| Citation: | Muzamil Ahmad Shah, Sharon Nagpal, S. Gokul Shankar, Antony V. Samrot, Alok Kumar Mishra. Lipid-mediated regulation of epithelial-mesenchymal transition in colorectal cancer[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101541 |
| [1] |
H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin 71 (2021) 209-249.
|
| [2] |
F.A. Zeineddine, M.A. Zeineddine, A. Yousef, et al., Survival improvement for patients with metastatic colorectal cancer over twenty years, NPJ Precis. Oncol. 7 (2023), 16.
|
| [3] |
H. Naderi-Meshkin, N. Ahmadiankia, Cancer metastasis versus stem cell homing: Role of platelets, J. Cell. Physiol. 233 (2018) 9167-9178.
|
| [4] |
M. Bagheri, M. Fazli, S. Saeednia, et al., Pomegranate peel extract inhibits expression of β-catenin, epithelial mesenchymal transition, and metastasis in triple negative breast cancer cells, Cell. Mol. Biol. 64 (2018) 86-91.
|
| [5] |
E. Batlle, E. Sancho, C. Franci, et al., The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells, Nat. Cell Biol. 2 (2000) 84-89.
|
| [6] |
L. Mouchiroud, L.J. Eichner, R.J. Shaw, et al., Transcriptional coregulators: Fine-tuning metabolism, Cell Metab. 20 (2014) 26-40.
|
| [7] |
Y.D. Shaul, E. Freinkman, W.C. Comb, et al., Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition, Cell 158 (2014) 1094-1109.
|
| [8] |
I. Kahouli, C. Tomaro-Duchesneau, S. Prakash, Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives, J. Med. Microbiol. 62 (2013) 1107-1123.
|
| [9] |
M. Molska, J. Regula, Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer, Nutrients 11 (2019), 2453.
|
| [10] |
G. D’Argenio, G. Mazzacca, Short-chain fatty acid in the human colon,. Advances in Nutrition and Cancer 2. Springer US, (1999), pp 49–158.
|
| [11] |
T. Brabletz, A. Jung, S. Spaderna, et al., Opinion: Migrating cancer stem cells - an integrated concept of malignant tumour progression, Nat. Rev. Cancer 5 (2005) 744-749.
|
| [12] |
A. Morandi, M.L. Taddei, P. Chiarugi, et al., Targeting the metabolic reprogramming that controls epithelial-to-mesenchymal transition in aggressive tumors, Front. Oncol. 7 (2017), 40.
|
| [13] |
A.M. Giudetti, S. De Domenico, A. Ragusa, et al., A specific lipid metabolic profile is associated with the epithelial mesenchymal transition program, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864 (2019) 344-357.
|
| [14] |
R. Fodde, T. Brabletz, Wnt/β-catenin signaling in cancer stemness and malignant behavior, Curr. Opin. Cell Biol. 19 (2007) 150-158.
|
| [15] |
M. Teeuwssen, R. Fodde, Cell heterogeneity and phenotypic plasticity in metastasis formation: The case of colon cancer, Cancers 11 (2019), 1368.
|
| [16] |
B.J. Blencowe, Alternative splicing: New insights from global analyses, Cell 126 (2006) 37-47.
|
| [17] |
I. Gupta, S. Pedersen, S. Vranic, et al., Implications of gut microbiota in epithelial-mesenchymal transition and cancer progression: A concise review, Cancers 14 (2022), 2964.
|
| [18] |
D. Vergara, P. Simeone, M. Damato, et al., The cancer microbiota: EMT and inflammation as shared molecular mechanisms associated with plasticity and progression, J. Oncol. 2019 (2019), 1253727.
|
| [19] |
E.T. Wang, R. Sandberg, S. Luo, et al., Alternative isoform regulation in human tissue transcriptomes, Nature 456 (2008) 470-476.
|
| [20] |
L. Jiang, L. Xiao, H. Sugiura, et al., Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition, Oncogene 34 (2015) 3908-3916.
|
| [21] |
I. Leong, PRC2 in β-cell function, Nat. Rev. Endocrinol. 14 (2018), 441.
|
| [22] |
X. Wu, X. Li, Q. Fu, et al., AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program, J. Exp. Med. 214 (2017) 1065-1079.
|
| [23] |
J. Lyu, M. Pirooznia, Y. Li, et al., The short-chain fatty acid acetate modulates epithelial-to-mesenchymal transition, Mol. Biol. Cell 33 (2022), br13.
|
| [24] |
H. Kang, H. Kim, S. Lee, et al., Role of metabolic reprogramming in Epithelial-Mesenchymal transition (EMT), Int. J. Mol. Sci. 20 (2019), 2042.
|
| [25] |
Y. Fattahi, H.R. Heidari, A.Y. Khosroushahi, Review of short-chain fatty acids effects on the immune system and cancer, Food Biosci. 38 (2020), 100793.
|
| [26] |
T.R. Samatov, A.G. Tonevitsky, U. Schumacher, Epithelial-mesenchymal transition: Focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds, Mol. Cancer 12 (2013), 107.
|
| [27] |
D.M. Jaworski, A.M.A. Namboodiri, J.R. Moffett, Acetate as a metabolic and epigenetic modifier of cancer therapy, J. Cell. Biochem. 117 (2016) 574-588.
|
| [28] |
M. Kazantzis, A. Stahl, Fatty acid transport proteins, implications in physiology and disease, Biochim. Biophys. Acta 1821 (2012) 852-857.
|
| [29] |
R. Mallick, S. Basak, A.K. Duttaroy, Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers, Prog. Lipid Res. 83 (2021), 101116.
|
| [30] |
A. Stahl, R.E. Gimeno, L.A. Tartaglia, et al., Fatty acid transport proteins: A current view of a growing family, Trends Endocrinol. Metab. 12 (2001) 266-273.
|
| [31] |
A.K. Dutta-Roy, Cellular uptake of long-chain fatty acids: Role of membrane-associated fatty-acid-binding/transport proteins, Cell. Mol. Life Sci. 57 (2000) 1360-1372.
|
| [32] |
T. Vu, P.K. Datta, Regulation of EMT in colorectal cancer: A culprit in metastasis, Cancers 9 (2017), 171.
|
| [33] |
N. Ahmadiankia, A. Khosravi, Significance of epithelial-to-mesenchymal transition inducing transcription factors in predicting distance metastasis and survival in patients with colorectal cancer: A systematic review and meta-analysis, J. Res. Med. Sci. 25 (2020), 60.
|
| [34] |
C. Franci, M. Gallen, F. Alameda, et al., Snail1 protein in the stroma as a new putative prognosis marker for colon tumours, PLoS One 4 (2009), e5595.
|
| [35] |
Q. Tang, J. Chen, Z. Di, et al., TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer, J. Exp. Clin. Cancer Res. 39 (2020), 232.
|
| [36] |
M. Brzozowa, M. Michalski, G. Wyrobiec, et al., The role of Snail1 transcription factor in colorectal cancer progression and metastasis, Contemp. Oncol. 19 (2015) 265-270.
|
| [37] |
Y. Zhu, Y. Gan, R. Zou, et al., RNF128 suppresses the malignancy of colorectal cancer cells via inhibition of Wnt/β-catenin signaling, Am. J. Transl. Res. 13 (2021) 13567-13578.
|
| [38] |
X. Chen, W. Wang, Y. Li, et al., MYSM1 inhibits human colorectal cancer tumorigenesis by activating miR-200 family members/CDH1 and blocking PI3K/AKT signaling, J. Exp. Clin. Cancer Res. 40 (2021), 341.
|
| [39] |
L. Qi, B. Sun, Z. Liu, et al., Wnt3a expression is associated with epithelial-mesenchymal transition and promotes colon cancer progression, J. Exp. Clin. Cancer Res. 33 (2014), 107.
|
| [40] |
T.S. Gujral, M. Chan, L. Peshkin, et al., A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis, Cell 159 (2014) 844-856.
|
| [41] |
P.W. Voorneveld, L.L. Kodach, R.J. Jacobs, et al., Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK, Gastroenterology 147 (2014) 196-208.e13.
|
| [42] |
F. Zhang, H. Wang, X. Wang, et al., TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype, Oncotarget 7 (2016) 52294-52306.
|
| [43] |
Z.A. Jenkins, P.G. Haag, H.E. Johansson, Human eIF5A2 on chromosome 3q25-Q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression, Genomics 71 (2001) 101-109.
|
| [44] |
Y. Bao, Y. Lu, X. Wang, et al., Eukaryotic translation initiation factor 5A2 (eIF5A2) regulates chemoresistance in colorectal cancer through epithelial mesenchymal transition, Cancer Cell Int. 15 (2015), 109.
|
| [45] |
W. Zhu, M. Cai, Z. Tong, et al., Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial-mesenchymaltransition, Gut 61 (2012) 562-575.
|
| [46] |
Y. Zhu, M. Zhu, P. Lance, Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells, Biochem. Biophys. Res. Commun. 425 (2012) 607-612.
|
| [47] |
L.A. Gossett, D.J. Kelvin, E.A. Sternberg, et al., A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes, Mol. Cell. Biol. 9 (1989) 5022-5033.
|
| [48] |
U. Bogdahn, P. Hau, G. Stockhammer, et al., Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: Results of a randomized and controlled phase IIb study, Neuro Oncol 13 (2011) 132-142.
|
| [49] |
S. Faivre, A. Santoro, R.K. Kelley, et al., Novel transforming growth factor beta receptor I kinase inhibitor galunisertib (LY2157299) in advanced hepatocellular carcinoma, Liver Int. 39 (2019) 1468-1477.
|
| [50] |
Y. Guo, Z. Wang, H. Zhou, et al., First-in-human study of GFH018, a small molecule inhibitor of transforming growth factor-β receptor I inhibitor, in patients with advanced solid tumors, BMC Cancer 24 (2024), 444.
|
| [51] |
C. Huang, C.L. Chung, T.H. Hu, et al., Recent progress in TGF-β inhibitors for cancer therapy, Biomed. Pharmacother. 134 (2021), 111046.
|
| [52] |
R.K. Kelley, E. Gane, E. Assenat, et al., A phase 2 study of galunisertib (TGF-β1 receptor type I inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma, Clin. Transl. Gastroenterol. 10 (2019), e00056.
|
| [53] |
J Li, T Liu, H Bao, et al., A phase I study of a TGF-β receptor I kinase inhibitor YL-13027 in patients with advanced solid tumors, J. Clin. Oncol. 39 (2021), 3098.
|
| [54] |
D. Melisi, D.Y. Oh, A. Hollebecque, et al., Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer, J. Immunother. Cancer 9 (2021), e002068.
|
| [55] |
A.W. Tolcher, J.D. Berlin, J. Cosaert, et al., A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors, Cancer Chemother. Pharmacol. 79 (2017) 673-680.
|
| [56] |
D. Liu, J. Zhou, Y. Wang, et al., Bifunctional anti-PD-L1/TGF-βRII agent SHR-1701 in advanced solid tumors: A dose-escalation, dose-expansion, and clinical-expansion phase 1 trial, BMC Med. 20 (2022), 408.
|
| [57] |
S. Kim, H.Y. Kang, E.H. Nam, et al., TMPRSS4 induces invasion and epithelial-mesenchymal transition through upregulation of integrin α5 and its signaling pathways, Carcinogenesis 31 (2010) 597-606.
|
| [58] |
S. Kang, H.J. Min, M.S. Kang, et al., Discovery of novel 2-hydroxydiarylamide derivatives as TMPRSS4 inhibitors, Bioorg. Med. Chem. Lett. 23 (2013) 1748-1751.
|
| [59] |
Y. Baba, K. Nosho, K. Shima, et al., HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers, Am. J. Pathol. 176 (2010) 2292-2301.
|
| [60] |
W. Zhang, X. Shi, Y. Peng, et al., HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer, PLoS One 10 (2015), e0129603.
|
| [61] |
P. Santoyo-Ramos, M. Likhatcheva, E.A. Garcia-Zepeda, et al., Hypoxia-inducible factors modulate the stemness and malignancy of colon cancer cells by playing opposite roles in canonical Wnt signaling, PLoS One 9 (2014), e112580.
|
| [62] |
X. Zhu, Y. Zeng, J. Guan, et al., FMNL2 is a positive regulator of cell motility and metastasis in colorectal carcinoma, J. Pathol. 224 (2011) 377-388.
|
| [63] |
Y. Li, X. Zhu, Y. Zeng, et al., FMNL2 enhances invasion of colorectal carcinoma by inducing epithelial-mesenchymal transition, Mol. Cancer Res. 8 (2010) 1579-1590.
|
| [64] |
J.H. Kim, Y.J. Hwang, S.H. Han, et al., Dexamethasone inhibits hypoxia-induced epithelial-mesenchymal transition in colon cancer, World J. Gastroenterol. 21 (2015) 9887-9899.
|
| [65] |
T. Uchiyama, H. Kawabata, Y. Miura, et al., The role of growth differentiation factor 15 in the pathogenesis of primary myelofibrosis, Cancer Med. 4 (2015) 1558-1572.
|
| [66] |
S. Lamouille, J. Xu, R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition, Nat. Rev. Mol. Cell Biol. 15 (2014) 178-196.
|
| [67] |
C.H. Heldin, M. Landstrom, A. Moustakas, Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition, Curr. Opin. Cell Biol. 21 (2009) 166-176.
|
| [68] |
M. Westhrin, S.H. Moen, T. Holien, et al., Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease, Haematologica 100 (2015) e511-e514.
|
| [69] |
T.J. Freeman, J.J. Smith, X. Chen, et al., Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of β-catenin, Gastroenterology 142 (2012) 562-571.e2.
|
| [70] |
A. Reinacher-Schick, S.E. Baldus, B. Romdhana, et al., Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas, J. Pathol. 202 (2004) 412-420.
|
| [71] |
L. Losi, H. Bouzourene, J. Benhattar, Loss of Smad4 expression predicts liver metastasis in human colorectal cancer, Oncol. Rep. 17 (2007) 1095-1099.
|
| [72] |
M. Hirakawa, R. Takimoto, F. Tamura, et al., Fucosylated TGF-β receptors transduces a signal for epithelial-mesenchymal transition in colorectal cancer cells, Br. J. Cancer 110 (2014) 156-163.
|
| [73] |
E. Vincan, N. Barker, The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression, Clin. Exp. Metastasis 25 (2008) 657-663.
|
| [74] |
S.D. Markowitz, M.M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer, N. Engl. J. Med. 361 (2009) 2449-2460.
|
| [75] |
N.D. Kashikar, J. Reiner, A. Datta, et al., Serine threonine receptor-associated protein (STRAP) plays a role in the maintenance of mesenchymal morphology, Cell. Signal. 22 (2010) 138-149.
|
| [76] |
A.A. Khan, V. Nema, Z. Khan, Current status of probiotics for prevention and management of gastrointestinal cancers, Expert Opin. Biol. Ther. 21 (2021) 413-422.
|
| [77] |
P. Louis, G.L. Hold, H.J. Flint, The gut microbiota, bacterial metabolites and colorectal cancer, Nat. Rev. Microbiol. 12 (2014) 661-672.
|
| [78] |
C. Grandclement, J.R. Pallandre, S. Valmary Degano, et al., Neuropilin-2 expression promotes TGF-β1-mediated epithelial to mesenchymal transition in colorectal cancer cells, PLoS One 6 (2011), e20444.
|
| [79] |
Y. Wang, N. Wu, D. Sun, et al., NUBPL a novel metastasis-related gene, promotes colorectal carcinoma cell motility by inducing epithelial-mesenchymal transition, Cancer Sci. 108 (2017) 1169-1176.
|
| [80] |
S. Karfa, S. Saurav, B. Feng, et al., The role of serine-threonine kinase receptor-associated protein (STRAP) signaling in cancer, Cells 14 (2025), 854.
|
| [81] |
F. Rohrig, A. Schulze, The multifaceted roles of fatty acid synthesis in cancer, Nat. Rev. Cancer 16 (2016) 732-749.
|
| [82] |
R.F. Schwabe, C. Jobin, The microbiome and cancer, Nat. Rev. Cancer 13 (2013) 800-812.
|
| [83] |
D. Wang, R.N. Dubois, The role of COX-2 in intestinal inflammation and colorectal cancer, Oncogene 29 (2010) 781-788.
|
| [84] |
D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation, Cell 144 (2011) 646-674.
|
| [85] |
Y. Zhao, N. Chen, Y. Yu, et al., Prognostic value of MICA/B in cancers: A systematic review and meta-analysis, Oncotarget 8 (2017) 96384-96395.
|
| [86] |
G. Ayaz, P. Yasar, C.E. Olgun, et al., Dynamic transcriptional events mediated by estrogen receptor alpha, Front. Biosci. 24 (2019) 245-276.
|
| [87] |
T. Zhan, N. Rindtorff, M. Boutros, Wnt signaling in cancer, Oncogene 36 (2017) 1461-1473.
|
| [88] |
N.N. Pavlova, C.B. Thompson, The emerging hallmarks of cancer metabolism, Cell Metab. 23 (2016) 27-47.
|
| [89] |
B.A. Shenderov, Metabiotics: Novel idea or natural development of probiotic conception, Microb. Ecol. Health Dis. 24 (2013). DOI: 10.3402/mehd.v24i0.20399.
|
| [90] |
M. Kumar, R. Nagpal, V. Verma, et al., Probiotic metabolites as epigenetic targets in the prevention of colon cancer, Nutr. Rev. 71 (2013) 23-34.
|
| [91] |
E. Pachmayr, C. Treese, U. Stein, Underlying mechanisms for distant metastasis - molecular biology, Visc. Med. 33 (2017) 11-20.
|
| [92] |
Y. Yue, B. Yang, J. Lu, et al., Metabolite secretions of Lactobacillus plantarum YYC-3 may inhibit colon cancer cell metastasis by suppressing the VEGF-MMP2/9 signaling pathway, Microb. Cell Fact. 19 (2020), 213.
|
| [93] |
V. Braga, Spatial integration of E-cadherin adhesion, signalling and the epithelial cytoskeleton, Curr. Opin. Cell Biol. 42 (2016) 138-145.
|
| [94] |
X. Li, H. Wang, X. Du, et al., Lactobacilli inhibit cervical cancer cell migration in vitro and reduce tumor burden in vivo through upregulation of E-cadherin, Oncol. Rep. 38 (2017) 1561-1568.
|
| [95] |
N.R. Zamberi, N. Abu, N.E. Mohamed, et al., The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells, Integr. Cancer Ther. 15 (2016) NP53-NP66.
|
| [96] |
E. Miko, T. Kovacs, E. Sebő, et al., Microbiome-microbial metabolome-cancer cell interactions in breast cancer-familiar, but unexplored, Cells 8 (2019), 293.
|
| [97] |
D. Qiao, S.V. Gaitonde, W. Qi, et al., Deoxycholic acid suppresses p53 by stimulating proteasome-mediated p53 protein degradation, Carcinogenesis 22 (2001) 957-964.
|
| [98] |
E. Elwakeel, B. Brune, A. Weigert, PGE(2) in fibrosis and cancer: Insights into fibroblast activation, Prostaglandins Other Lipid Mediat. 143 (2019), 106339.
|
| [99] |
N. Keum, E. Giovannucci, Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 713-732.
|
| [100] |
S.M. Centuori, C.J. Gomes, J. Trujillo, et al., Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells, Biochim. Biophys. Acta 1861 (2016) 663-670.
|
| [101] |
S. Yoshimoto, T.M. Loo, K. Atarashi, et al., Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome, Nature 499 (2013) 97-101.
|
| [102] |
T.T. Nguyen, S. Lian, T.T. Ung, et al., Lithocholic acid stimulates IL-8 expression in human colorectal cancer cells via activation of Erk1/2 MAPK and suppression of STAT3 activity, J. Cell. Biochem. 118 (2017) 2958-2967.
|
| [103] |
R. Kumariya, A.K. Garsa, Y.S. Rajput, et al., Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria, Microb. Pathog. 128 (2019) 171-177.
|
| [104] |
P.D. Cotter, R.P. Ross, C. Hill, Bacteriocins: A viable alternative to antibiotics? Nat. Rev. Microbiol. 11 (2013) 95-105.
|
| [105] |
S.C. Yang, C.H. Lin, C.T. Sung, et al., Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals, Front. Microbiol. 5 (2014), 241.
|
| [106] |
D. Kohoutova, D. Smajs, P. Moravkova, et al., Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia, BMC Infect. Dis. 14 (2014), 733.
|