| Citation: | Baoli He, Yujia Weng, Peihua Luo, Zhifei Xu, Hao Yan, Bo Yang, Qiaojun He, Jiabin Lu, Xiaochun Yang. Exploring the potential of natural products in treating alopecia areata[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101539 |
| [1] |
S.H. Park, S.W. Song, Y.J. Lee, et al., Mesenchymal Stem Cell Therapy in Alopecia Areata: Visual and Molecular Evidence from a Mouse Model, Int. J. Mol. Sci. 25 (2024) 9236 https://doi.org/10.3390/ijms25179236.
|
| [2] |
F. Dall'Oglio, M.R. Nasca, F. Lacarrubba, et al., Alopecia areata treatment with baricitinib: different relapse phenotypes, J Dermatolog Treat 35 (2024) 2324832 https://doi.org/10.1080/09546634.2024.2324832.
|
| [3] |
S. de Lusignan, H. Alexander, C. Broderick, et al., Atopic dermatitis and risk of autoimmune conditions: Population-based cohort study, J. Allergy Clin. Immunol. 150 (2022) 709-713 https://doi.org/10.1016/j.jaci.2022.03.030.
|
| [4] |
H.M. Seo, S.S. Han, J.S. Kim, Cancer risks among patients with alopecia areata: A population-based case-control study in Korea, J. Am. Acad. Dermatol. 78 (2018) 209-211 https://doi.org/10.1016/j.jaad.2017.08.011.
|
| [5] |
J.W. Shin, T. Kang, J.S. Lee, et al., Time-Dependent Risk of Acute Myocardial Infarction in Patients With Alopecia Areata in Korea, JAMA Dermatol 156 (2020) 763-771 https://doi.org/10.1001/jamadermatol.2020.1133.
|
| [6] |
M. Shahidi-Dadras, N. Bahraini, F. Rajabi, et al., Patients with alopecia areata show signs of insulin resistance, Arch. Dermatol. Res. 311 (2019) 529-533 https://doi.org/10.1007/s00403-019-01929-6.
|
| [7] |
A. Thatiparthi, A. Martin, S. Suh, et al., Inflammatory ocular comorbidities in alopecia areata: A retrospective cohort study of a single academic center, J. Am. Acad. Dermatol. 88 (2023) 221-223 https://doi.org/10.1016/j.jaad.2022.06.018.
|
| [8] |
S.I. Cho, D.A. Yu, S.I. Kim, et al., Pregnancy Outcomes in Female Patients with Alopecia Areata: A Nationwide Population-Based Study, J. Invest. Dermatol. 141 (2021) 1844-1847.e1844 https://doi.org/10.1016/j.jid.2020.12.014.
|
| [9] |
J. Dou, Z. Zhang, X. Xu, et al., Exploring the effects of Chinese herbal ingredients on the signaling pathway of alopecia and the screening of effective Chinese herbal compounds, J. Ethnopharmacol. 294 (2022) 115320 https://doi.org/10.1016/j.jep.2022.115320.
|
| [10] |
K.D. Moudgil, S.H. Venkatesha, The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation, Int. J. Mol. Sci. 24 (2022) https://doi.org/10.3390/ijms24010095.
|
| [11] |
Y. Ma, H. Lin, Y. Li, et al., Amentoflavone Induces Ferroptosis to Alleviate Proliferation, Migration, Invasion and Inflammation in Rheumatoid Arthritis Fibroblast-like Synoviocytes by Inhibiting PIN1, Cell Biochem. Biophys. 83 (2025) 1299-1312 https://doi.org/10.1007/s12013-024-01563-8.
|
| [12] |
G. Khawaja, Y. El-Orfali, A. Shoujaa, et al., Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis-Mechanisms, Evidence, and Therapeutic Potential, Pharmaceuticals (Basel) 17 (2024) 963 https://doi.org/10.3390/ph17070963.
|
| [13] |
N. El Menyiy, A. El Allam, S. Aboulaghras, et al., Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds, Biomed. Pharmacother. 151 (2022) 113158 https://doi.org/10.1016/j.biopha.2022.113158.
|
| [14] |
I. Sutic Udovic, N. Hlaca, L.P. Massari, et al., Deciphering the Complex Immunopathogenesis of Alopecia Areata, Int. J. Mol. Sci. 25 (2024) 5652 https://doi.org/10.3390/ijms25115652.
|
| [15] |
L. Rudnicka, M. Arenbergerova, R. Grimalt, et al., European expert consensus statement on the systemic treatment of alopecia areata, J. Eur. Acad. Dermatol. Venereol. 38 (2024) 687-694 https://doi.org/10.1111/jdv.19768.
|
| [16] |
R. Roskoski, Jr., Properties of FDA-approved small molecule protein kinase inhibitors: A 2025 update, Pharmacol. Res. 216 (2025) 107723 https://doi.org/10.1016/j.phrs.2025.107723.
|
| [17] |
N.M.P. Administration, June 30, 2025 Information on the delivery of documents certifying drug approval.
|
| [18] |
H.J. Kim, S.Z. Kazmi, T. Kang, et al., Familial risk and incidence of alopecia areata among first degree relatives-A nationwide population-based study in Korea, J. Am. Acad. Dermatol. 85 (2021) 1360-1362 https://doi.org/10.1016/j.jaad.2020.10.063.
|
| [19] |
N. Lortkipanidze, A. Zlotogorski, Y. Ramot, Two Episodes of Simultaneous Identical Alopecia Areata in Identical Twins, Int J Trichology 8 (2016) 47-48 https://doi.org/10.4103/0974-7753.179398.
|
| [20] |
S. Verma, R. Sinclair, A. Das, Identical Alopecia Areata in Identical Twin Sisters, Int J Trichology 12 (2020) 247-248 https://doi.org/10.4103/ijt.ijt_120_20.
|
| [21] |
S. Mohanty, P.C. Rohatgi, K. Manchanda, Co-existent Presence of Alopecia Areata in Siblings: A Rare Presentation, Int J Trichology 6 (2014) 67-68 https://doi.org/10.4103/0974-7753.138591.
|
| [22] |
C.H. Pratt, L.E. King, Jr., A.G. Messenger, et al., Alopecia areata, Nat Rev Dis Primers 3 (2017) 17011 https://doi.org/10.1038/nrdp.2017.11.
|
| [23] |
A. Gilhar, A. Etzioni, R. Paus, Alopecia areata, N. Engl. J. Med. 366 (2012) 1515-1525 https://doi.org/10.1056/NEJMra1103442.
|
| [24] |
L.C. Strazzulla, E.H.C. Wang, L. Avila, et al., Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis, J. Am. Acad. Dermatol. 78 (2018) 1-12 https://doi.org/10.1016/j.jaad.2017.04.1141.
|
| [25] |
C. Zhou, X. Li, C. Wang, et al., Alopecia Areata: an Update on Etiopathogenesis, Diagnosis, and Management, Clin. Rev. Allergy Immunol. 61 (2021) 403-423 https://doi.org/10.1007/s12016-021-08883-0.
|
| [26] |
P. Suchonwanit, C. Kositkuljorn, C. Pomsoong, Alopecia Areata: An Autoimmune Disease of Multiple Players, Immunotargets Ther 10 (2021) 299-312 https://doi.org/10.2147/itt.S266409.
|
| [27] |
Y. Minokawa, Y. Sawada, M. Nakamura, Lifestyle Factors Involved in the Pathogenesis of Alopecia Areata, Int. J. Mol. Sci. 23 (2022) 1038 https://doi.org/10.3390/ijms23031038.
|
| [28] |
P. Sanchez-Pellicer, L. Navarro-Moratalla, E. Nunez-Delegido, et al., How Our Microbiome Influences the Pathogenesis of Alopecia Areata, Genes (Basel) 13 (2022) 1860 https://doi.org/10.3390/genes13101860.
|
| [29] |
Y.Q. Ma, Z. Sun, Y.M. Li, et al., Oxidative stress and alopecia areata, Front Med (Lausanne) 10 (2023) 1181572 https://doi.org/10.3389/fmed.2023.1181572.
|
| [30] |
M. Bertolini, K. McElwee, A. Gilhar, et al., Hair follicle immune privilege and its collapse in alopecia areata, Exp. Dermatol. 29 (2020) 703-725 https://doi.org/10.1111/exd.14155.
|
| [31] |
T. Passeron, B. King, J. Seneschal, et al., Inhibition of T-cell activity in alopecia areata: recent developments and new directions, Front. Immunol. 14 (2023) 1243556 https://doi.org/10.3389/fimmu.2023.1243556.
|
| [32] |
R. Schmidt-Ullrich, R. Paus, Molecular principles of hair follicle induction and morphogenesis, Bioessays 27 (2005) 247-261 https://doi.org/10.1002/bies.20184.
|
| [33] |
T. Ito, Recent advances in the pathogenesis of autoimmune hair loss disease alopecia areata, Clin. Dev. Immunol. 2013 (2013) 348546 https://doi.org/10.1155/2013/348546.
|
| [34] |
L. Castelo-Soccio, Diagnosis and management of alopecia in children, Pediatr. Clin. North Am. 61 (2014) 427-442 https://doi.org/10.1016/j.pcl.2013.12.002.
|
| [35] |
T. Suzuki, J. Cheret, F.D. Scala, et al., Interleukin-15 is a hair follicle immune privilege guardian, J. Autoimmun. 145 (2024) 103217 https://doi.org/10.1016/j.jaut.2024.103217.
|
| [36] |
M.R. Schneider, R. Schmidt-Ullrich, R. Paus, The hair follicle as a dynamic miniorgan, Curr. Biol. 19 (2009) R132-142 https://doi.org/10.1016/j.cub.2008.12.005.
|
| [37] |
D. Stough, K. Stenn, R. Haber, et al., Psychological effect, pathophysiology, and management of androgenetic alopecia in men, Mayo Clin. Proc. 80 (2005) 1316-1322 https://doi.org/10.4065/80.10.1316.
|
| [38] |
R. Williams, A.D. Pawlus, M.J. Thornton, Getting under the skin of hair aging: the impact of the hair follicle environment, Exp. Dermatol. 29 (2020) 588-597 https://doi.org/10.1111/exd.14109.
|
| [39] |
S. Azzawi, L.R. Penzi, M.M. Senna, Immune Privilege Collapse and Alopecia Development: Is Stress a Factor, Skin Appendage Disord 4 (2018) 236-244 https://doi.org/10.1159/000485080.
|
| [40] |
J.A. Villadangos, Current research in immunology inaugural editorial, Curr Res Immunol 1 (2020) ii https://doi.org/10.1016/j.crimmu.2020.11.001.
|
| [41] |
T. Ito, N. Ito, A. Bettermann, et al., Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model, Am. J. Pathol. 164 (2004) 623-634 https://doi.org/10.1016/s0002-9440(10)63151-3.
|
| [42] |
M. Lensing, A. Jabbari, An overview of JAK/STAT pathways and JAK inhibition in alopecia areata, Front. Immunol. 13 (2022) 955035 https://doi.org/10.3389/fimmu.2022.955035.
|
| [43] |
J.J.T. Olayinka, J.M. Richmond, Immunopathogenesis of alopecia areata, Curr Res Immunol 2 (2021) 7-11 https://doi.org/10.1016/j.crimmu.2021.02.001.
|
| [44] |
Q. Wang, X. Zhao, Y. Jiang, et al., Functions of Representative Terpenoids and Their Biosynthesis Mechanisms in Medicinal Plants, Biomolecules 13 (2023) 1725 https://doi.org/10.3390/biom13121725.
|
| [45] |
Y. Miao, Y. Sun, W. Wang, et al., 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice, PLoS One 8 (2013) e57226 https://doi.org/10.1371/journal.pone.0057226.
|
| [46] |
A.N. Abbas, Ginger (Zingiber officinale (L.) Rosc) improves oxidative stress and trace elements status in patients with alopecia areata, Niger. J. Clin. Pract. 23 (2020) 1555-1560 https://doi.org/10.4103/njcp.njcp_59_19.
|
| [47] |
T. Li, G. Zhang, X. Zhou, et al., Cedrol in ginger (Zingiber officinale) as a promising hair growth drug: The effects of oral and external administration on hair regeneration and its mechanism, Bioorg. Chem. 151 (2024) 107709 https://doi.org/10.1016/j.bioorg.2024.107709.
|
| [48] |
T. Iwabuchi, K. Ogura, K. Hagiwara, et al., Ginsenosides in Panax ginseng Extract Promote Anagen Transition by Suppressing BMP4 Expression and Promote Human Hair Growth by Stimulating Follicle-Cell Proliferation, Biol. Pharm. Bull. 47 (2024) 240-244 https://doi.org/10.1248/bpb.b23-00276.
|
| [49] |
Y.H. Lee, H.J. Choi, J.Y. Kim, et al., Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway, J. Microbiol. Biotechnol. 31 (2021) 933-941 https://doi.org/10.4014/jmb.2101.01032.
|
| [50] |
C. Fang, H. Yang, C. Zhu, et al., Ginsenoside CK inhibits androgenetic alopecia by regulating Wnt/β-catenin and p53 signaling pathways in AGA mice, Food Frontiers 4 (2023) 1270-1284 https://doi.org/10.1002/fft2.272.
|
| [51] |
D. Huang, Z.Y. Gong, S.C. Liu, et al., Panax notoginseng saponins promote hair follicle growth in mice via Wnt/β-Catenin signaling pathway, Chem. Biol. Drug Des. 101 (2023) 1416-1424 https://doi.org/10.1111/cbdd.14224.
|
| [52] |
J. Lu, L. Xie, K. Liu, et al., Bilobalide: A review of its pharmacology, pharmacokinetics, toxicity, and safety, Phytother. Res. 35 (2021) 6114-6130 https://doi.org/10.1002/ptr.7220.
|
| [53] |
H. Zhang, Q. Shi, W. Nan, et al., Ginkgolide B and bilobalide promote the growth and increase β-catenin expression in hair follicle dermal papilla cells of American minks, Biofactors 45 (2019) 950-958 https://doi.org/10.1002/biof.1562.
|
| [54] |
B. Liu, X. Chen, H. Yi, et al., β-Catenin is involved in oleanolic acid-dependent promotion of proliferation in human hair matrix cells in an in vitro organ culture model, Fitoterapia 121 (2017) 136-140 https://doi.org/10.1016/j.fitote.2017.07.007.
|
| [55] |
Y.E. Kim, H.C. Choi, G. Nam, et al., Costunolide promotes the proliferation of human hair follicle dermal papilla cells and induces hair growth in C57BL/6 mice, J. Cosmet. Dermatol. 18 (2019) 414-421 https://doi.org/10.1111/jocd.12674.
|
| [56] |
Y. Manse, F. Luo, K. Kato, et al., Ent-kaurane-type diterpenoids from Isodonis Herba activate human hair follicle dermal papilla cells proliferation via the Akt/GSK-3β/β-catenin transduction pathway, J. Nat. Med. 75 (2021) 326-338 https://doi.org/10.1007/s11418-020-01477-8.
|
| [57] |
Y.R. Lee, S. Bae, J.Y. Kim, et al., Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the Akt/β-Catenin Signaling Pathway, J. Microbiol. Biotechnol. 29 (2019) 1830-1840 https://doi.org/10.4014/jmb.1908.08018.
|
| [58] |
J.S. Choi, S.K. Jung, M.H. Jeon, et al., Effects of Lycopersicon esculentum extract on hair growth and alopecia prevention, J Cosmet Sci 64 (2013) 429-443.
|
| [59] |
Y. Li, Y. Li, Y. Yao, et al., Potential of cucurbitacin as an anticancer drug, Biomed. Pharmacother. 168 (2023) 115707 https://doi.org/10.1016/j.biopha.2023.115707.
|
| [60] |
K. Guo, L. Wang, Y. Zhong, et al., Cucurbitacin promotes hair growth in mice by inhibiting the expression of fibroblast growth factor 18, Ann Transl Med 10 (2022) 1104 https://doi.org/10.21037/atm-22-4423.
|
| [61] |
S. Park, H.W. Park, D.B. Seo, et al., In vitro hair growth-promoting effects of araliadiol via the p38/PPAR-γ signaling pathway in human hair follicle stem cells and dermal papilla cells, Front. Pharmacol. 15 (2024) 1482898 https://doi.org/10.3389/fphar.2024.1482898.
|
| [62] |
P. Chopra, H. Chhillar, Y.J. Kim, et al., Phytochemistry of ginsenosides: Recent advancements and emerging roles, Crit. Rev. Food Sci. Nutr. 63 (2023) 613-640 https://doi.org/10.1080/10408398.2021.1952159.
|
| [63] |
S. Yu, H. Xia, Y. Guo, et al., Ginsenoside Rb1 retards aging process by regulating cell cycle, apoptotic pathway and metabolism of aging mice, J. Ethnopharmacol. 255 (2020) 112746 https://doi.org/10.1016/j.jep.2020.112746.
|
| [64] |
Z. Li, J.J. Li, L.J. Gu, et al., Ginsenosides Rb1 and Rd regulate proliferation of mature keratinocytes through induction of p63 expression in hair follicles, Phytother. Res. 27 (2013) 1095-1101 https://doi.org/10.1002/ptr.4828.
|
| [65] |
S.N. Kim, S. Kim, Y.D. Hong, et al., The ginsenosides of Panax ginseng promote hair growth via similar mechanism of minoxidil, J. Dermatol. Sci. 77 (2015) 132-134 https://doi.org/10.1016/j.jdermsci.2014.12.007.
|
| [66] |
B.Y. Choi, Hair-Growth Potential of Ginseng and Its Major Metabolites: A Review on Its Molecular Mechanisms, Int. J. Mol. Sci. 19 (2018) 2703 https://doi.org/10.3390/ijms19092703.
|
| [67] |
S. Park, W.S. Shin, J. Ho, Fructus panax ginseng extract promotes hair regeneration in C57BL/6 mice, J. Ethnopharmacol. 138 (2011) 340-344 https://doi.org/10.1016/j.jep.2011.08.013.
|
| [68] |
V.L. Truong, W.S. Jeong, Hair Growth-Promoting Mechanisms of Red Ginseng Extract through Stimulating Dermal Papilla Cell Proliferation and Enhancing Skin Health, Prev Nutr Food Sci 26 (2021) 275-284 https://doi.org/10.3746/pnf.2021.26.3.275.
|
| [69] |
V.L. Truong, Y.S. Keum, W.S. Jeong, Red ginseng oil promotes hair growth and protects skin against UVC radiation, J Ginseng Res 45 (2021) 498-509 https://doi.org/10.1016/j.jgr.2020.12.008.
|
| [70] |
S.H. Xia, D.C. Fang, Pharmacological action and mechanisms of ginkgolide B, Chin. Med. J. (Engl.) 120 (2007) 922-928 https://doi.org/10.1097/00029330-200705020-00013.
|
| [71] |
J.M. Castellano, S. Ramos-Romero, J.S. Perona, Oleanolic Acid: Extraction, Characterization and Biological Activity, Nutrients 14 (2022) 623 https://doi.org/10.3390/nu14030623.
|
| [72] |
D.Y. Kim, B.Y. Choi, Costunolide-A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential, Int. J. Mol. Sci. 20 (2019) 2926 https://doi.org/10.3390/ijms20122926.
|
| [73] |
C.W. Lu, Y.C. Huang, K.M. Chiu, et al., Enmein Decreases Synaptic Glutamate Release and Protects against Kainic Acid-Induced Brain Injury in Rats, Int. J. Mol. Sci. 22 (2021) 12966 https://doi.org/10.3390/ijms222312966.
|
| [74] |
M. Murata, Y. Nakai, K. Kawazu, et al., Loliolide, a Carotenoid Metabolite, Is a Potential Endogenous Inducer of Herbivore Resistance, Plant Physiol. 179 (2019) 1822-1833 https://doi.org/10.1104/pp.18.00837.
|
| [75] |
L. Li, Z. Liu, H. Jiang, et al., Biotechnological production of lycopene by microorganisms, Appl. Microbiol. Biotechnol. 104 (2020) 10307-10324 https://doi.org/10.1007/s00253-020-10967-4.
|
| [76] |
K. Wen, X. Fang, J. Yang, et al., Recent Research on Flavonoids and their Biomedical Applications, Curr. Med. Chem. 28 (2021) 1042-1066 https://doi.org/10.2174/0929867327666200713184138.
|
| [77] |
K.L. Ivey, M.K. Jensen, J.M. Hodgson, et al., Association of flavonoid-rich foods and flavonoids with risk of all-cause mortality, Br. J. Nutr. 117 (2017) 1470-1477 https://doi.org/10.1017/s0007114517001325.
|
| [78] |
F.N. Hamed, A.J.G. McDonagh, S. Almaghrabi, et al., Epigallocatechin-3 Gallate Inhibits STAT-1/JAK2/IRF-1/HLA-DR/HLA-B and Reduces CD8 MKG2D Lymphocytes of Alopecia Areata Patients, Int. J. Environ. Res. Public Health 15 (2018) 2882 https://doi.org/10.3390/ijerph15122882.
|
| [79] |
O.S. Kwon, J.H. Han, H.G. Yoo, et al., Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG), Phytomedicine 14 (2007) 551-555 https://doi.org/10.1016/j.phymed.2006.09.009.
|
| [80] |
K.J. McElwee, S. Niiyama, P. Freyschmidt-Paul, et al., Dietary soy oil content and soy-derived phytoestrogen genistein increase resistance to alopecia areata onset in C3H/HeJ mice, Exp. Dermatol. 12 (2003) 30-36 https://doi.org/10.1034/j.1600-0625.2003.120104.x.
|
| [81] |
N. Harada, K. Okajima, M. Arai, et al., Administration of capsaicin and isoflavone promotes hair growth by increasing insulin-like growth factor-I production in mice and in humans with alopecia, Growth Horm. IGF Res. 17 (2007) 408-415 https://doi.org/10.1016/j.ghir.2007.04.009.
|
| [82] |
J. Zhao, N. Harada, H. Kurihara, et al., Dietary isoflavone increases insulin-like growth factor-I production, thereby promoting hair growth in mice, J. Nutr. Biochem. 22 (2011) 227-233 https://doi.org/10.1016/j.jnutbio.2010.01.008.
|
| [83] |
M. Manzoor, D. Chen, J. Lin, et al., Isoquercitrin promotes hair growth through induction of autophagy and angiogenesis by targeting AMPK and IGF-1R, Phytomedicine 136 (2025) 156289 https://doi.org/10.1016/j.phymed.2024.156289.
|
| [84] |
H.I. Cheon, S. Bae, K.J. Ahn, Flavonoid Silibinin Increases Hair-Inductive Property Via Akt and Wnt/β-Catenin Signaling Activation in 3-Dimensional-Spheroid Cultured Human Dermal Papilla Cells, J. Microbiol. Biotechnol. 29 (2019) 321-329 https://doi.org/10.4014/jmb.1810.10050.
|
| [85] |
G.K. Yuen, S. Lin, T.T. Dong, et al., Sophoricoside, a genistein glycoside from Fructus Sophorae, promotes hair growth via activation of M4 muscarinic AChR in dermal papilla cells, J. Ethnopharmacol. 334 (2024) 118585 https://doi.org/10.1016/j.jep.2024.118585.
|
| [86] |
J. Kim, S.R. Kim, Y.H. Choi, et al., Quercitrin Stimulates Hair Growth with Enhanced Expression of Growth Factors via Activation of MAPK/CREB Signaling Pathway, Molecules 25 (2020) 4004 https://doi.org/10.3390/molecules25174004.
|
| [87] |
M.H. Kim, Y.Y. Choi, J.E. Lee, et al., Topical Treatment of Hair Loss with Formononetin by Modulating Apoptosis, Planta Med. 82 (2016) 65-69 https://doi.org/10.1055/s-0035-1557897.
|
| [88] |
J. Luo, M. Chen, Y. Liu, et al., Nature-derived lignan compound VB-1 exerts hair growth-promoting effects by augmenting Wnt/β-catenin signaling in human dermal papilla cells, PeerJ 6 (2018) e4737 https://doi.org/10.7717/peerj.4737.
|
| [89] |
S.A. Almatroodi, A. Almatroudi, A.A. Khan, et al., Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer, Molecules 25 (2020) 3146 https://doi.org/10.3390/molecules25143146.
|
| [90] |
J. Sharifi-Rad, C. Quispe, M. Imran, et al., Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits, Oxid. Med. Cell. Longev. 2021 (2021) 3268136 https://doi.org/10.1155/2021/3268136.
|
| [91] |
L. Krizova, K. Dadakova, J. Kasparovska, et al., Isoflavones, Molecules 24 (2019) 1076 https://doi.org/10.3390/molecules24061076.
|
| [92] |
J.O. Lim, N.R. Shin, Y.S. Seo, et al., Silibinin Attenuates Silica Dioxide Nanoparticles-Induced Inflammation by Suppressing TXNIP/MAPKs/AP-1 Signaling, Cells 9 (2020) 678 https://doi.org/10.3390/cells9030678.
|
| [93] |
L. Yu, Y. Zhang, Q. Chen, et al., Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway, Biomed. Pharmacother. 149 (2022) 112836 https://doi.org/10.1016/j.biopha.2022.112836.
|
| [94] |
F. Babaei, A. Moafizad, Z. Darvishvand, et al., Review of the effects of vitexin in oxidative stress-related diseases, Food Sci Nutr 8 (2020) 2569-2580 https://doi.org/10.1002/fsn3.1567.
|
| [95] |
S. Zhang, M. Xu, W. Zhang, et al., Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications, Int. J. Mol. Sci. 22 (2021) 6110 https://doi.org/10.3390/ijms22116110.
|
| [96] |
B.C. Nguyen, N. Taira, H. Maruta, et al., Artepillin C and Other Herbal PAK1-blockers: Effects on Hair Cell Proliferation and Related PAK1-dependent Biological Function in Cell Culture, Phytother. Res. 30 (2016) 120-127 https://doi.org/10.1002/ptr.5510.
|
| [97] |
Y. Mao, Z. Xu, J. Song, et al., Efficacy of a mixed preparation containing piperine, capsaicin and curcumin in the treatment of alopecia areata, J. Cosmet. Dermatol. 21 (2022) 4510-4514 https://doi.org/10.1111/jocd.14931.
|
| [98] |
Y. Zhang, C. Ni, Y. Huang, et al., Hair Growth-Promoting Effect of Resveratrol in Mice, Human Hair Follicles and Dermal Papilla Cells, Clin. Cosmet. Investig. Dermatol. 14 (2021) 1805-1814 https://doi.org/10.2147/ccid.S335963.
|
| [99] |
T. Thianthanyakij, Y. Zhou, M. Wu, et al., Salvianolic Acid B Reduces Oxidative Stress to Promote Hair-Growth in Mice, Human Hair Follicles and Dermal Papilla Cells, Clin. Cosmet. Investig. Dermatol. 17 (2024) 791-804 https://doi.org/10.2147/ccid.S454844.
|
| [100] |
R.R. Kotha, D.L. Luthria, Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects, Molecules 24 (2019) 2930 https://doi.org/10.3390/molecules24162930.
|
| [101] |
L. Vollono, M. Falconi, R. Gaziano, et al., Potential of Curcumin in Skin Disorders, Nutrients 11 (2019) 2169 https://doi.org/10.3390/nu11092169.
|
| [102] |
L.X. Zhang, C.X. Li, M.U. Kakar, et al., Resveratrol (RV): A pharmacological review and call for further research, Biomed. Pharmacother. 143 (2021) 112164 https://doi.org/10.1016/j.biopha.2021.112164.
|
| [103] |
S. Sasmaz, O. Arican, Comparison of azelaic acid and anthralin for the therapy of patchy alopecia areata: a pilot study, Am. J. Clin. Dermatol. 6 (2005) 403-406 https://doi.org/10.2165/00128071-200506060-00007.
|
| [104] |
X. He, X. Duan, J. Liu, et al., The antiinflammatory effects of Xuefu Zhuyu decoction on C3H/HeJ mice with alopecia areata, Phytomedicine 81 (2021) 153423 https://doi.org/10.1016/j.phymed.2020.153423.
|
| [105] |
X. He, J. Liu, Y. Gong, et al., Amygdalin ameliorates alopecia areata on C3H/HeJ mice by inhibiting inflammation through JAK2/STAT3 pathway, J. Ethnopharmacol. 331 (2024) 118317 https://doi.org/10.1016/j.jep.2024.118317.
|
| [106] |
N. Kobayashi, R. Suzuki, C. Koide, et al., [Effect of leaves of Ginkgo biloba on hair regrowth in C3H strain mice], Yakugaku Zasshi 113 (1993) 718-724 https://doi.org/10.1248/yakushi1947.113.10_718.
|
| [107] |
S. Nie, S. Zhang, Y. Wang, et al., Extraction, purification, structural characterization, and bioactivities of Ginkgo biloba leave polysaccharides: A review, Int. J. Biol. Macromol. 281 (2024) 136280 https://doi.org/10.1016/j.ijbiomac.2024.136280.
|
| [108] |
Y. Li, Y. Sheng, J. Liu, et al., Hair-growth promoting effect and anti-inflammatory mechanism of Ginkgo biloba polysaccharides, Carbohydr Polym 278 (2022) 118811 https://doi.org/10.1016/j.carbpol.2021.118811.
|
| [109] |
Y. Li, Y. Mu, X. Chen, et al., Deoxyshikonin from Arnebiae Radix promotes hair growth by targeting the Wnt/β-catenin signaling pathway, Phytomedicine 140 (2025) 156590 https://doi.org/10.1016/j.phymed.2025.156590.
|
| [110] |
T. Iwabuchi, K. Ogura, K. Tamba, et al., Cepharanthine induces the proliferation of human dermal papilla cells and stimulates vascular endothelial growth factor expression through increased intracellular calcium mobilization and hypoxia-inducible factor activation, Clin. Exp. Dermatol. 46 (2021) 694-703 https://doi.org/10.1111/ced.14533.
|
| [111] |
T. Searle, F.R. Ali, F. Al-Niaimi, The versatility of azelaic acid in dermatology, J Dermatolog Treat 33 (2022) 722-732 https://doi.org/10.1080/09546634.2020.1800579.
|
| [112] |
E. Amirfakhryan, B. Davarnia, F. Jeddi, et al., Azelaic acid stimulates catalase activation and promotes hair growth through upregulation of Gli1 and Gli2 mRNA and Shh protein, Avicenna J Phytomed 10 (2020) 460-471.
|
| [113] |
X.Y. He, L.J. Wu, W.X. Wang, et al., Amygdalin - A pharmacological and toxicological review, J. Ethnopharmacol. 254 (2020) 112717 https://doi.org/10.1016/j.jep.2020.112717.
|
| [114] |
D. Liang, Q. Li, L. Du, et al., Pharmacological Effects and Clinical Prospects of Cepharanthine, Molecules 27 (2022) https://doi.org/10.3390/molecules27248933.
|
| [115] |
Y. Ma, B.H. Kim, S.K. Yun, et al., Centipeda minima Extract Inhibits Inflammation and Cell Proliferation by Regulating JAK/STAT Signaling in Macrophages and Keratinocytes, Molecules 28 (2023) 1723 https://doi.org/10.3390/molecules28041723.
|
| [116] |
B.H. Kim, M.J. Lee, W.Y. Lee, et al., Hair Growth Stimulation Effect of Centipeda minima Extract: Identification of Active Compounds and Anagen-Activating Signaling Pathways, Biomolecules 11 (2021) 976 https://doi.org/10.3390/biom11070976.
|
| [117] |
J.Y. Baek, B.H. Kim, D.W. Kim, et al., Hair Growth Effect of DN106212 in C57BL/6 Mouse and Its Network Pharmacological Mechanism of Action, Curr. Issues Mol. Biol. 45 (2023) 5071-5083 https://doi.org/10.3390/cimb45060322.
|
| [118] |
I.C. Hou, Y. Oi, H. Fujita, et al., A hair growth-promoting effect of Chinese black tea extract in mice, Biosci. Biotechnol. Biochem. 77 (2013) 1606-1607 https://doi.org/10.1271/bbb.130298.
|
| [119] |
W.A. Boisvert, M. Yu, Y. Choi, et al., Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice, BMC Complement. Altern. Med. 17 (2017) 109 https://doi.org/10.1186/s12906-017-1624-4.
|
| [120] |
J.W. Ahn, S.K. Jang, B.R. Jo, et al., Promotion effects of steam-dried Betula platyphylla extract on hair regrowth, Korean Journal of Food Science and Technology 54 (2022) 43-51 https://doi.org/10.3839/10.9721/KJFST.2022.54.1.43.
|
| [121] |
V.L. Truong, W.S. Jeong, Hair Growth-Promoting Effects of Rosehip (Rosa canina L.) Seed Oil in C57BL/6 Mice, Prev Nutr Food Sci 28 (2023) 411-417 https://doi.org/10.3746/pnf.2023.28.4.411.
|
| [122] |
C. Yu, G. Liu, J. Qin, et al., Genomic and transcriptomic studies on flavonoid biosynthesis in Lagerstroemia indica, BMC Plant Biol. 24 (2024) 171 https://doi.org/10.1186/s12870-024-04776-4.
|
| [123] |
B.H. Kim, M.K. Kim, B.Y. Choi, Lagerstroemia indica extract regulates human hair dermal papilla cell growth and degeneration via modulation of β-catenin, Stat6, and TGF-β signaling pathway, J. Cosmet. Dermatol. 21 (2022) 2763-2773 https://doi.org/10.1111/jocd.15081.
|
| [124] |
H.M. Kang, K.J. Won, D.Y. Kim, et al., Chemical Composition of Miscanthus sinensis var. purpurascens Flower Absolute and Its Beneficial Effects on Skin Wound Healing and Melanogenesis-Related Cell Activities, Chem. Biodivers. 18 (2021) e2100383 https://doi.org/10.1002/cbdv.202100383.
|
| [125] |
G.H. Jeong, W.A. Boisvert, M.Z. Xi, et al., Effect of Miscanthus sinensis var. purpurascens Flower Extract on Proliferation and Molecular Regulation in Human Dermal Papilla Cells and Stressed C57BL/6 Mice, Chin. J. Integr. Med. 24 (2018) 591-599 https://doi.org/10.1007/s11655-017-2755-7.
|
| [126] |
M. Arooj, S. Imran, M. Inam-Ur-Raheem, et al., Lotus seeds (Nelumbinis semen) as an emerging therapeutic seed: A comprehensive review, Food Sci Nutr 9 (2021) 3971-3987 https://doi.org/10.1002/fsn3.2313.
|
| [127] |
H.J. Park, G.R. Jin, J.H. Jung, et al., Hair Growth Promotion Effect of Nelumbinis Semen Extract with High Antioxidant Activity, Evid. Based Complement. Alternat. Med. 2021 (2021) 6661373 https://doi.org/10.1155/2021/6661373.
|
| [128] |
H. Fu, W. Li, Z. Weng, et al., Water extract of cacumen platycladi promotes hair growth through the Akt/GSK3β/β-catenin signaling pathway, Front. Pharmacol. 14 (2023) 1038039 https://doi.org/10.3389/fphar.2023.1038039.
|
| [129] |
L.M. Santos, M.S. Fonseca, A.R. Sokolonski, et al., Propolis: types, composition, biological activities, and veterinary product patent prospecting, J. Sci. Food Agric. 100 (2020) 1369-1382 https://doi.org/10.1002/jsfa.10024.
|
| [130] |
Y. Tang, C. Wang, M.J.M. Desamero, et al., The Philippines stingless bee propolis promotes hair growth through activation of Wnt/β-catenin signaling pathway, Exp. Anim. 72 (2023) 132-139 https://doi.org/10.1538/expanim.22-0092.
|
| [131] |
S. Miyata, Y. Oda, C. Matsuo, et al., Stimulatory effect of Brazilian propolis on hair growth through proliferation of keratinocytes in mice, J. Agric. Food Chem. 62 (2014) 11854-11861 https://doi.org/10.1021/jf503184s.
|
| [132] |
H. Xiang, Y. Zhang, J. Li, et al., Terminalia bellirica (Gaertn.) Roxb. Extracts reshape the perifollicular microenvironment and regulate the MAPK pathway for androgenetic alopecia treatment, J. Ethnopharmacol. 337 (2025) 118778 https://doi.org/10.1016/j.jep.2024.118778.
|
| [133] |
D.J. Messner, C. Surrago, C. Fiordalisi, et al., Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids, Biometals 30 (2017) 699-708 https://doi.org/10.1007/s10534-017-0038-6.
|
| [134] |
X. Li, Q. Jiang, T. Wang, et al., Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 6″-OH Group, Molecules 21 (2016) 1246 https://doi.org/10.3390/molecules21091246.
|
| [135] |
L. Wan, S. Li, J. Du, et al., Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases, ACS Biomater Sci Eng 11 (2025) 2502-2527 https://doi.org/10.1021/acsbiomaterials.4c02366.
|
| [136] |
S. Zhong, C. Huang, M. Zhuang, et al., Botanical extract combined with minoxidil improve hidrotic ectodermal dysplasia caused by p.G11R mutations: a case report, J Dermatolog Treat 35 (2024) 2378163 https://doi.org/10.1080/09546634.2024.2378163.
|
| [137] |
G. Pumthong, P. Asawanonda, S. Varothai, et al., Curcuma aeruginosa, a novel botanically derived 5α-reductase inhibitor in the treatment of male-pattern baldness: a multicenter, randomized, double-blind, placebo-controlled study, J Dermatolog Treat 23 (2012) 385-392 https://doi.org/10.3109/09546634.2011.568470.
|
| [138] |
A.R. Castro, C. Portinha, E. Logarinho, The Emergent Power of Human Cellular vs Mouse Models in Translational Hair Research, Stem Cells Transl Med 11 (2022) 1021-1028 https://doi.org/10.1093/stcltm/szac059.
|
| [139] |
B.C. Sorkin, A.J. Kuszak, J.S. Williamson, et al., The Challenge of Reproducibility and Accuracy in Nutrition Research: Resources and Pitfalls, Adv. Nutr. 7 (2016) 383-389 https://doi.org/10.3945/an.115.010595.
|
| [140] |
K.M. Nelson, J.L. Dahlin, J. Bisson, et al., The Essential Medicinal Chemistry of Curcumin, J. Med. Chem. 60 (2017) 1620-1637 https://doi.org/10.1021/acs.jmedchem.6b00975.
|
| [141] |
Y. Yang, Y. Sun, T. Gu, et al., The Metabolic Characteristics and Bioavailability of Resveratrol Based on Metabolic Enzymes, Nutr. Rev. 83 (2025) 749-770 https://doi.org/10.1093/nutrit/nuae161.
|
| [142] |
H.J. Won, H.I. Kim, T. Park, et al., Non-clinical pharmacokinetic behavior of ginsenosides, J Ginseng Res 43 (2019) 354-360 https://doi.org/10.1016/j.jgr.2018.06.001.
|
| [143] |
S. Mehmood, M. Maqsood, N. Mahtab, et al., Epigallocatechin gallate: Phytochemistry, bioavailability, utilization challenges, and strategies, J. Food Biochem. 46 (2022) e14189 https://doi.org/10.1111/jfbc.14189.
|
| [144] |
W. Cheng, K. Xia, S. Wu, et al., Herb-Drug Interactions and Their Impact on Pharmacokinetics: An Update, Curr Drug Metab 24 (2023) 28-69 https://doi.org/10.2174/1389200224666230116113240.
|
| [145] |
M.K. Islam, T. Sostaric, L.Y. Lim, et al., Development of an HPTLC-based dynamic reference standard for the analysis of complex natural products using Jarrah honey as test sample, PLoS One 16 (2021) e0254857 https://doi.org/10.1371/journal.pone.0254857.
|
| [146] |
J.M. Betz, P.N. Brown, M.C. Roman, Accuracy, precision, and reliability of chemical measurements in natural products research, Fitoterapia 82 (2011) 44-52 https://doi.org/10.1016/j.fitote.2010.09.011.
|
| [147] |
M.N. Pereira, L.L. Nogueira, M. Cunha-Filho, et al., Methodologies to Evaluate the Hair Follicle-Targeted Drug Delivery Provided by Nanoparticles, Pharmaceutics 15 (2023) 2002 https://doi.org/10.3390/pharmaceutics15072002.
|
| [148] |
Y. Yang, P. Wang, Y. Gong, et al., Curcumin-zinc framework encapsulated microneedle patch for promoting hair growth, Theranostics 13 (2023) 3675-3688 https://doi.org/10.7150/thno.84118.
|
| [149] |
Y. Shan, C. Xu, Y. Guo, et al., Liposomes enhance the hair follicle delivery of minoxidil sulfate with improved treatment of androgenic alopecia, Int. J. Pharm. 677 (2025) 125642 https://doi.org/10.1016/j.ijpharm.2025.125642.
|