| Citation: | Chenyu Zhou, Murni Nazira Sarian, Xiaohui Tong, Rongchun Han, Theebaa Anasamy, Hamizah Shahirah Hamezah. Halogenated anthraquinones in breast cancer therapy: Structural modifications targeting VEGF-related angiogenesis pathways[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101538 |
| [1] |
A.N. Giaquinto, H. Sung, L.A. Newman, et al., Breast cancer statistics 2024, CA Cancer J. Clin. 74 (2024) 477−495.
|
| [2] |
N.H. Hussen, A.H. Hasan, G.O. Muhammed, et al., Anthracycline in medicinal chemistry: mechanism of cardiotoxicity, preventive and treatment strategies, Curr. Org. Chem. 27 (2023) 363−377.
|
| [3] |
Y. Yuan, H. Long, Z. Zhou, et al., PI3K-AKT-targeting breast cancer treatments: Natural products and synthetic compounds, Biomolecules. 13 (2023).
|
| [4] |
K. Desai, B. Baralo, A. Kulkarni, et al., Cancer statistics: The United States vs. worldwide, J. Clin. Oncol. 42 (2024) e23276.
|
| [5] |
R.L. Siegel, A.N. Giaquinto, and A. Jemal, Cancer statistics, 2024, CA Cancer J. Clin. 74 (2024) 12−49.
|
| [6] |
M.K.M. Whitford and L. McCaffrey, Polarity in breast development and cancer, Curr. Top. Dev. Biol. 154 (2023) 245−283.
|
| [7] |
G. Bahcecioglu, G. Basara, B.W. Ellis, et al., Breast cancer models: Engineering the tumor microenvironment, Acta. Biomater. 106 (2020) 1−21.
|
| [8] |
J. Wu, W. Wang, X. Shao, et al., Facing the CDK4/6i resistance dilemma in patients with breast cancer, exploration of the resistance mechanism and possible reverse strategy: A narrative review, Medicine (Baltimore). 101 (2022) e32238.
|
| [9] |
G. von Minckwitz, C.S. Huang, M.S. Mano, et al., Trastuzumab emtansine for residual invasive HER2-positive breast cancer, N. Engl. J. Med. 380 (2019) 617−628.
|
| [10] |
H.P. Zhang, R.Y. Jiang, J.Y. Zhu, et al., PI3K/AKT/mTOR signaling pathway: An important driver and therapeutic target in triple-negative breast cancer, Breast Cancer. 31 (2024) 539−551.
|
| [11] |
L. Westbrook, D. Miltenburg, V. Souter, et al., Hereditary cancer testing in a diverse sample across three breast imaging centers, Breast Cancer Res. Treat. 203 (2024) 365−372.
|
| [12] |
P.J. O'Donovan and D.M. Livingston, BRCA1 and BRCA2: Breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair, Carcinogenesis. 31 (2010) 961−967.
|
| [13] |
C. Xu, J. Xie, F. Ji, et al., Supplementation of dietary semen vaccariae extracts to lactating sow diets: effects on the production performance, milk components, and gene expression related to mammogenesis, Front. Vet. Sci. 10 (2023) 1284552.
|
| [14] |
O.A. Sukocheva, E. Lukina, M. Friedemann, et al., The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives, Semin. Cancer Biol. 82 (2022) 35−59.
|
| [15] |
H. Zhao, J. Xu, Y. Zhong, et al., Mammary hydroxylated oestrogen activates the NLRP3 inflammasome in tumor-associated macrophages to promote breast cancer progression and metastasis, Int. Immunopharmacol. 142 (2024) 113034.
|
| [16] |
V. Mayhew, T. Omokehinde, and R.W. Johnson, Tumor dormancy in bone, Cancer Rep (Hoboken). 3 (2020) e1156.
|
| [17] |
A.G. Waks and E.P. Winer, Breast cancer treatment: A review, JAMA. 321 (2019) 288−300.
|
| [18] |
M. Tokura, J. Nakayama, M. Prieto-Vila, et al., Single-cell transcriptome profiling reveals intratumoral heterogeneity and molecular features of ductal carcinoma in situ, Cancer Res. 82 (2022) 3236−3248.
|
| [19] |
L. Zhang, G.Y. Zhang, S.J. Xu, et al., Recent advances of quinones as a privileged structure in drug discovery, Eur. J. Med. Chem. 223 (2021) 113632.
|
| [20] |
K. Yamanouchi, S. Maeda, D. Takei, et al., Pretreatment absolute lymphocyte count and neutrophil-to-lymphocyte ratio are prognostic factors for stage III breast cancer, Anticancer Res. 41 (2021) 3625−3634.
|
| [21] |
M. Kusama, Doxifluridine, medroxyprogesterone acetate and cyclophosphamide(DMpC)combination therapy found effective for case of chest wall recurrent breast cancer with bone and pleural metastases, Gan. To. Kagaku. Ryoho. 39 (2012) 1239−1241.
|
| [22] |
C. Yuan, Z. Xie, J. Bian, et al., Outcomes of primary endocrine therapy in elderly women with stage I-III breast cancer: a SEER database analysis, Breast Cancer Res. Treat. 180 (2020) 819−827.
|
| [23] |
J. Wang and S.G. Wu, Breast cancer: An overview of current therapeutic strategies, challenge, and perspectives, Breast Cancer (Dove Med. Press). 15 (2023) 721−730.
|
| [24] |
J. Jayasekera and J.S. Mandelblatt, Systematic review of the cost effectiveness of breast cancer prevention, screening, and treatment interventions, J. Clin. Oncol. 38 (2020) 332−350.
|
| [25] |
S. Ziyeh, L. Wong, and R.K. Basho, Advances in endocrine therapy for hormone receptor-positive advanced breast cancer, Curr. Oncol. Rep. 25 (2023) 689−698.
|
| [26] |
B.S. Zimmerman and F.J. Esteva, Next-generation HER2-targeted antibody-drug conjugates in beast cancer, Cancers. 16 (2024).
|
| [27] |
F. Farhat, J.G. Kattan, and M. Ghosn, Oral vinorelbine in combination with trastuzumab as a first-line therapy of metastatic or locally advanced HER2-positive breast cancer, Cancer Chemother. Pharmacol. 77 (2016) 1069−1077.
|
| [28] |
Y. Zhou, L. Tao, J. Qiu, et al., Tumor biomarkers for diagnosis, prognosis and targeted therapy, Signal Transduct. Target. Ther. 9 (2024) 132.
|
| [29] |
G. Bianchini, J.M. Balko, I.A. Mayer, et al., Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease, Nat. Rev. Clin. Oncol. 13 (2016) 674−690.
|
| [30] |
M.C.S. Menezes, F. Raheem, L. Mina, et al., PARP inhibitors for breast cancer: Germline BRCA1/2 and beyond, Cancers. 14 (2022).
|
| [31] |
V. Debien, A. De Caluwe, X. Wang, et al., Immunotherapy in breast cancer: An overview of current strategies and perspectives, NPJ Breast Cancer. 9 (2023) 7.
|
| [32] |
J. Xu and Z. Tang, Progress on angiogenic and antiangiogenic agents in the tumor microenvironment, Front. Oncol. 14 (2024) 1491099.
|
| [33] |
Y. Zhao and A.A. Adjei, Targeting angiogenesis in cancer therapy: Moving beyond vascular endothelial growth factor, Oncologist. 20 (2015) 660−673.
|
| [34] |
C. Cuesta, C. Arevalo-Alameda, and E. Castellano, The importance of being PI3K in the RAS signaling network, Genes. 12 (2021) 1094.
|
| [35] |
A. Jalali and M.M. Zarshenas, AKT/GSK-3 pathway targeting; botanicals and bioactive compounds with anticancer activities, Curr. Pharm. Des. 27 (2021) 3091−3104.
|
| [36] |
K. Zirlik and J. Duyster, Anti-angiogenics: Current situation and future perspectives, Oncol. Res. Treat. 41 (2018) 166−171.
|
| [37] |
Y. Wang, M. Huang, X. Zhou, et al., Potential of natural flavonoids to target breast cancer angiogenesis (review), Br. J. Pharmacol. 2010 (2023) 576384.
|
| [38] |
S. Cha, H.-G. Kim, H. Jang, et al., Steppogenin suppresses tumor growth and sprouting angiogenesis through inhibition of HIF-1α in tumors and DLL4 activity in the endothelium, Phytomedicine. 108 (2023) 154513.
|
| [39] |
A. Zeng, S.R. Wang, Y.X. He, et al., Progress in understanding of the stalk and tip cells formation involvement in angiogenesis mechanisms, Tissue Cell. 73 (2021) 101626.
|
| [40] |
M. Zhao, S. Scott, K.W. Evans, et al., Combining neratinib with CDK4/6, mTOR, and MEK inhibitors in models of HER2-positive cancer, Clin. Cancer Res. 27 (2021) 1681−1694.
|
| [41] |
G. Niu, K.L. Wright, M. Huang, et al., Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis, Oncogene. 21 (2002) 2000-2008.
|
| [42] |
W.B. Fang, M. Yao, G. Brummer, et al., Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment, Oncotarget. 7 (2016) 49349−49367.
|
| [43] |
T. Yoshimura, C. Li, Y. Wang, et al., The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis, Cell. Mol. Immunol. 20 (2023) 714−738.
|
| [44] |
P. Dutta, M. Sarkissyan, K. Paico, et al., MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis, Breast Cancer Res. Treat. 170 (2018) 477−486.
|
| [45] |
S. Li, J. Lu, Y. Chen, et al., MCP-1-induced ERK/GSK-3beta/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells, Cell Mol. Immunol. 14 (2017) 621−630.
|
| [46] |
D. Wang, X.H. Wang, X. Yu, et al., Pharmacokinetics of anthraquinones from medicinal plants, Front. Pharmacol. 12 (2021) 638993.
|
| [47] |
Z.T. Shakour and M.A. Farag, Diverse host-associated fungal systems as a dynamic source of novel bioactive anthraquinones in drug discovery: Current status and future perspectives, J. Adv. Res. 39 (2022) 257−273.
|
| [48] |
C. Hertweck, The biosynthetic logic of polyketide diversity, Angew. Chem. Int. Ed. Engl. 48 (2009) 4688−4716.
|
| [49] |
M. Khatoon, A. Dubey, and K. Janhvi, Unveiling anthraquinones: Diverse health benefits of an essential secondary metabolite, Recent Pat. Biotechnol. 19 (2025) 179−197.
|
| [50] |
A.S. Tikhomirov, D.V. Andreeva, and A.E. Shchekotikhin, Reductive elimination of alkoxy group in anthraquinone derivatives, Tetrahedron. 122 (2022) 132957.
|
| [51] |
I. Saikia, A.J. Borah, and P. Phukan, Use of bromine and bromo-organic compounds in organic synthesis, Chem. Rev. 116 (2016) 6837−7042.
|
| [52] |
S.E. Phillips, Synthesis and Properties of Anthraquinones Labeled Nucleobases [master's thesis], Canada: University of Calgary, 2010.
|
| [53] |
N. Shen, J. Ren, Y. Liu, et al., Natural edible pigments: A comprehensive review of resource, chemical classification, biosynthesis pathway, separated methods and application, Food Chem. 403 (2023) 134422.
|
| [54] |
S. Cheng, Z. Lu, Y. Feng, et al., A novel navigated doxorubicin delivery formulation to breast cancer therapy, Mater. Today Adv. 14 (2022) 100235.
|
| [55] |
A.J. Waldman, T.L. Ng, P. Wang, et al., Heteroatom-heteroatom bond formation in natural product biosynthesis, Chem. Rev. 117 (2017) 5784−5863.
|
| [56] |
M.S. Malik, R.I. Alsantali, R.S. Jassas, et al., Journey of anthraquinones as anticancer agents-A systematic review of recent literature, RSC advances. 11 (2021) 35806−35827.
|
| [57] |
E. Haciosmanoglu, F. Ozkok, A.K. Onsu, et al., Synthesis of new anthraquinone derivatives and anticancer effects on breast cancer cell lines, Eurasia. Proc. Sci. Technol. Eng. Math. 4 (2018) 271−276.
|
| [58] |
S.M.A.D. Silva, J.K.S.D. Silva, J.F.O.D. Araujo, et al., In vitro antitumor activity and electrochemical studies of bio-electroactive anthraquinone derivatives in glioblastoma, An. Acad. Bras. Cienc. 97 (2025) e20241466.
|
| [59] |
A. Anifowose, A.A. Agbowuro, R. Tripathi, et al., Inducing apoptosis through upregulation of p53: structure-activity exploration of anthraquinone analogs, J. Med. Chem. 29 (2020) 1199−1210.
|
| [60] |
T. Valarmathi, R. Premkumar, E. James Jebaseelan Samuel, et al., Spectroscopic characterization, quantum chemical and molecular docking studies on 1-chloroanthraquinone: A novel oral squamous cell carcinoma drug, Polycyclic. Aromas. Comp. 44 (2024) 1816−1834.
|
| [61] |
A. Anifowose, Z. Yuan, X. Yang, et al., Upregulation of p53 through induction of MDM2 degradation: amino acid prodrugs of anthraquinone analogs, Bioorg. Med. Chem. Lett. 30 (2020) 126786.
|
| [62] |
L. Gu, H. Zhang, T. Liu, et al., Inhibition of MDM2 by a rhein-derived compound AQ-101 suppresses cancer development in SCID mice, Mol. Cancer Ther. 17 (2018) 497−507.
|
| [63] |
A.C. de Carvalho, C.S. Lima, H.F.V. Torquato, et al., Chemodiversity and anti-leukemia effect of metabolites from penicillium setosum CMLD 18, Metabolites. 13 (2022) 23.
|
| [64] |
N. Abu, M.N. Akhtar, W.Y. Ho, et al., 3-Bromo-1-hydroxy-9, 10-anthraquinone (BHAQ) inhibits growth and migration of the human breast cancer cell lines MCF-7 and MDA-MB231, Molecules. 18 (2013) 10367−10377.
|
| [65] |
K. Saha, K.W. Lam, F. Abas, et al., Synthesis of damnacanthal, a naturally occurring 9, 10-anthraquinone and its analogues, and its biological evaluation against five cancer cell lines, J. Med. Chem. 22 (2013) 2093−2104.
|
| [66] |
J.A. Dimmer, S.C. Nunez Montoya, C.S. Mendoza, et al., Photosensitizing anthraquinones from Heterophyllaea lycioides (Rubiaceae), Phytochemistry. 137 (2017) 94−100.
|
| [67] |
S.C. Bang, Y. Kim, M.Y. Yun, et al., 5-Arylidene-2(5H)-furanone derivatives: Synthesis and structure-activity relationship for cytotoxicity, Arch. Pharm. Res. 27 (2004) 485−494.
|
| [68] |
L.A. Shundrin, I.G. Irtegova, N.V. Vasilieva, et al., Electrochemical reduction, radical anions and solvation energies of 1, 2, 3, 4-tetrafluoro-9, 10-anthraquinone and its N-piperidyl derivatives in DMF and DMF-water mixtures, Mendeleev Communications. 28 (2018) 257−260.
|
| [69] |
S. Yakubov, B. Dauth, W. Stockerl, et al., Protodefluorinated Selectfluor® promotes aggregative activation of Selectfluor® for efficient C (sp3)− H fluorination reactions, 2023. 10.26434/chemrxiv-2023-3t26g.
|
| [70] |
S. Ali, X. Tian, S.A. Meccia, et al., Highlights on U.S. FDA-approved halogen-containing drugs in 2024, Eur. J. Med. Chem. 287 (2025) 117380.
|
| [71] |
S. Cyboran-Mikolajczyk, K. Matczak, E. Olchowik-Grabarek, et al., The influence of the chlorine atom on the biological activity of 2′-hydroxychalcone in relation to the lipid phase of biological membranes-Anticancer and antimicrobial activity, Chem. Biol. Interact. 398 (2024) 111082.
|
| [72] |
G. Shabir, A. Saeed, W. Zahid, et al., Chemistry and pharmacology of fluorinated drugs approved by the FDA (2016-2022), Pharmaceuticals. 16 (2023) 1162.
|
| [73] |
A.C. Alves, D. Ribeiro, C. Nunes, et al., Biophysics in cancer: The relevance of drug-membrane interaction studies, Biochim. Biophys. Acta. 1858 (2016) 2231−2244.
|
| [74] |
J.Y. Lee and J.H. Park, I-124 labeled anthraquinone-derivative-coating gold nanoparticles for targeted breast cancer diagnosis and therapy, 2024.
|
| [75] |
S. Rayne and K. Forest, Comparative density functional theory study on the relative gas phase enthalpies and free energies of formation for the mono-through hepta-halogenated (X= F, Cl, Br) anthraquinones, Nat. Prec. 2010. https://doi.org/10.1038/npre.2010.5153.1.
|
| [76] |
Y. Zhang, I. Murtaza, D. Liu, et al., Understanding the mechanism of improvement in practical specific capacity using halogen substituted anthraquinones as cathode materials in lithium batteries, Electrochimica Acta. 224 (2017) 622−627.
|
| [77] |
E. Bosch, D.K. Unruh, R.K. Brooks, et al., Preference in the type of halogen bonding interactions within co-crystals of anthraquinone with a pair of isosteric perhalobenzenes, Crystals. 14 (2024) 325.
|
| [78] |
Y. Cheng, Q. Ji, B. Zhu, et al., Manipulating fluorine induced bulky dipoles and their strong interaction to achieve high efficiency electric energy storage performance in polymer dielectrics, Chem. Eng. J. 476 (2023) 146738.
|
| [79] |
H. Fiedler, T. Kennedy, and B.J. Henry, A critical review of a recommended analytical and classification approach for organic fluorinated compounds with an emphasis on per- and polyfluoroalkyl substances, Integr. Environ. Assess. Manag. 17 (2021) 331−351.
|
| [80] |
X. Zhang, L. Liu, J. Wang, et al., The alternation of halobenzoquinone disinfection byproduct on toxicogenomics of DNA damage and repair in uroepithelial cells, Environ. Int. 183 (2024) 108407.
|
| [81] |
J. Li, B. Moe, Y. Liu, et al., Halobenzoquinone-induced alteration of gene expression associated with oxidative stress signaling pathways, Environ. Sci. Technol. 52 (2018) 6576−6584.
|
| [82] |
J. Li, B. Moe, S. Vemula, et al., Emerging disinfection byproducts, halobenzoquinones: Effects of isomeric structure and halogen substitution on cytotoxicity, formation of reactive oxygen species, and genotoxicity, Environ. Sci. Technol. 50 (2016) 6744−6752.
|
| [83] |
M. Horvat, M. Avbelj, M.B. Duran-Alonso, et al., Antiviral activities of halogenated emodin derivatives against human coronavirus NL63, Molecules. 26 (2021) 6825.
|
| [84] |
K. Pors, S.D. Shnyder, P.H. Teesdale-Spittle, et al., Synthesis of DNA-directed pyrrolidinyl and piperidinyl confined alkylating chloroalkylaminoanthraquinones: potential for development of tumor-selective N-oxides, J. Med. Chem. 49 (2006) 7013−7023.
|
| [85] |
F.O. Okunlola, F.A. Olotu, and M.E.S. Soliman, Unveiling the mechanistic roles of chlorine substituted phthalazinone-based compounds containing chlorophenyl moiety towards the differential inhibition of poly (ADP-ribose) polymerase-1 in the treatment of lung cancer, J. Biomol. Struct. Dyn. 40 (2022) 10878−10886.
|
| [86] |
Z. Konteatis, E. Artin, B. Nicolay, et al., Vorasidenib (AG-881): A first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma, ACS Med. Chem. Lett. 11 (2020) 101−107.
|
| [87] |
C. Selvaraj and S.K. Singh, Computational and experimental binding mechanism of DNA-drug interactions, Curr. Pharm. Des. 24 (2018) 3739−3757.
|
| [88] |
E.J. Hanan, M.G. Braun, R.A. Heald, et al., Discovery of GDC-0077 (Inavolisib), a highly selective inhibitor and degrader of mutant PI3Kalpha, J. Med. Chem. 65 (2022) 16589−16621.
|
| [89] |
X. Liu, Y. Chen, W. Han, et al., Structural insights into the development of inhibitors against cancer-specific mutations of PI3Kα, Annu. Rev. Pharmacol. Toxicol. 120 (2025) e2304071120.
|
| [90] |
D.H. Kwon, H.-J. Cha, H. Lee, et al., Protective effect of glutathione against oxidative stress-induced cytotoxicity in RAW 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway, Antioxidants. 8 (2019) 82.
|
| [91] |
A. Longatto Filho, J.M. Lopes, and F.C. Schmitt, Angiogenesis and breast cancer, J. Oncol. 2010 (2010) 576384.
|
| [92] |
F. Cheshmi, F. Kazerouni, M.D. Omrani, et al., Effect of emodin on expression of VEGF-A and VEGFR_2 genes in human breast carcinoma, Int. J. Cancer Manag. 10 (2017) e8095.
|
| [93] |
A.A. Abdellatef, M. Fathy, A.E.-S.I. Mohammed, et al., Inhibition of cell-intrinsic NF-κB activity and metastatic abilities of breast cancer by aloe-emodin and emodic-acid isolated from Asphodelus microcarpus, J. Nat. Med. 75 (2021) 840−853.
|
| [94] |
V.E. Fernand, J.N. Losso, R.E. Truax, et al., Rhein inhibits angiogenesis and the viability of hormone-dependent and-independent cancer cells under normoxic or hypoxic conditions in vitro, Chem. Biol. Interact. 192 (2011) 220−232.
|
| [95] |
S.J. Hwang, S.H. Cho, H.J. Bang, et al., 1, 8-Dihydroxy-3-methoxy-anthraquinone inhibits tumor angiogenesis through HIF-1α downregulation, Biochem. Pharmacol. 220 (2024) 115972.
|
| [96] |
J. Wang, L. Fu, F. Gu, et al., Notch1 is involved in migration and invasion of human breast cancer cells, Oncol. Rep. 26 (2011) 1295−1303.
|
| [97] |
B. Kim, S.L. Stephen, A.M. Hanby, et al., Chemotherapy induces Notch1-dependent MRP1 up-regulation, inhibition of which sensitizes breast cancer cells to chemotherapy, BMC Cancer. 15 (2015) 1−12.
|
| [98] |
S. Yan, K. Liu, L. Mu, et al., Research and application of hydrostatic high pressure in tumor vaccines (Review), Oncol. Rep. 45 (2021) 75.
|
| [99] |
G. Tonon, F. Rizzolio, F. Visentin, et al., Antibody drug conjugates for cancer therapy: From metallodrugs to nature-inspired payloads, Int. J. Mol. Sci. 25 (2024) 8651.
|
| [100] |
R. Raave, T.H. van Kuppevelt, and W.F. Daamen, Chemotherapeutic drug delivery by tumoral extracellular matrix targeting, J. Control. Release. 274 (2018) 1−8.
|
| [101] |
S.A. Hurvitz, R. Hegg, W.P. Chung, et al., Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: Updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial, Lancet. 401 (2023) 105−117.
|
| [102] |
S. Michaleas, A. Moreno Oliver, J. Mueller-Berghaus, et al., The European Medicines Agency review of sacituzumab govitecan for the treatment of triple-negative breast cancer, ESMO Open. 7 (2022) 100497.
|
| [103] |
H. Li, Z.Y. Liu, N. Wu, et al., PARP inhibitor resistance: The underlying mechanisms and clinical implications, Mol. Cancer. 19 (2020) 107.
|
| [104] |
S. Loibl, J. O'Shaughnessy, M. Untch, et al., Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial, Lancet Oncol. 19 (2018) 497−509.
|
| [105] |
F. Lynce and N.U. Lin, From serendipity to intention: Development of brain-penetrant PARP1-selective inhibitors, Clin. Cancer Res. 30 (2024) 1217−1219.
|
| [106] |
M.V. Blagosklonny, Analysis of FDA approved anticancer drugs reveals the future of cancer therapy, Cell Cycle. 3 (2004) 1033−1040.
|
| [107] |
M. Walles, A. Connor, and D. Hainzl, ADME and safety aspects of non-cleavable linkers in drug discovery and development, Curr. Top. Med. Chem. 17 (2017) 3463−3475.
|
| [108] |
B. Ma, Q. Ma, H. Wang, et al., Clinical efficacy and safety of T-DM1 for patients with HER2-positive breast cancer, Onco. Targets Ther. 9 (2016) 959−976.
|
| [109] |
Z. Fu, C. Gao, T. Wu, et al., Peripheral neuropathy associated with monomethyl auristatin E-based antibody-drug conjugates, iScience. 26 (2023) 107778.
|
| [110] |
F. Loganzo, M. Sung, and H.P. Gerber, Mechanisms of resistance to antibody-drug conjugates, Mol. Cancer Ther. 15 (2016) 2825−2834.
|
| [111] |
R.J. Choi, T.M. Ngoc, K. Bae, et al., Anti-inflammatory properties of anthraquinones and their relationship with the regulation of P-glycoprotein function and expression, Eur. J. Pharm. Sci. 48 (2013) 272−281.
|
| [112] |
C. Wang and J. Li, Haematologic toxicities with PARP inhibitors in cancer patients: An up-to-date meta-analysis of 29 randomized controlled trials, J. Clin. Pharm. Ther. 46 (2021) 571−584.
|
| [113] |
J.Y. Han, Y.E. Seo, J.H. Kwon, et al., Cardioprotective effects of PARP inhibitors: A re-analysis of a meta-analysis and a real-word data analysis using the FAERS database, J. Clin. Med. 13 (2024) 1218.
|
| [114] |
E. Harvey-Jones, M. Raghunandan, L. Robbez-Masson, et al., Longitudinal profiling identifies co-occurring BRCA1/2 reversions, TP53BP1, RIF1 and PAXIP1 mutations in PARP inhibitor-resistant advanced breast cancer, Ann. Oncol. 35 (2024) 364−380.
|
| [115] |
A. Serrano-Benitez, S.E. Wells, L. Drummond-Clarke, et al., Unrepaired base excision repair intermediates in template DNA strands trigger replication fork collapse and PARP inhibitor sensitivity, EMBO J. 42 (2023) e113190.
|
| [116] |
X. Feng, Z. Wen, X. Zhu, et al., Anti-HER2 immunoliposomes: Antitumor efficacy attributable to targeted delivery of anthraquinone-fused enediyne, Adv. Sci (Weinh). 11 (2024) 2307865.
|
| [117] |
A. Uustare, I. Ogibalov, A. Tasa, et al., Antibody-drug-conjugates comprising novel anthracycline-derivatives for cancer treatment, United States US10668166B2, 2 June 2020.
|
| [118] |
Y. Meng, N. Sun, L. Liang, et al., 2'-Fluorinated nucleoside chemistry for new drug discovery: Achievements and prospects, Natl. Sci. Rev. 11 (2024) nwae331.
|
| [119] |
M. Guha, S. Srinivasan, P. Raman, et al., Aggressive triple negative breast cancers have unique molecular signature on the basis of mitochondrial genetic and functional defects, Biochim. Biophys. Acta. Mol. Basis. Dis. 1864 (2018) 1060−1071.
|
| [120] |
H. Ikeda, K. Kawase, T. Nishi, et al., Immune evasion through mitochondrial transfer in the tumour microenvironment, Nature. 638 (2025) 225−236.
|
| [121] |
G. Hoover, S. Gilbert, O. Curley, et al., Nerve-to-cancer transfer of mitochondria during cancer metastasis, Nature. (2025) 1−11.
|
| [122] |
F. Thakral, B. Prasad, R. Sehgal, et al., Role of emodin to prevent gastrointestinal cancers: Recent trends and future prospective, Discov. Oncol. 16 (2025) 468.
|
| [123] |
Y. Li, F. Guo, Y. Guan, et al., Novel anthraquinone compounds inhibit colon cancer cell proliferation via the reactive oxygen species/JNK pathway, Molecules. 25 (2020) 1672.
|
| [124] |
J.L. Bolton and T. Dunlap, Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects, Chem. Res. Toxicol. 30 (2017) 13−37.
|
| [125] |
J.L. Bolton, M.A. Trush, T.M. Penning, et al., Role of quinones in toxicology, Chem. Res. Toxicol. 13 (2000) 135−160.
|
| [126] |
R. Yan, X. Cheng, C. Gu, et al., Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development, Nat. Genet. 55 (2023) 130−143.
|
| [127] |
D. Trachootham, J. Alexandre, and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?, Nat. Rev. Drug Discov. 8 (2009) 579−591.
|
| [128] |
X.J. Wang, J. Yang, H. Cang, et al., Gene expression alteration during redox-dependent enhancement of arsenic cytotoxicity by emodin in HeLa cells, Cell. Res. 15 (2005) 511−522.
|
| [129] |
X. Dong, J. Fu, X. Yin, et al., Induction of apoptosis in HepaRG cell line by aloe-emodin through generation of reactive oxygen species and the mitochondrial pathway, Cell. Physiol. Biochem. 42 (2017) 685−696.
|
| [130] |
T.-C. Hsia, J.-S. Yang, G.-W. Chen, et al., The roles of endoplasmic reticulum stress and Ca2+ on rhein-induced apoptosis in A-549 human lung cancer cells, Anticancer Res. 29 (2009) 309−318.
|
| [131] |
M. Wang, Z. Zhang, P. Ruan, et al., Emodin-induced hepatotoxicity is enhanced by 3-methylcholanthrene through activating aryl hydrocarbon receptor and inducing CYP1A1 in vitro and in vivo, Chem. Biol. Interact. 365 (2022) 110089.
|
| [132] |
J.H. Doroshow, Mechanisms of anthracycline-enhanced reactive oxygen metabolism in tumor cells, Oxid. Med. Cell. Longev. 2019 (2019) 9474823.
|
| [133] |
V. Quagliariello, M. Berretta, I. Bisceglia, et al., PCSK9 inhibitor inclisiran attenuates cardiotoxicity induced by sequential anthracycline and trastuzumab exposure via NLRP3 and MyD88 pathway inhibition, Int. J. Mol. Sci. 26 (2025) 6617.
|
| [134] |
H. He, M. Zhang, Y. Chen, et al., Sex-based differences in mitochondrial activity and cellular calcium signaling in isolated mice cardiomyocytes intervened by doxorubicin, Biochem. Biophys. Res. Commun. 778 (2025) 152328.
|
| [135] |
J. Qu, L. Pei, X. Wang, et al., Acute and subchronic oral toxicity of anthraquinone in sprague dawley rats, Int. J. Environ. Res. Public Health. 19 (2022) 10413.
|
| [136] |
Y. Liu, M.S. Mapa, and R.L. Sprando, Liver toxicity of anthraquinones: A combined in vitro cytotoxicity and in silico reverse dosimetry evaluation, Food Chem. Toxicol. 140 (2020) 111313.
|
| [137] |
V.K. Bajpai, M.B. Alam, K.T. Quan, et al., Cytotoxic properties of the anthraquinone derivatives isolated from the roots of Rubia philippinensis, BMC Complement. Altern. Med. 18 (2018) 200.
|
| [138] |
E.M. Malik and C.E. Muller, Anthraquinones as pharmacological tools and drugs, Med. Res. Rev. 36 (2016) 705−748.
|
| [139] |
J.P. Pelletier, M. Yaron, B. Haraoui, et al., Efficacy and safety of diacerein in osteoarthritis of the knee: A double-blind, placebo-controlled trial, Arthritis Rheum. 43 (2000) 2339−2348.
|
| [140] |
J. Qu, Y. Zhang, C. Liu, et al., Genetic and prenatal developmental evaluation of anthraquinone, Toxicol. Lett. 388 (2023) 40−47.
|
| [141] |
J. Wang, Comprehensive assessment of ADMET risks in drug discovery, Curr. Pharm. Des. 15 (2009) 2195−2219.
|
| [142] |
L. Zhou, X. Hu, C. Han, et al., Comprehensive investigation on the metabolism of emodin both in vivo and in vitro, J. Pharm. Biomed. Anal. 223 (2023) 115122.
|
| [143] |
Y. Jiang, Q. Li, Y. Chen, et al., Nanoparticles co-loaded with sorafenib and emodin: preparation and efficacy against liver cancer in vitro and in vivo, Pharm. Dev. Technol. 30 (2025) 450−462.
|
| [144] |
W. Li, K. Zhang, W. Wang, et al., Combined inhibition of HER2 and VEGFR synergistically improves therapeutic efficacy via PI3K-AKT pathway in advanced ovarian cancer, J. Exp. Clin. Cancer Res. 43 (2024) 56.
|
| [145] |
T. Capeloa, J.A. Van de Velde, E. Pranzini, et al., Mitochondrial ROS inhibition prevents doxorubicin-induced breast cancer cell migration and invasion, iScience. 28 (2025) 113031.
|
| [146] |
H. Sun, C.E. Keefer, and D.O. Scott, Systematic and pairwise analysis of the effects of aromatic halogenation and trifluoromethyl substitution on human liver microsomal clearance, Drug Metab. Lett. 5 (2011) 232−242.
|