Turn off MathJax
Article Contents
Muzamil Ahmad Shah, Sharon Nagpal, S. Gokul Shankar, Antony V. Samrot, Alok Kumar Mishra. Lipid-mediated regulation of epithelial-mesenchymal transition in colorectal cancer[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101541
Citation: Muzamil Ahmad Shah, Sharon Nagpal, S. Gokul Shankar, Antony V. Samrot, Alok Kumar Mishra. Lipid-mediated regulation of epithelial-mesenchymal transition in colorectal cancer[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101541

Lipid-mediated regulation of epithelial-mesenchymal transition in colorectal cancer

doi: 10.1016/j.jpha.2025.101541
Funds:

The authors would like to acknowledge Lovely Professional University (LPU), Phagwara, and Manipal University CollegeMalaysia for their support in conducting the study. The authors would like to acknowledge all the funding agencies involved.

  • Received Date: May 06, 2025
  • Accepted Date: Dec. 30, 2025
  • Rev Recd Date: Dec. 26, 2025
  • Available Online: Jan. 04, 2026
  • Colorectal cancer, being one of the leading cancers worldwide, is the cause of more than a million fatalities yearly. Notwithstanding breakthroughs in molecular comprehension and therapeutic approaches, the metastatic progression of colorectal cancer continues to pose a considerable threat. An essential occurrence in metastasis is the epithelial-mesenchymal transition (EMT), during which epithelial cells relinquish polarity and adhesion, acquiring a mesenchymal phenotype that augments motility and invasiveness. EMT is pivotal in cancer cell metastasis, stemness, drug resistance, and immune evasion. Recent studies have demonstrated a significant correlation between lipid metabolism and EMT in colorectal cancer. Modified lipid metabolism, characterized by enhanced fatty acid synthesis and elevated monounsaturated fatty acid (MUFA) generation, facilitates cancer cell motility. Enzymes such as stearoyl-CoA desaturase 1(SCD1) and Fatty acid synthase (FASN) serve as crucial regulators. Lipid molecules, including phosphatidylinositol (3,4,5)-trisphosphate (PIP3), affect signaling pathways like phosphoinositide 3-kinase/Ak strain transforming (PI3K/Akt), which also govern EMT. The gut microbiota influences colorectal cancer progression via dysbiosis, inflammation, and modified lipid metabolism, with short-chain fatty acids (SCFAs), especially butyrate, exhibiting anti-tumor properties. Focusing on lipid metabolic pathways, EMT regulators, and alternative splicing processes presents promising therapeutic approaches to impede colorectal cancer spread and surmount resistance to standard treatments. Understanding the intricate relationships among lipid metabolism, EMT, and the microbiota is essential for developing innovative therapeutics for colorectal cancer.
  • loading
  • [1]
    H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin 71 (2021) 209-249.
    [2]
    F.A. Zeineddine, M.A. Zeineddine, A. Yousef, et al., Survival improvement for patients with metastatic colorectal cancer over twenty years, NPJ Precis. Oncol. 7 (2023), 16.
    [3]
    H. Naderi-Meshkin, N. Ahmadiankia, Cancer metastasis versus stem cell homing: Role of platelets, J. Cell. Physiol. 233 (2018) 9167-9178.
    [4]
    M. Bagheri, M. Fazli, S. Saeednia, et al., Pomegranate peel extract inhibits expression of β-catenin, epithelial mesenchymal transition, and metastasis in triple negative breast cancer cells, Cell. Mol. Biol. 64 (2018) 86-91.
    [5]
    E. Batlle, E. Sancho, C. Franci, et al., The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells, Nat. Cell Biol. 2 (2000) 84-89.
    [6]
    L. Mouchiroud, L.J. Eichner, R.J. Shaw, et al., Transcriptional coregulators: Fine-tuning metabolism, Cell Metab. 20 (2014) 26-40.
    [7]
    Y.D. Shaul, E. Freinkman, W.C. Comb, et al., Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition, Cell 158 (2014) 1094-1109.
    [8]
    I. Kahouli, C. Tomaro-Duchesneau, S. Prakash, Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives, J. Med. Microbiol. 62 (2013) 1107-1123.
    [9]
    M. Molska, J. Regula, Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer, Nutrients 11 (2019), 2453.
    [10]
    G. D’Argenio, G. Mazzacca, Short-chain fatty acid in the human colon,. Advances in Nutrition and Cancer 2. Springer US, (1999), pp 49–158.
    [11]
    T. Brabletz, A. Jung, S. Spaderna, et al., Opinion: Migrating cancer stem cells - an integrated concept of malignant tumour progression, Nat. Rev. Cancer 5 (2005) 744-749.
    [12]
    A. Morandi, M.L. Taddei, P. Chiarugi, et al., Targeting the metabolic reprogramming that controls epithelial-to-mesenchymal transition in aggressive tumors, Front. Oncol. 7 (2017), 40.
    [13]
    A.M. Giudetti, S. De Domenico, A. Ragusa, et al., A specific lipid metabolic profile is associated with the epithelial mesenchymal transition program, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864 (2019) 344-357.
    [14]
    R. Fodde, T. Brabletz, Wnt/β-catenin signaling in cancer stemness and malignant behavior, Curr. Opin. Cell Biol. 19 (2007) 150-158.
    [15]
    M. Teeuwssen, R. Fodde, Cell heterogeneity and phenotypic plasticity in metastasis formation: The case of colon cancer, Cancers 11 (2019), 1368.
    [16]
    B.J. Blencowe, Alternative splicing: New insights from global analyses, Cell 126 (2006) 37-47.
    [17]
    I. Gupta, S. Pedersen, S. Vranic, et al., Implications of gut microbiota in epithelial-mesenchymal transition and cancer progression: A concise review, Cancers 14 (2022), 2964.
    [18]
    D. Vergara, P. Simeone, M. Damato, et al., The cancer microbiota: EMT and inflammation as shared molecular mechanisms associated with plasticity and progression, J. Oncol. 2019 (2019), 1253727.
    [19]
    E.T. Wang, R. Sandberg, S. Luo, et al., Alternative isoform regulation in human tissue transcriptomes, Nature 456 (2008) 470-476.
    [20]
    L. Jiang, L. Xiao, H. Sugiura, et al., Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition, Oncogene 34 (2015) 3908-3916.
    [21]
    I. Leong, PRC2 in β-cell function, Nat. Rev. Endocrinol. 14 (2018), 441.
    [22]
    X. Wu, X. Li, Q. Fu, et al., AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program, J. Exp. Med. 214 (2017) 1065-1079.
    [23]
    J. Lyu, M. Pirooznia, Y. Li, et al., The short-chain fatty acid acetate modulates epithelial-to-mesenchymal transition, Mol. Biol. Cell 33 (2022), br13.
    [24]
    H. Kang, H. Kim, S. Lee, et al., Role of metabolic reprogramming in Epithelial-Mesenchymal transition (EMT), Int. J. Mol. Sci. 20 (2019), 2042.
    [25]
    Y. Fattahi, H.R. Heidari, A.Y. Khosroushahi, Review of short-chain fatty acids effects on the immune system and cancer, Food Biosci. 38 (2020), 100793.
    [26]
    T.R. Samatov, A.G. Tonevitsky, U. Schumacher, Epithelial-mesenchymal transition: Focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds, Mol. Cancer 12 (2013), 107.
    [27]
    D.M. Jaworski, A.M.A. Namboodiri, J.R. Moffett, Acetate as a metabolic and epigenetic modifier of cancer therapy, J. Cell. Biochem. 117 (2016) 574-588.
    [28]
    M. Kazantzis, A. Stahl, Fatty acid transport proteins, implications in physiology and disease, Biochim. Biophys. Acta 1821 (2012) 852-857.
    [29]
    R. Mallick, S. Basak, A.K. Duttaroy, Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers, Prog. Lipid Res. 83 (2021), 101116.
    [30]
    A. Stahl, R.E. Gimeno, L.A. Tartaglia, et al., Fatty acid transport proteins: A current view of a growing family, Trends Endocrinol. Metab. 12 (2001) 266-273.
    [31]
    A.K. Dutta-Roy, Cellular uptake of long-chain fatty acids: Role of membrane-associated fatty-acid-binding/transport proteins, Cell. Mol. Life Sci. 57 (2000) 1360-1372.
    [32]
    T. Vu, P.K. Datta, Regulation of EMT in colorectal cancer: A culprit in metastasis, Cancers 9 (2017), 171.
    [33]
    N. Ahmadiankia, A. Khosravi, Significance of epithelial-to-mesenchymal transition inducing transcription factors in predicting distance metastasis and survival in patients with colorectal cancer: A systematic review and meta-analysis, J. Res. Med. Sci. 25 (2020), 60.
    [34]
    C. Franci, M. Gallen, F. Alameda, et al., Snail1 protein in the stroma as a new putative prognosis marker for colon tumours, PLoS One 4 (2009), e5595.
    [35]
    Q. Tang, J. Chen, Z. Di, et al., TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer, J. Exp. Clin. Cancer Res. 39 (2020), 232.
    [36]
    M. Brzozowa, M. Michalski, G. Wyrobiec, et al., The role of Snail1 transcription factor in colorectal cancer progression and metastasis, Contemp. Oncol. 19 (2015) 265-270.
    [37]
    Y. Zhu, Y. Gan, R. Zou, et al., RNF128 suppresses the malignancy of colorectal cancer cells via inhibition of Wnt/β-catenin signaling, Am. J. Transl. Res. 13 (2021) 13567-13578.
    [38]
    X. Chen, W. Wang, Y. Li, et al., MYSM1 inhibits human colorectal cancer tumorigenesis by activating miR-200 family members/CDH1 and blocking PI3K/AKT signaling, J. Exp. Clin. Cancer Res. 40 (2021), 341.
    [39]
    L. Qi, B. Sun, Z. Liu, et al., Wnt3a expression is associated with epithelial-mesenchymal transition and promotes colon cancer progression, J. Exp. Clin. Cancer Res. 33 (2014), 107.
    [40]
    T.S. Gujral, M. Chan, L. Peshkin, et al., A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis, Cell 159 (2014) 844-856.
    [41]
    P.W. Voorneveld, L.L. Kodach, R.J. Jacobs, et al., Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK, Gastroenterology 147 (2014) 196-208.e13.
    [42]
    F. Zhang, H. Wang, X. Wang, et al., TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype, Oncotarget 7 (2016) 52294-52306.
    [43]
    Z.A. Jenkins, P.G. Haag, H.E. Johansson, Human eIF5A2 on chromosome 3q25-Q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression, Genomics 71 (2001) 101-109.
    [44]
    Y. Bao, Y. Lu, X. Wang, et al., Eukaryotic translation initiation factor 5A2 (eIF5A2) regulates chemoresistance in colorectal cancer through epithelial mesenchymal transition, Cancer Cell Int. 15 (2015), 109.
    [45]
    W. Zhu, M. Cai, Z. Tong, et al., Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial-mesenchymaltransition, Gut 61 (2012) 562-575.
    [46]
    Y. Zhu, M. Zhu, P. Lance, Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells, Biochem. Biophys. Res. Commun. 425 (2012) 607-612.
    [47]
    L.A. Gossett, D.J. Kelvin, E.A. Sternberg, et al., A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes, Mol. Cell. Biol. 9 (1989) 5022-5033.
    [48]
    U. Bogdahn, P. Hau, G. Stockhammer, et al., Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: Results of a randomized and controlled phase IIb study, Neuro Oncol 13 (2011) 132-142.
    [49]
    S. Faivre, A. Santoro, R.K. Kelley, et al., Novel transforming growth factor beta receptor I kinase inhibitor galunisertib (LY2157299) in advanced hepatocellular carcinoma, Liver Int. 39 (2019) 1468-1477.
    [50]
    Y. Guo, Z. Wang, H. Zhou, et al., First-in-human study of GFH018, a small molecule inhibitor of transforming growth factor-β receptor I inhibitor, in patients with advanced solid tumors, BMC Cancer 24 (2024), 444.
    [51]
    C. Huang, C.L. Chung, T.H. Hu, et al., Recent progress in TGF-β inhibitors for cancer therapy, Biomed. Pharmacother. 134 (2021), 111046.
    [52]
    R.K. Kelley, E. Gane, E. Assenat, et al., A phase 2 study of galunisertib (TGF-β1 receptor type I inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma, Clin. Transl. Gastroenterol. 10 (2019), e00056.
    [53]
    J Li, T Liu, H Bao, et al., A phase I study of a TGF-β receptor I kinase inhibitor YL-13027 in patients with advanced solid tumors, J. Clin. Oncol. 39 (2021), 3098.
    [54]
    D. Melisi, D.Y. Oh, A. Hollebecque, et al., Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer, J. Immunother. Cancer 9 (2021), e002068.
    [55]
    A.W. Tolcher, J.D. Berlin, J. Cosaert, et al., A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors, Cancer Chemother. Pharmacol. 79 (2017) 673-680.
    [56]
    D. Liu, J. Zhou, Y. Wang, et al., Bifunctional anti-PD-L1/TGF-βRII agent SHR-1701 in advanced solid tumors: A dose-escalation, dose-expansion, and clinical-expansion phase 1 trial, BMC Med. 20 (2022), 408.
    [57]
    S. Kim, H.Y. Kang, E.H. Nam, et al., TMPRSS4 induces invasion and epithelial-mesenchymal transition through upregulation of integrin α5 and its signaling pathways, Carcinogenesis 31 (2010) 597-606.
    [58]
    S. Kang, H.J. Min, M.S. Kang, et al., Discovery of novel 2-hydroxydiarylamide derivatives as TMPRSS4 inhibitors, Bioorg. Med. Chem. Lett. 23 (2013) 1748-1751.
    [59]
    Y. Baba, K. Nosho, K. Shima, et al., HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers, Am. J. Pathol. 176 (2010) 2292-2301.
    [60]
    W. Zhang, X. Shi, Y. Peng, et al., HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer, PLoS One 10 (2015), e0129603.
    [61]
    P. Santoyo-Ramos, M. Likhatcheva, E.A. Garcia-Zepeda, et al., Hypoxia-inducible factors modulate the stemness and malignancy of colon cancer cells by playing opposite roles in canonical Wnt signaling, PLoS One 9 (2014), e112580.
    [62]
    X. Zhu, Y. Zeng, J. Guan, et al., FMNL2 is a positive regulator of cell motility and metastasis in colorectal carcinoma, J. Pathol. 224 (2011) 377-388.
    [63]
    Y. Li, X. Zhu, Y. Zeng, et al., FMNL2 enhances invasion of colorectal carcinoma by inducing epithelial-mesenchymal transition, Mol. Cancer Res. 8 (2010) 1579-1590.
    [64]
    J.H. Kim, Y.J. Hwang, S.H. Han, et al., Dexamethasone inhibits hypoxia-induced epithelial-mesenchymal transition in colon cancer, World J. Gastroenterol. 21 (2015) 9887-9899.
    [65]
    T. Uchiyama, H. Kawabata, Y. Miura, et al., The role of growth differentiation factor 15 in the pathogenesis of primary myelofibrosis, Cancer Med. 4 (2015) 1558-1572.
    [66]
    S. Lamouille, J. Xu, R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition, Nat. Rev. Mol. Cell Biol. 15 (2014) 178-196.
    [67]
    C.H. Heldin, M. Landstrom, A. Moustakas, Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition, Curr. Opin. Cell Biol. 21 (2009) 166-176.
    [68]
    M. Westhrin, S.H. Moen, T. Holien, et al., Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease, Haematologica 100 (2015) e511-e514.
    [69]
    T.J. Freeman, J.J. Smith, X. Chen, et al., Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of β-catenin, Gastroenterology 142 (2012) 562-571.e2.
    [70]
    A. Reinacher-Schick, S.E. Baldus, B. Romdhana, et al., Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas, J. Pathol. 202 (2004) 412-420.
    [71]
    L. Losi, H. Bouzourene, J. Benhattar, Loss of Smad4 expression predicts liver metastasis in human colorectal cancer, Oncol. Rep. 17 (2007) 1095-1099.
    [72]
    M. Hirakawa, R. Takimoto, F. Tamura, et al., Fucosylated TGF-β receptors transduces a signal for epithelial-mesenchymal transition in colorectal cancer cells, Br. J. Cancer 110 (2014) 156-163.
    [73]
    E. Vincan, N. Barker, The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression, Clin. Exp. Metastasis 25 (2008) 657-663.
    [74]
    S.D. Markowitz, M.M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer, N. Engl. J. Med. 361 (2009) 2449-2460.
    [75]
    N.D. Kashikar, J. Reiner, A. Datta, et al., Serine threonine receptor-associated protein (STRAP) plays a role in the maintenance of mesenchymal morphology, Cell. Signal. 22 (2010) 138-149.
    [76]
    A.A. Khan, V. Nema, Z. Khan, Current status of probiotics for prevention and management of gastrointestinal cancers, Expert Opin. Biol. Ther. 21 (2021) 413-422.
    [77]
    P. Louis, G.L. Hold, H.J. Flint, The gut microbiota, bacterial metabolites and colorectal cancer, Nat. Rev. Microbiol. 12 (2014) 661-672.
    [78]
    C. Grandclement, J.R. Pallandre, S. Valmary Degano, et al., Neuropilin-2 expression promotes TGF-β1-mediated epithelial to mesenchymal transition in colorectal cancer cells, PLoS One 6 (2011), e20444.
    [79]
    Y. Wang, N. Wu, D. Sun, et al., NUBPL a novel metastasis-related gene, promotes colorectal carcinoma cell motility by inducing epithelial-mesenchymal transition, Cancer Sci. 108 (2017) 1169-1176.
    [80]
    S. Karfa, S. Saurav, B. Feng, et al., The role of serine-threonine kinase receptor-associated protein (STRAP) signaling in cancer, Cells 14 (2025), 854.
    [81]
    F. Rohrig, A. Schulze, The multifaceted roles of fatty acid synthesis in cancer, Nat. Rev. Cancer 16 (2016) 732-749.
    [82]
    R.F. Schwabe, C. Jobin, The microbiome and cancer, Nat. Rev. Cancer 13 (2013) 800-812.
    [83]
    D. Wang, R.N. Dubois, The role of COX-2 in intestinal inflammation and colorectal cancer, Oncogene 29 (2010) 781-788.
    [84]
    D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation, Cell 144 (2011) 646-674.
    [85]
    Y. Zhao, N. Chen, Y. Yu, et al., Prognostic value of MICA/B in cancers: A systematic review and meta-analysis, Oncotarget 8 (2017) 96384-96395.
    [86]
    G. Ayaz, P. Yasar, C.E. Olgun, et al., Dynamic transcriptional events mediated by estrogen receptor alpha, Front. Biosci. 24 (2019) 245-276.
    [87]
    T. Zhan, N. Rindtorff, M. Boutros, Wnt signaling in cancer, Oncogene 36 (2017) 1461-1473.
    [88]
    N.N. Pavlova, C.B. Thompson, The emerging hallmarks of cancer metabolism, Cell Metab. 23 (2016) 27-47.
    [89]
    B.A. Shenderov, Metabiotics: Novel idea or natural development of probiotic conception, Microb. Ecol. Health Dis. 24 (2013). DOI: 10.3402/mehd.v24i0.20399.
    [90]
    M. Kumar, R. Nagpal, V. Verma, et al., Probiotic metabolites as epigenetic targets in the prevention of colon cancer, Nutr. Rev. 71 (2013) 23-34.
    [91]
    E. Pachmayr, C. Treese, U. Stein, Underlying mechanisms for distant metastasis - molecular biology, Visc. Med. 33 (2017) 11-20.
    [92]
    Y. Yue, B. Yang, J. Lu, et al., Metabolite secretions of Lactobacillus plantarum YYC-3 may inhibit colon cancer cell metastasis by suppressing the VEGF-MMP2/9 signaling pathway, Microb. Cell Fact. 19 (2020), 213.
    [93]
    V. Braga, Spatial integration of E-cadherin adhesion, signalling and the epithelial cytoskeleton, Curr. Opin. Cell Biol. 42 (2016) 138-145.
    [94]
    X. Li, H. Wang, X. Du, et al., Lactobacilli inhibit cervical cancer cell migration in vitro and reduce tumor burden in vivo through upregulation of E-cadherin, Oncol. Rep. 38 (2017) 1561-1568.
    [95]
    N.R. Zamberi, N. Abu, N.E. Mohamed, et al., The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells, Integr. Cancer Ther. 15 (2016) NP53-NP66.
    [96]
    E. Miko, T. Kovacs, E. Sebő, et al., Microbiome-microbial metabolome-cancer cell interactions in breast cancer-familiar, but unexplored, Cells 8 (2019), 293.
    [97]
    D. Qiao, S.V. Gaitonde, W. Qi, et al., Deoxycholic acid suppresses p53 by stimulating proteasome-mediated p53 protein degradation, Carcinogenesis 22 (2001) 957-964.
    [98]
    E. Elwakeel, B. Brune, A. Weigert, PGE(2) in fibrosis and cancer: Insights into fibroblast activation, Prostaglandins Other Lipid Mediat. 143 (2019), 106339.
    [99]
    N. Keum, E. Giovannucci, Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 713-732.
    [100]
    S.M. Centuori, C.J. Gomes, J. Trujillo, et al., Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells, Biochim. Biophys. Acta 1861 (2016) 663-670.
    [101]
    S. Yoshimoto, T.M. Loo, K. Atarashi, et al., Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome, Nature 499 (2013) 97-101.
    [102]
    T.T. Nguyen, S. Lian, T.T. Ung, et al., Lithocholic acid stimulates IL-8 expression in human colorectal cancer cells via activation of Erk1/2 MAPK and suppression of STAT3 activity, J. Cell. Biochem. 118 (2017) 2958-2967.
    [103]
    R. Kumariya, A.K. Garsa, Y.S. Rajput, et al., Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria, Microb. Pathog. 128 (2019) 171-177.
    [104]
    P.D. Cotter, R.P. Ross, C. Hill, Bacteriocins: A viable alternative to antibiotics? Nat. Rev. Microbiol. 11 (2013) 95-105.
    [105]
    S.C. Yang, C.H. Lin, C.T. Sung, et al., Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals, Front. Microbiol. 5 (2014), 241.
    [106]
    D. Kohoutova, D. Smajs, P. Moravkova, et al., Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia, BMC Infect. Dis. 14 (2014), 733.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (32) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return