Turn off MathJax
Article Contents
Baoli He, Yujia Weng, Peihua Luo, Zhifei Xu, Hao Yan, Bo Yang, Qiaojun He, Jiabin Lu, Xiaochun Yang. Exploring the potential of natural products in treating alopecia areata[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101539
Citation: Baoli He, Yujia Weng, Peihua Luo, Zhifei Xu, Hao Yan, Bo Yang, Qiaojun He, Jiabin Lu, Xiaochun Yang. Exploring the potential of natural products in treating alopecia areata[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101539

Exploring the potential of natural products in treating alopecia areata

doi: 10.1016/j.jpha.2025.101539
Funds:

This work was supported by grants from the Youth Fund of the National Natural Science Foundation of China (Grant No.: 82404960), and the National Key Research and Development Program (Program No.: 2020YFE0204300).

  • Received Date: Aug. 04, 2025
  • Accepted Date: Dec. 23, 2025
  • Rev Recd Date: Dec. 22, 2025
  • Available Online: Jan. 07, 2026
  • Alopecia areata (AA) is an autoimmune disorder characterized by sudden hair loss, affecting millions worldwide. Conventional synthetic drug treatments are often limited by side effects, driving interest in natural alternatives. This review highlights terpenoids, flavonoids, and polyphenols as promising natural compounds that effectively promote hair regrowth in AA. These phytochemicals exert therapeutic effects primarily by activating pro-anagenic signaling pathways, notably the Wnt/β-catenin and phosphoinositide 3-kinase-protein kinase B (PI3K-Akt) pathways, while inhibiting catagen-associated pathways such as transforming growth factor-β (TGF-β), and modulating immune dysregulation through the suppression of Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling. This review has detailed the mechanisms through which these compounds support hair follicle regeneration, restore immune balance, and reduce inflammation. Collectively, the evidence highlights the significant therapeutic potential of natural products for AA, underscoring the need for further translational research.
  • loading
  • [1]
    S.H. Park, S.W. Song, Y.J. Lee, et al., Mesenchymal Stem Cell Therapy in Alopecia Areata: Visual and Molecular Evidence from a Mouse Model, Int. J. Mol. Sci. 25 (2024) 9236 https://doi.org/10.3390/ijms25179236.
    [2]
    F. Dall'Oglio, M.R. Nasca, F. Lacarrubba, et al., Alopecia areata treatment with baricitinib: different relapse phenotypes, J Dermatolog Treat 35 (2024) 2324832 https://doi.org/10.1080/09546634.2024.2324832.
    [3]
    S. de Lusignan, H. Alexander, C. Broderick, et al., Atopic dermatitis and risk of autoimmune conditions: Population-based cohort study, J. Allergy Clin. Immunol. 150 (2022) 709-713 https://doi.org/10.1016/j.jaci.2022.03.030.
    [4]
    H.M. Seo, S.S. Han, J.S. Kim, Cancer risks among patients with alopecia areata: A population-based case-control study in Korea, J. Am. Acad. Dermatol. 78 (2018) 209-211 https://doi.org/10.1016/j.jaad.2017.08.011.
    [5]
    J.W. Shin, T. Kang, J.S. Lee, et al., Time-Dependent Risk of Acute Myocardial Infarction in Patients With Alopecia Areata in Korea, JAMA Dermatol 156 (2020) 763-771 https://doi.org/10.1001/jamadermatol.2020.1133.
    [6]
    M. Shahidi-Dadras, N. Bahraini, F. Rajabi, et al., Patients with alopecia areata show signs of insulin resistance, Arch. Dermatol. Res. 311 (2019) 529-533 https://doi.org/10.1007/s00403-019-01929-6.
    [7]
    A. Thatiparthi, A. Martin, S. Suh, et al., Inflammatory ocular comorbidities in alopecia areata: A retrospective cohort study of a single academic center, J. Am. Acad. Dermatol. 88 (2023) 221-223 https://doi.org/10.1016/j.jaad.2022.06.018.
    [8]
    S.I. Cho, D.A. Yu, S.I. Kim, et al., Pregnancy Outcomes in Female Patients with Alopecia Areata: A Nationwide Population-Based Study, J. Invest. Dermatol. 141 (2021) 1844-1847.e1844 https://doi.org/10.1016/j.jid.2020.12.014.
    [9]
    J. Dou, Z. Zhang, X. Xu, et al., Exploring the effects of Chinese herbal ingredients on the signaling pathway of alopecia and the screening of effective Chinese herbal compounds, J. Ethnopharmacol. 294 (2022) 115320 https://doi.org/10.1016/j.jep.2022.115320.
    [10]
    K.D. Moudgil, S.H. Venkatesha, The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation, Int. J. Mol. Sci. 24 (2022) https://doi.org/10.3390/ijms24010095.
    [11]
    Y. Ma, H. Lin, Y. Li, et al., Amentoflavone Induces Ferroptosis to Alleviate Proliferation, Migration, Invasion and Inflammation in Rheumatoid Arthritis Fibroblast-like Synoviocytes by Inhibiting PIN1, Cell Biochem. Biophys. 83 (2025) 1299-1312 https://doi.org/10.1007/s12013-024-01563-8.
    [12]
    G. Khawaja, Y. El-Orfali, A. Shoujaa, et al., Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis-Mechanisms, Evidence, and Therapeutic Potential, Pharmaceuticals (Basel) 17 (2024) 963 https://doi.org/10.3390/ph17070963.
    [13]
    N. El Menyiy, A. El Allam, S. Aboulaghras, et al., Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds, Biomed. Pharmacother. 151 (2022) 113158 https://doi.org/10.1016/j.biopha.2022.113158.
    [14]
    I. Sutic Udovic, N. Hlaca, L.P. Massari, et al., Deciphering the Complex Immunopathogenesis of Alopecia Areata, Int. J. Mol. Sci. 25 (2024) 5652 https://doi.org/10.3390/ijms25115652.
    [15]
    L. Rudnicka, M. Arenbergerova, R. Grimalt, et al., European expert consensus statement on the systemic treatment of alopecia areata, J. Eur. Acad. Dermatol. Venereol. 38 (2024) 687-694 https://doi.org/10.1111/jdv.19768.
    [16]
    R. Roskoski, Jr., Properties of FDA-approved small molecule protein kinase inhibitors: A 2025 update, Pharmacol. Res. 216 (2025) 107723 https://doi.org/10.1016/j.phrs.2025.107723.
    [17]
    N.M.P. Administration, June 30, 2025 Information on the delivery of documents certifying drug approval. https://www.nmpa.gov.cn/zwfw/sdxx/sdxxyp/yppjfb/20250630161536179.html. (Accessed 30 June 2025).
    [18]
    H.J. Kim, S.Z. Kazmi, T. Kang, et al., Familial risk and incidence of alopecia areata among first degree relatives-A nationwide population-based study in Korea, J. Am. Acad. Dermatol. 85 (2021) 1360-1362 https://doi.org/10.1016/j.jaad.2020.10.063.
    [19]
    N. Lortkipanidze, A. Zlotogorski, Y. Ramot, Two Episodes of Simultaneous Identical Alopecia Areata in Identical Twins, Int J Trichology 8 (2016) 47-48 https://doi.org/10.4103/0974-7753.179398.
    [20]
    S. Verma, R. Sinclair, A. Das, Identical Alopecia Areata in Identical Twin Sisters, Int J Trichology 12 (2020) 247-248 https://doi.org/10.4103/ijt.ijt_120_20.
    [21]
    S. Mohanty, P.C. Rohatgi, K. Manchanda, Co-existent Presence of Alopecia Areata in Siblings: A Rare Presentation, Int J Trichology 6 (2014) 67-68 https://doi.org/10.4103/0974-7753.138591.
    [22]
    C.H. Pratt, L.E. King, Jr., A.G. Messenger, et al., Alopecia areata, Nat Rev Dis Primers 3 (2017) 17011 https://doi.org/10.1038/nrdp.2017.11.
    [23]
    A. Gilhar, A. Etzioni, R. Paus, Alopecia areata, N. Engl. J. Med. 366 (2012) 1515-1525 https://doi.org/10.1056/NEJMra1103442.
    [24]
    L.C. Strazzulla, E.H.C. Wang, L. Avila, et al., Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis, J. Am. Acad. Dermatol. 78 (2018) 1-12 https://doi.org/10.1016/j.jaad.2017.04.1141.
    [25]
    C. Zhou, X. Li, C. Wang, et al., Alopecia Areata: an Update on Etiopathogenesis, Diagnosis, and Management, Clin. Rev. Allergy Immunol. 61 (2021) 403-423 https://doi.org/10.1007/s12016-021-08883-0.
    [26]
    P. Suchonwanit, C. Kositkuljorn, C. Pomsoong, Alopecia Areata: An Autoimmune Disease of Multiple Players, Immunotargets Ther 10 (2021) 299-312 https://doi.org/10.2147/itt.S266409.
    [27]
    Y. Minokawa, Y. Sawada, M. Nakamura, Lifestyle Factors Involved in the Pathogenesis of Alopecia Areata, Int. J. Mol. Sci. 23 (2022) 1038 https://doi.org/10.3390/ijms23031038.
    [28]
    P. Sanchez-Pellicer, L. Navarro-Moratalla, E. Nunez-Delegido, et al., How Our Microbiome Influences the Pathogenesis of Alopecia Areata, Genes (Basel) 13 (2022) 1860 https://doi.org/10.3390/genes13101860.
    [29]
    Y.Q. Ma, Z. Sun, Y.M. Li, et al., Oxidative stress and alopecia areata, Front Med (Lausanne) 10 (2023) 1181572 https://doi.org/10.3389/fmed.2023.1181572.
    [30]
    M. Bertolini, K. McElwee, A. Gilhar, et al., Hair follicle immune privilege and its collapse in alopecia areata, Exp. Dermatol. 29 (2020) 703-725 https://doi.org/10.1111/exd.14155.
    [31]
    T. Passeron, B. King, J. Seneschal, et al., Inhibition of T-cell activity in alopecia areata: recent developments and new directions, Front. Immunol. 14 (2023) 1243556 https://doi.org/10.3389/fimmu.2023.1243556.
    [32]
    R. Schmidt-Ullrich, R. Paus, Molecular principles of hair follicle induction and morphogenesis, Bioessays 27 (2005) 247-261 https://doi.org/10.1002/bies.20184.
    [33]
    T. Ito, Recent advances in the pathogenesis of autoimmune hair loss disease alopecia areata, Clin. Dev. Immunol. 2013 (2013) 348546 https://doi.org/10.1155/2013/348546.
    [34]
    L. Castelo-Soccio, Diagnosis and management of alopecia in children, Pediatr. Clin. North Am. 61 (2014) 427-442 https://doi.org/10.1016/j.pcl.2013.12.002.
    [35]
    T. Suzuki, J. Cheret, F.D. Scala, et al., Interleukin-15 is a hair follicle immune privilege guardian, J. Autoimmun. 145 (2024) 103217 https://doi.org/10.1016/j.jaut.2024.103217.
    [36]
    M.R. Schneider, R. Schmidt-Ullrich, R. Paus, The hair follicle as a dynamic miniorgan, Curr. Biol. 19 (2009) R132-142 https://doi.org/10.1016/j.cub.2008.12.005.
    [37]
    D. Stough, K. Stenn, R. Haber, et al., Psychological effect, pathophysiology, and management of androgenetic alopecia in men, Mayo Clin. Proc. 80 (2005) 1316-1322 https://doi.org/10.4065/80.10.1316.
    [38]
    R. Williams, A.D. Pawlus, M.J. Thornton, Getting under the skin of hair aging: the impact of the hair follicle environment, Exp. Dermatol. 29 (2020) 588-597 https://doi.org/10.1111/exd.14109.
    [39]
    S. Azzawi, L.R. Penzi, M.M. Senna, Immune Privilege Collapse and Alopecia Development: Is Stress a Factor, Skin Appendage Disord 4 (2018) 236-244 https://doi.org/10.1159/000485080.
    [40]
    J.A. Villadangos, Current research in immunology inaugural editorial, Curr Res Immunol 1 (2020) ii https://doi.org/10.1016/j.crimmu.2020.11.001.
    [41]
    T. Ito, N. Ito, A. Bettermann, et al., Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model, Am. J. Pathol. 164 (2004) 623-634 https://doi.org/10.1016/s0002-9440(10)63151-3.
    [42]
    M. Lensing, A. Jabbari, An overview of JAK/STAT pathways and JAK inhibition in alopecia areata, Front. Immunol. 13 (2022) 955035 https://doi.org/10.3389/fimmu.2022.955035.
    [43]
    J.J.T. Olayinka, J.M. Richmond, Immunopathogenesis of alopecia areata, Curr Res Immunol 2 (2021) 7-11 https://doi.org/10.1016/j.crimmu.2021.02.001.
    [44]
    Q. Wang, X. Zhao, Y. Jiang, et al., Functions of Representative Terpenoids and Their Biosynthesis Mechanisms in Medicinal Plants, Biomolecules 13 (2023) 1725 https://doi.org/10.3390/biom13121725.
    [45]
    Y. Miao, Y. Sun, W. Wang, et al., 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice, PLoS One 8 (2013) e57226 https://doi.org/10.1371/journal.pone.0057226.
    [46]
    A.N. Abbas, Ginger (Zingiber officinale (L.) Rosc) improves oxidative stress and trace elements status in patients with alopecia areata, Niger. J. Clin. Pract. 23 (2020) 1555-1560 https://doi.org/10.4103/njcp.njcp_59_19.
    [47]
    T. Li, G. Zhang, X. Zhou, et al., Cedrol in ginger (Zingiber officinale) as a promising hair growth drug: The effects of oral and external administration on hair regeneration and its mechanism, Bioorg. Chem. 151 (2024) 107709 https://doi.org/10.1016/j.bioorg.2024.107709.
    [48]
    T. Iwabuchi, K. Ogura, K. Hagiwara, et al., Ginsenosides in Panax ginseng Extract Promote Anagen Transition by Suppressing BMP4 Expression and Promote Human Hair Growth by Stimulating Follicle-Cell Proliferation, Biol. Pharm. Bull. 47 (2024) 240-244 https://doi.org/10.1248/bpb.b23-00276.
    [49]
    Y.H. Lee, H.J. Choi, J.Y. Kim, et al., Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway, J. Microbiol. Biotechnol. 31 (2021) 933-941 https://doi.org/10.4014/jmb.2101.01032.
    [50]
    C. Fang, H. Yang, C. Zhu, et al., Ginsenoside CK inhibits androgenetic alopecia by regulating Wnt/β-catenin and p53 signaling pathways in AGA mice, Food Frontiers 4 (2023) 1270-1284 https://doi.org/10.1002/fft2.272.
    [51]
    D. Huang, Z.Y. Gong, S.C. Liu, et al., Panax notoginseng saponins promote hair follicle growth in mice via Wnt/β-Catenin signaling pathway, Chem. Biol. Drug Des. 101 (2023) 1416-1424 https://doi.org/10.1111/cbdd.14224.
    [52]
    J. Lu, L. Xie, K. Liu, et al., Bilobalide: A review of its pharmacology, pharmacokinetics, toxicity, and safety, Phytother. Res. 35 (2021) 6114-6130 https://doi.org/10.1002/ptr.7220.
    [53]
    H. Zhang, Q. Shi, W. Nan, et al., Ginkgolide B and bilobalide promote the growth and increase β-catenin expression in hair follicle dermal papilla cells of American minks, Biofactors 45 (2019) 950-958 https://doi.org/10.1002/biof.1562.
    [54]
    B. Liu, X. Chen, H. Yi, et al., β-Catenin is involved in oleanolic acid-dependent promotion of proliferation in human hair matrix cells in an in vitro organ culture model, Fitoterapia 121 (2017) 136-140 https://doi.org/10.1016/j.fitote.2017.07.007.
    [55]
    Y.E. Kim, H.C. Choi, G. Nam, et al., Costunolide promotes the proliferation of human hair follicle dermal papilla cells and induces hair growth in C57BL/6 mice, J. Cosmet. Dermatol. 18 (2019) 414-421 https://doi.org/10.1111/jocd.12674.
    [56]
    Y. Manse, F. Luo, K. Kato, et al., Ent-kaurane-type diterpenoids from Isodonis Herba activate human hair follicle dermal papilla cells proliferation via the Akt/GSK-3β/β-catenin transduction pathway, J. Nat. Med. 75 (2021) 326-338 https://doi.org/10.1007/s11418-020-01477-8.
    [57]
    Y.R. Lee, S. Bae, J.Y. Kim, et al., Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the Akt/β-Catenin Signaling Pathway, J. Microbiol. Biotechnol. 29 (2019) 1830-1840 https://doi.org/10.4014/jmb.1908.08018.
    [58]
    J.S. Choi, S.K. Jung, M.H. Jeon, et al., Effects of Lycopersicon esculentum extract on hair growth and alopecia prevention, J Cosmet Sci 64 (2013) 429-443.
    [59]
    Y. Li, Y. Li, Y. Yao, et al., Potential of cucurbitacin as an anticancer drug, Biomed. Pharmacother. 168 (2023) 115707 https://doi.org/10.1016/j.biopha.2023.115707.
    [60]
    K. Guo, L. Wang, Y. Zhong, et al., Cucurbitacin promotes hair growth in mice by inhibiting the expression of fibroblast growth factor 18, Ann Transl Med 10 (2022) 1104 https://doi.org/10.21037/atm-22-4423.
    [61]
    S. Park, H.W. Park, D.B. Seo, et al., In vitro hair growth-promoting effects of araliadiol via the p38/PPAR-γ signaling pathway in human hair follicle stem cells and dermal papilla cells, Front. Pharmacol. 15 (2024) 1482898 https://doi.org/10.3389/fphar.2024.1482898.
    [62]
    P. Chopra, H. Chhillar, Y.J. Kim, et al., Phytochemistry of ginsenosides: Recent advancements and emerging roles, Crit. Rev. Food Sci. Nutr. 63 (2023) 613-640 https://doi.org/10.1080/10408398.2021.1952159.
    [63]
    S. Yu, H. Xia, Y. Guo, et al., Ginsenoside Rb1 retards aging process by regulating cell cycle, apoptotic pathway and metabolism of aging mice, J. Ethnopharmacol. 255 (2020) 112746 https://doi.org/10.1016/j.jep.2020.112746.
    [64]
    Z. Li, J.J. Li, L.J. Gu, et al., Ginsenosides Rb1 and Rd regulate proliferation of mature keratinocytes through induction of p63 expression in hair follicles, Phytother. Res. 27 (2013) 1095-1101 https://doi.org/10.1002/ptr.4828.
    [65]
    S.N. Kim, S. Kim, Y.D. Hong, et al., The ginsenosides of Panax ginseng promote hair growth via similar mechanism of minoxidil, J. Dermatol. Sci. 77 (2015) 132-134 https://doi.org/10.1016/j.jdermsci.2014.12.007.
    [66]
    B.Y. Choi, Hair-Growth Potential of Ginseng and Its Major Metabolites: A Review on Its Molecular Mechanisms, Int. J. Mol. Sci. 19 (2018) 2703 https://doi.org/10.3390/ijms19092703.
    [67]
    S. Park, W.S. Shin, J. Ho, Fructus panax ginseng extract promotes hair regeneration in C57BL/6 mice, J. Ethnopharmacol. 138 (2011) 340-344 https://doi.org/10.1016/j.jep.2011.08.013.
    [68]
    V.L. Truong, W.S. Jeong, Hair Growth-Promoting Mechanisms of Red Ginseng Extract through Stimulating Dermal Papilla Cell Proliferation and Enhancing Skin Health, Prev Nutr Food Sci 26 (2021) 275-284 https://doi.org/10.3746/pnf.2021.26.3.275.
    [69]
    V.L. Truong, Y.S. Keum, W.S. Jeong, Red ginseng oil promotes hair growth and protects skin against UVC radiation, J Ginseng Res 45 (2021) 498-509 https://doi.org/10.1016/j.jgr.2020.12.008.
    [70]
    S.H. Xia, D.C. Fang, Pharmacological action and mechanisms of ginkgolide B, Chin. Med. J. (Engl.) 120 (2007) 922-928 https://doi.org/10.1097/00029330-200705020-00013.
    [71]
    J.M. Castellano, S. Ramos-Romero, J.S. Perona, Oleanolic Acid: Extraction, Characterization and Biological Activity, Nutrients 14 (2022) 623 https://doi.org/10.3390/nu14030623.
    [72]
    D.Y. Kim, B.Y. Choi, Costunolide-A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential, Int. J. Mol. Sci. 20 (2019) 2926 https://doi.org/10.3390/ijms20122926.
    [73]
    C.W. Lu, Y.C. Huang, K.M. Chiu, et al., Enmein Decreases Synaptic Glutamate Release and Protects against Kainic Acid-Induced Brain Injury in Rats, Int. J. Mol. Sci. 22 (2021) 12966 https://doi.org/10.3390/ijms222312966.
    [74]
    M. Murata, Y. Nakai, K. Kawazu, et al., Loliolide, a Carotenoid Metabolite, Is a Potential Endogenous Inducer of Herbivore Resistance, Plant Physiol. 179 (2019) 1822-1833 https://doi.org/10.1104/pp.18.00837.
    [75]
    L. Li, Z. Liu, H. Jiang, et al., Biotechnological production of lycopene by microorganisms, Appl. Microbiol. Biotechnol. 104 (2020) 10307-10324 https://doi.org/10.1007/s00253-020-10967-4.
    [76]
    K. Wen, X. Fang, J. Yang, et al., Recent Research on Flavonoids and their Biomedical Applications, Curr. Med. Chem. 28 (2021) 1042-1066 https://doi.org/10.2174/0929867327666200713184138.
    [77]
    K.L. Ivey, M.K. Jensen, J.M. Hodgson, et al., Association of flavonoid-rich foods and flavonoids with risk of all-cause mortality, Br. J. Nutr. 117 (2017) 1470-1477 https://doi.org/10.1017/s0007114517001325.
    [78]
    F.N. Hamed, A.J.G. McDonagh, S. Almaghrabi, et al., Epigallocatechin-3 Gallate Inhibits STAT-1/JAK2/IRF-1/HLA-DR/HLA-B and Reduces CD8 MKG2D Lymphocytes of Alopecia Areata Patients, Int. J. Environ. Res. Public Health 15 (2018) 2882 https://doi.org/10.3390/ijerph15122882.
    [79]
    O.S. Kwon, J.H. Han, H.G. Yoo, et al., Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG), Phytomedicine 14 (2007) 551-555 https://doi.org/10.1016/j.phymed.2006.09.009.
    [80]
    K.J. McElwee, S. Niiyama, P. Freyschmidt-Paul, et al., Dietary soy oil content and soy-derived phytoestrogen genistein increase resistance to alopecia areata onset in C3H/HeJ mice, Exp. Dermatol. 12 (2003) 30-36 https://doi.org/10.1034/j.1600-0625.2003.120104.x.
    [81]
    N. Harada, K. Okajima, M. Arai, et al., Administration of capsaicin and isoflavone promotes hair growth by increasing insulin-like growth factor-I production in mice and in humans with alopecia, Growth Horm. IGF Res. 17 (2007) 408-415 https://doi.org/10.1016/j.ghir.2007.04.009.
    [82]
    J. Zhao, N. Harada, H. Kurihara, et al., Dietary isoflavone increases insulin-like growth factor-I production, thereby promoting hair growth in mice, J. Nutr. Biochem. 22 (2011) 227-233 https://doi.org/10.1016/j.jnutbio.2010.01.008.
    [83]
    M. Manzoor, D. Chen, J. Lin, et al., Isoquercitrin promotes hair growth through induction of autophagy and angiogenesis by targeting AMPK and IGF-1R, Phytomedicine 136 (2025) 156289 https://doi.org/10.1016/j.phymed.2024.156289.
    [84]
    H.I. Cheon, S. Bae, K.J. Ahn, Flavonoid Silibinin Increases Hair-Inductive Property Via Akt and Wnt/β-Catenin Signaling Activation in 3-Dimensional-Spheroid Cultured Human Dermal Papilla Cells, J. Microbiol. Biotechnol. 29 (2019) 321-329 https://doi.org/10.4014/jmb.1810.10050.
    [85]
    G.K. Yuen, S. Lin, T.T. Dong, et al., Sophoricoside, a genistein glycoside from Fructus Sophorae, promotes hair growth via activation of M4 muscarinic AChR in dermal papilla cells, J. Ethnopharmacol. 334 (2024) 118585 https://doi.org/10.1016/j.jep.2024.118585.
    [86]
    J. Kim, S.R. Kim, Y.H. Choi, et al., Quercitrin Stimulates Hair Growth with Enhanced Expression of Growth Factors via Activation of MAPK/CREB Signaling Pathway, Molecules 25 (2020) 4004 https://doi.org/10.3390/molecules25174004.
    [87]
    M.H. Kim, Y.Y. Choi, J.E. Lee, et al., Topical Treatment of Hair Loss with Formononetin by Modulating Apoptosis, Planta Med. 82 (2016) 65-69 https://doi.org/10.1055/s-0035-1557897.
    [88]
    J. Luo, M. Chen, Y. Liu, et al., Nature-derived lignan compound VB-1 exerts hair growth-promoting effects by augmenting Wnt/β-catenin signaling in human dermal papilla cells, PeerJ 6 (2018) e4737 https://doi.org/10.7717/peerj.4737.
    [89]
    S.A. Almatroodi, A. Almatroudi, A.A. Khan, et al., Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer, Molecules 25 (2020) 3146 https://doi.org/10.3390/molecules25143146.
    [90]
    J. Sharifi-Rad, C. Quispe, M. Imran, et al., Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits, Oxid. Med. Cell. Longev. 2021 (2021) 3268136 https://doi.org/10.1155/2021/3268136.
    [91]
    L. Krizova, K. Dadakova, J. Kasparovska, et al., Isoflavones, Molecules 24 (2019) 1076 https://doi.org/10.3390/molecules24061076.
    [92]
    J.O. Lim, N.R. Shin, Y.S. Seo, et al., Silibinin Attenuates Silica Dioxide Nanoparticles-Induced Inflammation by Suppressing TXNIP/MAPKs/AP-1 Signaling, Cells 9 (2020) 678 https://doi.org/10.3390/cells9030678.
    [93]
    L. Yu, Y. Zhang, Q. Chen, et al., Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway, Biomed. Pharmacother. 149 (2022) 112836 https://doi.org/10.1016/j.biopha.2022.112836.
    [94]
    F. Babaei, A. Moafizad, Z. Darvishvand, et al., Review of the effects of vitexin in oxidative stress-related diseases, Food Sci Nutr 8 (2020) 2569-2580 https://doi.org/10.1002/fsn3.1567.
    [95]
    S. Zhang, M. Xu, W. Zhang, et al., Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications, Int. J. Mol. Sci. 22 (2021) 6110 https://doi.org/10.3390/ijms22116110.
    [96]
    B.C. Nguyen, N. Taira, H. Maruta, et al., Artepillin C and Other Herbal PAK1-blockers: Effects on Hair Cell Proliferation and Related PAK1-dependent Biological Function in Cell Culture, Phytother. Res. 30 (2016) 120-127 https://doi.org/10.1002/ptr.5510.
    [97]
    Y. Mao, Z. Xu, J. Song, et al., Efficacy of a mixed preparation containing piperine, capsaicin and curcumin in the treatment of alopecia areata, J. Cosmet. Dermatol. 21 (2022) 4510-4514 https://doi.org/10.1111/jocd.14931.
    [98]
    Y. Zhang, C. Ni, Y. Huang, et al., Hair Growth-Promoting Effect of Resveratrol in Mice, Human Hair Follicles and Dermal Papilla Cells, Clin. Cosmet. Investig. Dermatol. 14 (2021) 1805-1814 https://doi.org/10.2147/ccid.S335963.
    [99]
    T. Thianthanyakij, Y. Zhou, M. Wu, et al., Salvianolic Acid B Reduces Oxidative Stress to Promote Hair-Growth in Mice, Human Hair Follicles and Dermal Papilla Cells, Clin. Cosmet. Investig. Dermatol. 17 (2024) 791-804 https://doi.org/10.2147/ccid.S454844.
    [100]
    R.R. Kotha, D.L. Luthria, Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects, Molecules 24 (2019) 2930 https://doi.org/10.3390/molecules24162930.
    [101]
    L. Vollono, M. Falconi, R. Gaziano, et al., Potential of Curcumin in Skin Disorders, Nutrients 11 (2019) 2169 https://doi.org/10.3390/nu11092169.
    [102]
    L.X. Zhang, C.X. Li, M.U. Kakar, et al., Resveratrol (RV): A pharmacological review and call for further research, Biomed. Pharmacother. 143 (2021) 112164 https://doi.org/10.1016/j.biopha.2021.112164.
    [103]
    S. Sasmaz, O. Arican, Comparison of azelaic acid and anthralin for the therapy of patchy alopecia areata: a pilot study, Am. J. Clin. Dermatol. 6 (2005) 403-406 https://doi.org/10.2165/00128071-200506060-00007.
    [104]
    X. He, X. Duan, J. Liu, et al., The antiinflammatory effects of Xuefu Zhuyu decoction on C3H/HeJ mice with alopecia areata, Phytomedicine 81 (2021) 153423 https://doi.org/10.1016/j.phymed.2020.153423.
    [105]
    X. He, J. Liu, Y. Gong, et al., Amygdalin ameliorates alopecia areata on C3H/HeJ mice by inhibiting inflammation through JAK2/STAT3 pathway, J. Ethnopharmacol. 331 (2024) 118317 https://doi.org/10.1016/j.jep.2024.118317.
    [106]
    N. Kobayashi, R. Suzuki, C. Koide, et al., [Effect of leaves of Ginkgo biloba on hair regrowth in C3H strain mice], Yakugaku Zasshi 113 (1993) 718-724 https://doi.org/10.1248/yakushi1947.113.10_718.
    [107]
    S. Nie, S. Zhang, Y. Wang, et al., Extraction, purification, structural characterization, and bioactivities of Ginkgo biloba leave polysaccharides: A review, Int. J. Biol. Macromol. 281 (2024) 136280 https://doi.org/10.1016/j.ijbiomac.2024.136280.
    [108]
    Y. Li, Y. Sheng, J. Liu, et al., Hair-growth promoting effect and anti-inflammatory mechanism of Ginkgo biloba polysaccharides, Carbohydr Polym 278 (2022) 118811 https://doi.org/10.1016/j.carbpol.2021.118811.
    [109]
    Y. Li, Y. Mu, X. Chen, et al., Deoxyshikonin from Arnebiae Radix promotes hair growth by targeting the Wnt/β-catenin signaling pathway, Phytomedicine 140 (2025) 156590 https://doi.org/10.1016/j.phymed.2025.156590.
    [110]
    T. Iwabuchi, K. Ogura, K. Tamba, et al., Cepharanthine induces the proliferation of human dermal papilla cells and stimulates vascular endothelial growth factor expression through increased intracellular calcium mobilization and hypoxia-inducible factor activation, Clin. Exp. Dermatol. 46 (2021) 694-703 https://doi.org/10.1111/ced.14533.
    [111]
    T. Searle, F.R. Ali, F. Al-Niaimi, The versatility of azelaic acid in dermatology, J Dermatolog Treat 33 (2022) 722-732 https://doi.org/10.1080/09546634.2020.1800579.
    [112]
    E. Amirfakhryan, B. Davarnia, F. Jeddi, et al., Azelaic acid stimulates catalase activation and promotes hair growth through upregulation of Gli1 and Gli2 mRNA and Shh protein, Avicenna J Phytomed 10 (2020) 460-471.
    [113]
    X.Y. He, L.J. Wu, W.X. Wang, et al., Amygdalin - A pharmacological and toxicological review, J. Ethnopharmacol. 254 (2020) 112717 https://doi.org/10.1016/j.jep.2020.112717.
    [114]
    D. Liang, Q. Li, L. Du, et al., Pharmacological Effects and Clinical Prospects of Cepharanthine, Molecules 27 (2022) https://doi.org/10.3390/molecules27248933.
    [115]
    Y. Ma, B.H. Kim, S.K. Yun, et al., Centipeda minima Extract Inhibits Inflammation and Cell Proliferation by Regulating JAK/STAT Signaling in Macrophages and Keratinocytes, Molecules 28 (2023) 1723 https://doi.org/10.3390/molecules28041723.
    [116]
    B.H. Kim, M.J. Lee, W.Y. Lee, et al., Hair Growth Stimulation Effect of Centipeda minima Extract: Identification of Active Compounds and Anagen-Activating Signaling Pathways, Biomolecules 11 (2021) 976 https://doi.org/10.3390/biom11070976.
    [117]
    J.Y. Baek, B.H. Kim, D.W. Kim, et al., Hair Growth Effect of DN106212 in C57BL/6 Mouse and Its Network Pharmacological Mechanism of Action, Curr. Issues Mol. Biol. 45 (2023) 5071-5083 https://doi.org/10.3390/cimb45060322.
    [118]
    I.C. Hou, Y. Oi, H. Fujita, et al., A hair growth-promoting effect of Chinese black tea extract in mice, Biosci. Biotechnol. Biochem. 77 (2013) 1606-1607 https://doi.org/10.1271/bbb.130298.
    [119]
    W.A. Boisvert, M. Yu, Y. Choi, et al., Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice, BMC Complement. Altern. Med. 17 (2017) 109 https://doi.org/10.1186/s12906-017-1624-4.
    [120]
    J.W. Ahn, S.K. Jang, B.R. Jo, et al., Promotion effects of steam-dried Betula platyphylla extract on hair regrowth, Korean Journal of Food Science and Technology 54 (2022) 43-51 https://doi.org/10.3839/10.9721/KJFST.2022.54.1.43.
    [121]
    V.L. Truong, W.S. Jeong, Hair Growth-Promoting Effects of Rosehip (Rosa canina L.) Seed Oil in C57BL/6 Mice, Prev Nutr Food Sci 28 (2023) 411-417 https://doi.org/10.3746/pnf.2023.28.4.411.
    [122]
    C. Yu, G. Liu, J. Qin, et al., Genomic and transcriptomic studies on flavonoid biosynthesis in Lagerstroemia indica, BMC Plant Biol. 24 (2024) 171 https://doi.org/10.1186/s12870-024-04776-4.
    [123]
    B.H. Kim, M.K. Kim, B.Y. Choi, Lagerstroemia indica extract regulates human hair dermal papilla cell growth and degeneration via modulation of β-catenin, Stat6, and TGF-β signaling pathway, J. Cosmet. Dermatol. 21 (2022) 2763-2773 https://doi.org/10.1111/jocd.15081.
    [124]
    H.M. Kang, K.J. Won, D.Y. Kim, et al., Chemical Composition of Miscanthus sinensis var. purpurascens Flower Absolute and Its Beneficial Effects on Skin Wound Healing and Melanogenesis-Related Cell Activities, Chem. Biodivers. 18 (2021) e2100383 https://doi.org/10.1002/cbdv.202100383.
    [125]
    G.H. Jeong, W.A. Boisvert, M.Z. Xi, et al., Effect of Miscanthus sinensis var. purpurascens Flower Extract on Proliferation and Molecular Regulation in Human Dermal Papilla Cells and Stressed C57BL/6 Mice, Chin. J. Integr. Med. 24 (2018) 591-599 https://doi.org/10.1007/s11655-017-2755-7.
    [126]
    M. Arooj, S. Imran, M. Inam-Ur-Raheem, et al., Lotus seeds (Nelumbinis semen) as an emerging therapeutic seed: A comprehensive review, Food Sci Nutr 9 (2021) 3971-3987 https://doi.org/10.1002/fsn3.2313.
    [127]
    H.J. Park, G.R. Jin, J.H. Jung, et al., Hair Growth Promotion Effect of Nelumbinis Semen Extract with High Antioxidant Activity, Evid. Based Complement. Alternat. Med. 2021 (2021) 6661373 https://doi.org/10.1155/2021/6661373.
    [128]
    H. Fu, W. Li, Z. Weng, et al., Water extract of cacumen platycladi promotes hair growth through the Akt/GSK3β/β-catenin signaling pathway, Front. Pharmacol. 14 (2023) 1038039 https://doi.org/10.3389/fphar.2023.1038039.
    [129]
    L.M. Santos, M.S. Fonseca, A.R. Sokolonski, et al., Propolis: types, composition, biological activities, and veterinary product patent prospecting, J. Sci. Food Agric. 100 (2020) 1369-1382 https://doi.org/10.1002/jsfa.10024.
    [130]
    Y. Tang, C. Wang, M.J.M. Desamero, et al., The Philippines stingless bee propolis promotes hair growth through activation of Wnt/β-catenin signaling pathway, Exp. Anim. 72 (2023) 132-139 https://doi.org/10.1538/expanim.22-0092.
    [131]
    S. Miyata, Y. Oda, C. Matsuo, et al., Stimulatory effect of Brazilian propolis on hair growth through proliferation of keratinocytes in mice, J. Agric. Food Chem. 62 (2014) 11854-11861 https://doi.org/10.1021/jf503184s.
    [132]
    H. Xiang, Y. Zhang, J. Li, et al., Terminalia bellirica (Gaertn.) Roxb. Extracts reshape the perifollicular microenvironment and regulate the MAPK pathway for androgenetic alopecia treatment, J. Ethnopharmacol. 337 (2025) 118778 https://doi.org/10.1016/j.jep.2024.118778.
    [133]
    D.J. Messner, C. Surrago, C. Fiordalisi, et al., Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids, Biometals 30 (2017) 699-708 https://doi.org/10.1007/s10534-017-0038-6.
    [134]
    X. Li, Q. Jiang, T. Wang, et al., Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 6″-OH Group, Molecules 21 (2016) 1246 https://doi.org/10.3390/molecules21091246.
    [135]
    L. Wan, S. Li, J. Du, et al., Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases, ACS Biomater Sci Eng 11 (2025) 2502-2527 https://doi.org/10.1021/acsbiomaterials.4c02366.
    [136]
    S. Zhong, C. Huang, M. Zhuang, et al., Botanical extract combined with minoxidil improve hidrotic ectodermal dysplasia caused by p.G11R mutations: a case report, J Dermatolog Treat 35 (2024) 2378163 https://doi.org/10.1080/09546634.2024.2378163.
    [137]
    G. Pumthong, P. Asawanonda, S. Varothai, et al., Curcuma aeruginosa, a novel botanically derived 5α-reductase inhibitor in the treatment of male-pattern baldness: a multicenter, randomized, double-blind, placebo-controlled study, J Dermatolog Treat 23 (2012) 385-392 https://doi.org/10.3109/09546634.2011.568470.
    [138]
    A.R. Castro, C. Portinha, E. Logarinho, The Emergent Power of Human Cellular vs Mouse Models in Translational Hair Research, Stem Cells Transl Med 11 (2022) 1021-1028 https://doi.org/10.1093/stcltm/szac059.
    [139]
    B.C. Sorkin, A.J. Kuszak, J.S. Williamson, et al., The Challenge of Reproducibility and Accuracy in Nutrition Research: Resources and Pitfalls, Adv. Nutr. 7 (2016) 383-389 https://doi.org/10.3945/an.115.010595.
    [140]
    K.M. Nelson, J.L. Dahlin, J. Bisson, et al., The Essential Medicinal Chemistry of Curcumin, J. Med. Chem. 60 (2017) 1620-1637 https://doi.org/10.1021/acs.jmedchem.6b00975.
    [141]
    Y. Yang, Y. Sun, T. Gu, et al., The Metabolic Characteristics and Bioavailability of Resveratrol Based on Metabolic Enzymes, Nutr. Rev. 83 (2025) 749-770 https://doi.org/10.1093/nutrit/nuae161.
    [142]
    H.J. Won, H.I. Kim, T. Park, et al., Non-clinical pharmacokinetic behavior of ginsenosides, J Ginseng Res 43 (2019) 354-360 https://doi.org/10.1016/j.jgr.2018.06.001.
    [143]
    S. Mehmood, M. Maqsood, N. Mahtab, et al., Epigallocatechin gallate: Phytochemistry, bioavailability, utilization challenges, and strategies, J. Food Biochem. 46 (2022) e14189 https://doi.org/10.1111/jfbc.14189.
    [144]
    W. Cheng, K. Xia, S. Wu, et al., Herb-Drug Interactions and Their Impact on Pharmacokinetics: An Update, Curr Drug Metab 24 (2023) 28-69 https://doi.org/10.2174/1389200224666230116113240.
    [145]
    M.K. Islam, T. Sostaric, L.Y. Lim, et al., Development of an HPTLC-based dynamic reference standard for the analysis of complex natural products using Jarrah honey as test sample, PLoS One 16 (2021) e0254857 https://doi.org/10.1371/journal.pone.0254857.
    [146]
    J.M. Betz, P.N. Brown, M.C. Roman, Accuracy, precision, and reliability of chemical measurements in natural products research, Fitoterapia 82 (2011) 44-52 https://doi.org/10.1016/j.fitote.2010.09.011.
    [147]
    M.N. Pereira, L.L. Nogueira, M. Cunha-Filho, et al., Methodologies to Evaluate the Hair Follicle-Targeted Drug Delivery Provided by Nanoparticles, Pharmaceutics 15 (2023) 2002 https://doi.org/10.3390/pharmaceutics15072002.
    [148]
    Y. Yang, P. Wang, Y. Gong, et al., Curcumin-zinc framework encapsulated microneedle patch for promoting hair growth, Theranostics 13 (2023) 3675-3688 https://doi.org/10.7150/thno.84118.
    [149]
    Y. Shan, C. Xu, Y. Guo, et al., Liposomes enhance the hair follicle delivery of minoxidil sulfate with improved treatment of androgenic alopecia, Int. J. Pharm. 677 (2025) 125642 https://doi.org/10.1016/j.ijpharm.2025.125642.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (42) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return