
    [25]
    K. Tang, Y. Zheng, G. Hu, Y. Xin, K. Li, C. Zhang, X. Chen, B. Zhang, X. Li, B. Hu, Q. Jia, Y. Zheng, M. Yang, Y. Tan, Local soft niches in mechanically heterogeneous primary tumors promote brain metastasis via mechanotransduction-mediated HDAC3 activity, Sci. Adv. 11 (2025). https://doi.org/10.1126/sciadv.adq2881.
    [26]
    Y. Sun, Y.-M. Yang, Y.-Y. Hu, L. Ouyang, Z.-H. Sun, X.-F. Yin, N. Li, Q.-Y. He, Y. Wang, Inhibition of nuclear deacetylase Sirtuin-1 induces mitochondrial acetylation and calcium overload leading to cell death, Redox Biology. 53 (2022) 102334. https://doi.org/10.1016/j.redox.2022.102334.
    [27]
    W. Li, S. Zhang, J. Liu, Y. Liu, Q. Liang, Vitamin K2 stimulates Mc3T3-E1 osteoblast differentiation and mineralization through autophagy induction, Mol Med Report. (2019). https://doi.org/10.3892/mmr.2019.10040.
    [28]
    L. Farrand, J.Y. Kim, A. Im-Aram, J.-Y. Suh, H.J. Lee, B.K. Tsang, An Improved Quantitative Approach for the Assessment of Mitochondrial Fragmentation in Chemoresistant Ovarian Cancer Cells, PLoS ONE. 8 (2013) e74008. https://doi.org/10.1371/journal.pone.0074008.
    [29]
    C. Brooks, Q. Wei, S.-G. Cho, Z. Dong, Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models, J. Clin. Invest. 119 (2009) 1275-1285. https://doi.org/10.1172/jci37829.
    [30]
    L. Gu, Y. Zhu, X. Lin, X. Tan, B. Lu, Y. Li, Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis, Oncogene. 39 (2020) 2437-2449. https://doi.org/10.1038/s41388-020-1156-0.
    [31]
    G. Zhang, R. Huang, H. Zhao, Y. Xia, H. Huang, M. Qian, Y. Fu, Y. Cui, ACAT1-mediated METTL3 acetylation inhibits cell migration and invasion in triple negative breast cancer, Genes Immun. 24 (2023) 99-107. https://doi.org/10.1038/s41435-023-00202-1.
    [32]
    T.D. Evans, S.-J. Jeong, X. Zhang, I. Sergin, B. Razani, TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis, Autophagy. 14 (2018) 724-726. https://doi.org/10.1080/15548627.2018.1434373.
    [33]
    G. Napolitano, A. Ballabio, TFEB at a glance, Journal of Cell Science. 129 (2016) 2475-2481. https://doi.org/10.1242/jcs.146365.
    [34]
    L. Zhu, Y. Yuan, L. Yuan, L. Li, F. Liu, J. Liu, Y. Chen, Y. Lu, J. Cheng, Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury, Theranostics. 10 (2020) 5829-5844. https://doi.org/10.7150/thno.44051.
    [35]
    G. Di Marco, F. Vallese, B. Jourde, C. Bergsdorf, M. Sturlese, A. De Mario, V. Techer-Etienne, D. Haasen, B. Oberhauser, S. Schleeger, G. Minetti, S. Moro, R. Rizzuto, D. De Stefani, M. Fornaro, C. Mammucari, A High-Throughput Screening Identifies MICU1 Targeting Compounds, Cell Reports. 30 (2020) 2321-2331.e6. https://doi.org/10.1016/j.celrep.2020.01.081.
    [36]
    L. Li, H.J. Friedrichsen, S. Andrews, S. Picaud, L. Volpon, K. Ngeow, G. Berridge, R. Fischer, K.L.B. Borden, P. Filippakopoulos, C.R. Goding, A TFEB nuclear export signal integrates amino acid supply and glucose availability, Nat Commun. 9 (2018). https://doi.org/10.1038/s41467-018-04849-7.
    [37]
    H.-P. Wang, C.-H. Chen, B.-K. Wei, Y.-L. Miao, H.-F. Huang, Z. Zeng, Integrative analyses of genes related to liver ischemia reperfusion injury, Hereditas. 159 (2022). https://doi.org/10.1186/s41065-022-00255-8.
    [38]
    J. Zhang, T. Wang, J. Bi, M. Ke, Y. Ren, M. Wang, Z. Du, W. Liu, L. Hu, X. Zhang, X. Liu, B. Wang, Z. Wu, Y. Lv, L. Meng, R. Wu, Overexpression of HSF2 binding protein suppresses endoplasmic reticulum stress via regulating subcellular localization of CDC73 in hepatocytes, Cell Biosci. 13 (2023). https://doi.org/10.1186/s13578-023-01010-w.
    [39]
    P. Alugoju, V.K.D. Krishna Swamy, N.V.A. Anthikapalli, T. Tencomnao, Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review, Critical Reviews in Food Science and Nutrition. 63 (2022) 10709-10774. https://doi.org/10.1080/10408398.2022.2084600.
    [40]
    B. Mao, W. Yuan, F. Wu, Y. Yan, B. Wang, Autophagy in hepatic ischemia-reperfusion injury, Cell Death Discov. 9 (2023). https://doi.org/10.1038/s41420-023-01387-0.
    [41]
    X. Lin, Y. Zhou, L. Ye, B. Wang, Y. Jiao, W. Yu, P. Gao, L. Yang, A bibliometric and visualized analysis of hepatic ischemia-reperfusion injury (HIRI) from 2002 to 2021, Heliyon. 9 (2023) e22644. https://doi.org/10.1016/j.heliyon.2023.e22644.
    [42]
    T. Ma, H. Zhang, T. Li, J. Bai, Z. Wu, T. Cai, Y. Chen, X. Xia, Y. Du, W. Fu, Protective effect of pinocembrin from Penthorum chinense Pursh on hepatic ischemia reperfusion injury via regulating HMGB1/TLR4 signal pathway, Phytotherapy Research. 37 (2022) 181-194. https://doi.org/10.1002/ptr.7605.
    [43]
    D. Wendisch, O. Dietrich, T. Mari, S. von Stillfried, I.L. Ibarra, M. Mittermaier, C. Mache, R.L. Chua, R. Knoll, S. Timm, S. Brumhard, T. Krammer, H. Zauber, A.L. Hiller, A. Pascual-Reguant, R. Mothes, R.D. Bulow, J. Schulze, A.M. Leipold, S. Djudjaj, F. Erhard, R. Geffers, F. Pott, J. Kazmierski, J. Radke, P. Pergantis, K. Bassler, C. Conrad, A.C. Aschenbrenner, B. Sawitzki, M. Landthaler, E. Wyler, D. Horst, S. Hippenstiel, A. Hocke, F.L. Heppner, A. Uhrig, C. Garcia, F. Machleidt, S. Herold, S. Elezkurtaj, C. Thibeault, M. Witzenrath, C. Cochain, N. Suttorp, C. Drosten, C. Goffinet, F. Kurth, J.L. Schultze, H. Radbruch, M. Ochs, R. Eils, H. Muller-Redetzky, A.E. Hauser, M.D. Luecken, F.J. Theis, C. Conrad, T. Wolff, P. Boor, M. Selbach, A.-E. Saliba, L.E. Sander, SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis, Cell. 184 (2021) 6243-6261.e27. https://doi.org/10.1016/j.cell.2021.11.033.
    [44]
    A. Zernecke, F. Erhard, T. Weinberger, C. Schulz, K. Ley, A.-E. Saliba, C. Cochain, Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis, Cardiovascular Research. 119 (2022) 1676-1689. https://doi.org/10.1093/cvr/cvac161.
    [45]
    Y. Wang, Y. Huang, J. Liu, J. Zhang, M. Xu, Z. You, C. Peng, Z. Gong, W. Liu, Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB, EMBO Reports. 21 (2019). https://doi.org/10.15252/embr.201948335.
    [46]
    J. Bao, L. Zheng, Q. Zhang, X. Li, X. Zhang, Z. Li, X. Bai, Z. Zhang, W. Huo, X. Zhao, S. Shang, Q. Wang, C. Zhang, J. Ji, Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia, Protein Cell. 7 (2016) 417-433. https://doi.org/10.1007/s13238-016-0269-2.
    [47]
    C. Guo, Z. You, H. Shi, Y. Sun, X. Du, G. Palacios, C. Guy, S. Yuan, N.M. Chapman, S.A. Lim, X. Sun, J. Saravia, S. Rankin, Y. Dhungana, H. Chi, SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity, Nature. 620 (2023) 200-208. https://doi.org/10.1038/s41586-023-06299-8.
    [48]
    B. Franco-Juarez, C. Coronel-Cruz, B. Hernandez-Ochoa, S. Gomez-Manzo, N. Cardenas-Rodriguez, R. Arreguin-Espinosa, C. Bandala, L.M. Canseco-Avila, D. Ortega-Cuellar, TFEB; Beyond Its Role as an Autophagy and Lysosomes Regulator, Cells. 11 (2022) 3153. https://doi.org/10.3390/cells11193153.
    [49]
    gianni, The important role of TFEB in autophagy-lysosomal pathway and autophagy-related diseases: a systematic review, European Review. (2021). https://doi.org/10.26355/eurrev_202102_24875.
    [50]
    J. Li, D. Yu, C. He, Q. Yu, Z. Huo, Y. Zhang, S. Zhang, KLF6 alleviates hepatic ischemia-reperfusion injury by inhibiting autophagy, Cell Death Dis. 14 (2023). https://doi.org/10.1038/s41419-023-05872-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (46) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return