| Citation: | Jing Liu, Mingxia Deng, Xiaoying He, Jing Ma, Li Zhang, Xi Yang, Jinyao Dai, Shaohua Dong, Yichun Zhang, Zhijuan Zhang, Shuaibing Ying, Haoyang Hu, Lushun Jiang, Yujing Wang, Yunqing Qiu, Yan Lou. TREM1-mediated macrophage activation drives voriconazole-induced hepatic steatosis: Diagnostic and therapeutic implications[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101540 |
| [1] |
S. Weber, A.L. Gerbes, Challenges and Future of Drug-Induced Liver Injury Research-Laboratory Tests, Int J Mol Sci 23 (2022) https://doi.org/10.3390/ijms23116049.
|
| [2] |
C.M. Hunt, J.I. Papay, V. Stanulovic, et al., Drug rechallenge following drug-induced liver injury, Hepatology 66 (2017) 646-654 https://doi.org/10.1002/hep.29152.
|
| [3] |
E.S. Bjornsson, Drug-induced liver injury due to antibiotics, Scand J Gastroenterol 52 (2017) 617-623 https://doi.org/10.1080/00365521.2017.1291719.
|
| [4] |
T. Wang, H. Zhu, J. Sun, et al., Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections, Int J Antimicrob Agents 44 (2014) 436-442 https://doi.org/10.1016/j.ijantimicag.2014.07.013.
|
| [5] |
F. Jacobs, D. Selleslag, M. Aoun, et al., An observational efficacy and safety analysis of the treatment of acute invasive aspergillosis using voriconazole, Eur J Clin Microbiol Infect Dis 31 (2012) 1173-1179 https://doi.org/10.1007/s10096-011-1425-5.
|
| [6] |
Z.X. Zhou, X.D. Yin, Y. Zhang, et al., Antifungal Drugs and Drug-Induced Liver Injury: A Real-World Study Leveraging the FDA Adverse Event Reporting System Database, Front Pharmacol 13 (2022) 891336 https://doi.org/10.3389/fphar.2022.891336.
|
| [7] |
Y. Lou, Y. Wang, J. Liu, et al., Voriconazole-induced liver injury: incidence patterns and risk factors in a retrospective cohort, Antimicrob Agents Chemother 69 (2025) e0048725 https://doi.org/10.1128/aac.00487-25.
|
| [8] |
M. Sun, P. Chen, K. Xiao, et al., Circulating Cell-Free DNAs as a Biomarker and Therapeutic Target for Acetaminophen-Induced Liver Injury, Adv Sci (Weinh) 10 (2023) e2206789 https://doi.org/10.1002/advs.202206789.
|
| [9] |
K.C. Ravindra, V.S. Vaidya, Z. Wang, et al., Tandem mass tag-based quantitative proteomic profiling identifies candidate serum biomarkers of drug-induced liver injury in humans, Nat Commun 14 (2023) 1215 https://doi.org/10.1038/s41467-023-36858-6.
|
| [10] |
G.Y. Chen, H.H. Chiu, S.W. Lin, et al., Development and application of a comparative fatty acid analysis method to investigate voriconazole-induced hepatotoxicity, Clin Chim Acta 438 (2015) 126-134 https://doi.org/10.1016/j.cca.2014.08.013.
|
| [11] |
J. Wu, N. Chen, Y. Yao, et al., Hyperlipidemia Caused by Voriconazole: A Case Report, Infect Drug Resist 14 (2021) 483-487 https://doi.org/10.2147/idr.S301198.
|
| [12] |
Q. Du, M. Teng, L. Yang, et al., Metabolic characteristics of voriconazole - Induced liver injury in rats, Chem Biol Interact 383 (2023) 110693 https://doi.org/10.1016/j.cbi.2023.110693.
|
| [13] |
S.L. Wu, T.Y. Wei, S.W. Lin, et al., Metabolomics Investigation of Voriconazole-Induced Hepatotoxicity in Mice, Chem Res Toxicol 32 (2019) 1840-1849 https://doi.org/10.1021/acs.chemrestox.9b00176.
|
| [14] |
W. Xu, H. Hou, W. Yang, et al., Immunologic role of macrophages in sepsis-induced acute liver injury, Int Immunopharmacol 143 (2024) 113492 https://doi.org/10.1016/j.intimp.2024.113492.
|
| [15] |
L. Boulter, O. Govaere, T.G. Bird, et al., Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease, Nat Med 18 (2012) 572-579 https://doi.org/10.1038/nm.2667.
|
| [16] |
D. Feng, X. Xiang, Y. Guan, et al., Monocyte-derived macrophages orchestrate multiple cell-type interactions to repair necrotic liver lesions in disease models, J Clin Invest 133 (2023) https://doi.org/10.1172/jci166954.
|
| [17] |
M. Flores Molina, M.N. Abdelnabi, S. Mazouz, et al., Distinct spatial distribution and roles of Kupffer cells and monocyte-derived macrophages in mouse acute liver injury, Front Immunol 13 (2022) 994480 https://doi.org/10.3389/fimmu.2022.994480.
|
| [18] |
X. Wu, W. Zhao, Q. Miao, et al., CCR2+TREM-1+ monocytes promote natural killer T cell dysfunction contributing towards HBV disease progression, Immunol Res 72 (2024) 938-947 https://doi.org/10.1007/s12026-024-09495-4.
|
| [19] |
D. Zysset, B. Weber, S. Rihs, et al., TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis, Nat Commun 7 (2016) 13151 https://doi.org/10.1038/ncomms13151.
|
| [20] |
D. Tornai, I. Furi, Z.T. Shen, et al., Inhibition of Triggering Receptor Expressed on Myeloid Cells 1 Ameliorates Inflammation and Macrophage and Neutrophil Activation in Alcoholic Liver Disease in Mice, Hepatol Commun 3 (2019) 99-115 https://doi.org/10.1002/hep4.1269.
|
| [21] |
S. Rao, J. Huang, Z. Shen, et al., Inhibition of TREM-1 attenuates inflammation and lipid accumulation in diet-induced nonalcoholic fatty liver disease, J Cell Biochem 120 (2019) 11867-11877 https://doi.org/10.1002/jcb.28468.
|
| [22] |
S.M. Yu, H. Li, G.H. Deng, et al., sTREM-1 as promising prognostic biomarker for acute-on-chronic liver failure and mortality in patients with acute decompensation of cirrhosis, World J Gastroenterol 30 (2024) 1177-1188 https://doi.org/10.3748/wjg.v30.i9.1177.
|
| [23] |
Q. Li, Y. Zhao, H. Guo, et al., Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment, Autophagy 19 (2023) 2639-2656 https://doi.org/10.1080/15548627.2023.2213984.
|
| [24] |
A.T. Nguyen-Lefebvre, A. Ajith, V. Portik-Dobos, et al., The innate immune receptor TREM-1 promotes liver injury and fibrosis, J Clin Invest 128 (2018) 4870-4883 https://doi.org/10.1172/jci98156.
|
| [25] |
I. Amigues, N. Cohen, D. Chung, et al., Hepatic safety of voriconazole after allogeneic hematopoietic stem cell transplantation, Biol Blood Marrow Transplant 16 (2010) 46-52 https://doi.org/10.1016/j.bbmt.2009.08.015.
|
| [26] |
M. Prado-Acosta, S. Jeong, A. Utrero-Rico, et al., Inhibition of RIP1 improves immune reconstitution and reduces GVHD mortality while preserving graft-versus-leukemia effects, Sci Transl Med 15 (2023) eadf8366 https://doi.org/10.1126/scitranslmed.adf8366.
|
| [27] |
G. De Simone, F. Andreata, C. Bleriot, et al., Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming, Immunity 54 (2021) 2089-2100.e2088 https://doi.org/10.1016/j.immuni.2021.05.005.
|
| [28] |
J. Wang, H. An, M. Ding, et al., Liver macrophages and sinusoidal endothelial cells execute vaccine-elicited capture of invasive bacteria, Sci Transl Med 15 (2023) eade0054 https://doi.org/10.1126/scitranslmed.ade0054.
|
| [29] |
R. Fima, S. Dussaud, C. Benbida, et al., Loss of embryonically-derived Kupffer cells during hypercholesterolemia accelerates atherosclerosis development, Nat Commun 15 (2024) 8341 https://doi.org/10.1038/s41467-024-52735-2.
|
| [30] |
Q. Du, Y. Qiu, L. Yang, et al., Mechanism and marker of voriconazole-induced liver injury: insights from a quantitative systems toxicology approach, Regul Toxicol Pharmacol 162 (2025) 105871 https://doi.org/10.1016/j.yrtph.2025.105871.
|
| [31] |
Y. Cai, H. Li, M. Liu, et al., Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity, Hepatology 68 (2018) 48-61 https://doi.org/10.1002/hep.29777.
|
| [32] |
L. Shojaie, M. Ali, A. Iorga, et al., Mechanisms of immune checkpoint inhibitor-mediated liver injury, Acta Pharm Sin B 11 (2021) 3727-3739 https://doi.org/10.1016/j.apsb.2021.10.003.
|
| [33] |
R.F. Schwabe, D.A. Brenner, Hepatic stellate cells: balancing homeostasis, hepatoprotection and fibrogenesis in health and disease, Nat Rev Gastroenterol Hepatol 22 (2025) 481-499 https://doi.org/10.1038/s41575-025-01068-6.
|
| [34] |
R. Liao, T.W. Sun, Y. Yi, et al., Expression of TREM-1 in hepatic stellate cells and prognostic value in hepatitis B-related hepatocellular carcinoma, Cancer Sci 103 (2012) 984-992 https://doi.org/10.1111/j.1349-7006.2012.02273.x.
|
| [35] |
Q. Wang, J. Jiang, G. Ying, et al., Tamoxifen enhances stemness and promotes metastasis of ERα36(+) breast cancer by upregulating ALDH1A1 in cancer cells, Cell Res 28 (2018) 336-358 https://doi.org/10.1038/cr.2018.15.
|
| [36] |
W.J. Zhong, J. Zhang, J.X. Duan, et al., TREM-1 triggers necroptosis of macrophages through mTOR-dependent mitochondrial fission during acute lung injury, J Transl Med 21 (2023) 179 https://doi.org/10.1186/s12967-023-04027-4.
|
| [37] |
Y.J. Fu, B. Xu, S.W. Huang, et al., Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14, Acta Pharmacol Sin 42 (2021) 88-96 https://doi.org/10.1038/s41401-020-0411-9.
|
| [38] |
J. Wang, X. Xue, X. Zhao, et al., Forsythiaside A alleviates acute lung injury by inhibiting inflammation and epithelial barrier damages in lung and colon through PPAR-γ/RXR-α complex, J Adv Res 60 (2024) 183-200 https://doi.org/10.1016/j.jare.2023.08.006.
|
| [39] |
P. Tuo, R. Zhao, N. Li, et al., Lycorine inhibits Ang II-induced heart remodeling and inflammation by suppressing the PI3K-AKT/NF-κB pathway, Phytomedicine 128 (2024) 155464 https://doi.org/10.1016/j.phymed.2024.155464.
|
| [40] |
Q. Cai, C. Zhao, Y. Xu, et al., Qingda granule alleviates cerebral ischemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 signaling in microglia, J Ethnopharmacol 324 (2024) 117712 https://doi.org/10.1016/j.jep.2024.117712.
|
| [41] |
M. Wu, Z. Yang, C. Zhang, et al., Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy, Metabolism 118 (2021) 154748 https://doi.org/10.1016/j.metabol.2021.154748.
|
| [42] |
E.R. Bowman, C.M. Cameron, B. Richardson, et al., Macrophage maturation from blood monocytes is altered in people with HIV, and is linked to serum lipid profiles and activation indices: A model for studying atherogenic mechanisms, PLoS Pathog 16 (2020) e1008869 https://doi.org/10.1371/journal.ppat.1008869.
|
| [43] |
A. Hadinia, A.H. Doustimotlagh, H.R. Goodarzi, et al., Circulating Levels of Pro-inflammatory Cytokines in Patients with Nonalcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis, Iran J Immunol 16 (2019) 327-333 https://doi.org/10.22034/iji.2019.80284.
|
| [44] |
D. Kucsera, V.E. Toth, N.V. Sayour, et al., IL-1β neutralization prevents diastolic dysfunction development, but lacks hepatoprotective effect in an aged mouse model of NASH, Sci Rep 13 (2023) 356 https://doi.org/10.1038/s41598-022-26896-3.
|
| [45] |
H.J. Ryu, J.S. Han, J.H. Koo, ASB3 Degrades the Gateway to β-Oxidation: Editorial on "Hepatocytic ASB3 deficiency alleviates MASLD by decreasing ubiquitin-mediated CPT1A", Clin Mol Hepatol (2025) https://doi.org/10.3350/cmh.2025.1021.
|
| [46] |
V. Cuvier, U. Lorch, S. Witte, et al., A first-in-man safety and pharmacokinetics study of nangibotide, a new modulator of innate immune response through TREM-1 receptor inhibition, Br J Clin Pharmacol 84 (2018) 2270-2279 https://doi.org/10.1111/bcp.13668.
|
| [47] |
B. Francois, S. Lambden, T. Fivez, et al., Prospective evaluation of the efficacy, safety, and optimal biomarker enrichment strategy for nangibotide, a TREM-1 inhibitor, in patients with septic shock (ASTONISH): a double-blind, randomised, controlled, phase 2b trial, Lancet Respir Med 11 (2023) 894-904 https://doi.org/10.1016/s2213-2600(23)00158-3.
|
| [48] |
M.S. Moosa, G. Maartens, H. Gunter, et al., A Randomized Controlled Trial of Intravenous N-Acetylcysteine in the Management of Anti-tuberculosis Drug-Induced Liver Injury, Clin Infect Dis 73 (2021) e3377-e3383 https://doi.org/10.1093/cid/ciaa1255.
|
| [49] |
D. Sukumaran, P. Usharani, G.K. Paramjyothi, et al., A study to evaluate the hepatoprotective effect of N- acetylcysteine on anti tuberculosis drug induced hepatotoxicity and quality of life, Indian J Tuberc 70 (2023) 303-310 https://doi.org/10.1016/j.ijtb.2022.05.012.
|
| [50] |
S.U. Thorsen, C.B. Pipper, H.B. Mortensen, et al., Levels of soluble TREM-1 in children with newly diagnosed type 1 diabetes and their siblings without type 1 diabetes: a Danish case-control study, Pediatr Diabetes 18 (2017) 749-754 https://doi.org/10.1111/pedi.12464.
|