| Citation: | Gaoshuang Fu, Mingmin Pan, Qingling Sun, Guangxin Yue, Tong Lei. Natural product-based strategies targeting inflammation in Alzheimer's disease: Mechanisms, drug delivery, and clinical trials[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101535 |
| [1] |
C. Marino, V. Malotaux, A. Giudicessi, et al., Protective genetic variants against Alzheimer's disease, Lancet Neurol. 24 (2025) 524-534.
|
| [2] |
S. Chen, Z. Cao, A. Nandi, et al., The global macroeconomic burden of Alzheimer's disease and other dementias: Estimates and projections for 152 countries or territories, Lancet Glob. Health 12 (2024) e1534-e1543.
|
| [3] |
J. Jia, Y. Ning, M. Chen, et al., Biomarker changes during 20 years preceding Alzheimer's disease, N. Engl. J. Med. 390 (2024) 712-722.
|
| [4] |
E. Topol, Predicting and preventing Alzheimer's disease, Science 388 (2025), eady3217.
|
| [5] |
A. G. Almutary, M. Y. Begum, A. K. Kyada, et al., Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions, Ageing Res. Rev. 104 (2025), 102548.
|
| [6] |
T. Lei, Z. Xiao, W. Bi, et al., Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases, Ageing Res. Rev. 82 (2022), 101769.
|
| [7] |
T. Lei, X. Zhang, G. Fu, et al., Advances in human cellular mechanistic understanding and drug discovery of brain organoids for neurodegenerative diseases, Ageing Res. Rev. 102 (2024), 102517.
|
| [8] |
C. Xing, X. Zhang, D. Wang, et al., Neuroprotective effects of mesenchymal stromal cells in mouse models of Alzheimer's Disease: The Mediating role of gut microbes and their metabolites via the Microbiome-Gut-Brain axis, Brain Behav. Immun. 122 (2024) 510-526.
|
| [9] |
T. Lei, G. Fu, X. Xue, et al., Tianma Gouteng Decoction improve neuronal synaptic plasticity and oligodendrocyte apoptosis in Parkinson's disease mice, Phytomedicine 140 (2025), 156553.
|
| [10] |
L. Gao, X. N. Yang, Y. X. Dong, et al., The potential therapeutic strategy in combating neurodegenerative diseases: Focusing on natural products, Pharmacol. Ther. 264 (2024), 108751.
|
| [11] |
X. Liu, W. Hao, Y. Qin, et al., Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer's disease, Brain Behav. Immun. 46 (2015) 121-131.
|
| [12] |
H. J. Kim, S. W. Jung, S. Y. Kim, et al., Panax ginseng as an adjuvant treatment for Alzheimer's disease, J. Ginseng Res. 42 (2018) 401-411.
|
| [13] |
Y. Bian, Y. Chen, X. Wang, et al., Oxyphylla A ameliorates cognitive deficits and alleviates neuropathology via the Akt-GSK3β and Nrf2-Keap1-HO-1 pathways in vitro and in vivo murine models of Alzheimer's disease, J. Adv. Res. 34 (2021) 1-12.
|
| [14] |
X. Wang, G. Sun, T. Feng, et al., Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression, Cell Res. 29 (2019) 787-803.
|
| [15] |
S. Nan, P. Wang, Y. Zhang, et al., Epigallocatechin-3-gallate provides protection against Alzheimer's disease-induced learning and memory impairments in rats, Drug Des. Devel. Ther. 15 (2021) 2013-2024.
|
| [16] |
W. Feng, D. Liu, Y. F. Shang, et al., Neuroimmune modulators derived from natural products: Mechanisms and potential therapies, Pharmacol. Ther. 269 (2025), 108830.
|
| [17] |
H. Liu, X. Jin, S. Liu, et al., Recent advances in self-targeting natural product-based nanomedicines, J. Nanobiotechnology 23 (2025), 31.
|
| [18] |
B. Twarowski, M. Herbet, Inflammatory processes in Alzheimer's disease-pathomechanism, diagnosis and treatment: A review, Int. J. Mol. Sci. 24 (2023), 6518.
|
| [19] |
M. T. Heneka, M. J. Carson, J. El Khoury, et al., Neuroinflammation in Alzheimer's disease, Lancet Neurol. 14 (2015) 388-405.
|
| [20] |
H. G. Lee, M. A. Wheeler, F. J. Quintana, Function and therapeutic value of astrocytes in neurological diseases, Nat. Rev. Drug Discov. 21 (2022) 339-358.
|
| [21] |
P. Eikelenboom, C. E. Hack, W. Kamphorst, et al., Distribution pattern and functional state of complement proteins and alpha 1-antichymotrypsin in cerebral beta/A4 deposits in Alzheimer's disease, Res. Immunol. 143 (1992) 617-620.
|
| [22] |
M. C. Dalakas, H. Alexopoulos, P. J. Spaeth, Complement in neurological disorders and emerging complement-targeted therapeutics, Nat. Rev. Neurol. 16 (2020) 601-617.
|
| [23] |
D. Singh, Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease, J. Neuroinflammation 19 (2022), 206.
|
| [24] |
Y. Shen, F. Liu, M. Zhang, Therapeutic potential of plant-derived natural compounds in Alzheimer's disease: Targeting microglia-mediated neuroinflammation, Biomed. Pharmacother. 178 (2024), 117235.
|
| [25] |
F. Leng, P. Edison, Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here?, Nat. Rev. Neurol. 17 (2021) 157-172.
|
| [26] |
Y. Chen, Y. Yu, Tau and neuroinflammation in Alzheimer's disease: Interplay mechanisms and clinical translation, J. Neuroinflammation 20 (2023), 165.
|
| [27] |
Y. N. Paudel, E. Angelopoulou, C. Piperi, et al., Impact of HMGB1, RAGE, and TLR4 in Alzheimer's disease (AD): From risk factors to therapeutic targeting, Cells 9 (2020), 383.
|
| [28] |
M. E. Bamberger, M. E. Harris, D. R. McDonald, et al., A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation, J. Neurosci. 23 (2003) 2665-2674.
|
| [29] |
O. Takeuchi, S. Akira, Pattern recognition receptors and inflammation, Cell 140 (2010) 805-820.
|
| [30] |
R. Bai, J. Guo, X. Ye, et al., Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease, Ageing Res. Rev. 77 (2022), 101619.
|
| [31] |
P. Liu, T. Zhang, Y. Wu, et al., A peptide-drug conjugate-based nanoplatform for immunometabolic activation and in situ nerve regeneration in advanced-stage Alzheimer's disease, Adv. Mater. 36 (2024), e2408729.
|
| [32] |
J. H. Pedder, A. M. Sonabend, M. D. Cearns, et al., Crossing the blood-brain barrier: Emerging therapeutic strategies for neurological disease, Lancet Neurol. 24 (2025) 246-260.
|
| [33] |
Y. Inoue, F. Shue, G. Bu, et al., Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease, Mol. Neurodegener. 18 (2023), 46.
|
| [34] |
S. Dhillon, Aducanumab: First approval, Drugs 81 (2021) 1437-1443.
|
| [35] |
S. M. Hoy, Lecanemab: First approval, Drugs 83 (2023) 359-365.
|
| [36] |
C. Kang, Donanemab: First approval, Drugs 84 (2024) 1313-1318.
|
| [37] |
J. Sevigny, C. Ping, T. Bussiere, et al., The antibody aducanumab reduces Aβ plaques in Alzheimer's disease, Nature 537 (2016) 50-56.
|
| [38] |
S. Tucker, C. Moller, K. Tegerstedt,et al., The murine version of BAN2401 (MAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice, J. Alzheimers Dis. 43 (2015) 575-588.
|
| [39] |
R. B. Demattos, J. Lu, Y. Tang, et al., A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer's disease mice, Neuron 76 (2012) 908-920.
|
| [40] |
A. Ardura-Fabregat, E. W.G.M. Boddeke, A. Boza-Serrano, et al., Targeting neuroinflammation to treat Alzheimer's disease, CNS Drugs 31 (2017) 1057-1082.
|
| [41] |
S. Sanchez-Sarasua, I. Fernandez-Perez, V. Espinosa-Fernandez,et al., Can we treat neuroinflammation in Alzheimer's disease?, Int. J. Mol. Sci. 21 (2020) 8751.
|
| [42] |
P. F. Meyer, J. Tremblay-Mercier, J. Leoutsakos, et al., INTREPAD: A randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease, Neurology 92 (2019) e2070-e2080.
|
| [43] |
A.R. Group, Follow-up evaluation of cognitive function in the randomized Alzheimer's Disease Anti-inflammatory Prevention Trial and its Follow-up Study, Alzheimers. Dement. 11 (2015) 216-225.e1.
|
| [44] |
J. Shi, W. Shen, J. Chen, et al., Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains, Brain Res. 1368 (2011) 239-247.
|
| [45] |
J. Shi, B. Wang, W. Jiang, et al., Cognitive improvement with intrathecal administration of infliximab in a woman with Alzheimer's disease, J. Am. Geriatr. Soc. 59 (2011) 1142-1144.
|
| [46] |
W. Ou, J. Yang, J. Simanauskaite,et al., Biologic TNF-α inhibitors reduce microgliosis, neuronal loss, and tau phosphorylation in a transgenic mouse model of tauopathy, J. Neuroinflammation 18 (2021), 312.
|
| [47] |
A. M. Saunders, D. K. Burns, W. K. Gottschalk, Reassessment of pioglitazone for Alzheimer's disease, Front. Neurosci. 15 (2021), 666958.
|
| [48] |
R. C. Coll, A. A.B. Robertson, J. J. Chae, et al., A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases, Nat. Med. 21 (2015) 248-255.
|
| [49] |
C. Dempsey, A. Rubio Araiz, K. J. Bryson, et al., Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice, Brain Behav. Immun. 61 (2017) 306-316.
|
| [50] |
I. C. Stancu, N. Cremers, H. Vanrusselt, et al., Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo, Acta Neuropathol. 137 (2019) 599-617.
|
| [51] |
T. Xu, X. Shen, L. Sun, et al., Ginsenoside Rg1 protects against H2O2-induced neuronal damage due to inhibition of the NLRP1 inflammasome signalling pathway in hippocampal neurons in vitro, Int. J. Mol. Med. 43 (2019) 717-726.
|
| [52] |
L. She, J. Sun, L. Xiong, et al., Ginsenoside RK1 improves cognitive impairments and pathological changes in Alzheimer's disease via stimulation of the AMPK/Nrf2 signaling pathway, Phytomedicine 122 (2024), 155168.
|
| [53] |
F. Cao, P. Zhang, Y. Chi, et al., Celastrol ameliorated Alzheimer's disease in mice by enhancing TBX21/TREM2 expression in microglia and inhibiting tau phosphorylation, Neurochem. Res. 50 (2025), 126.
|
| [54] |
C. Yang, C. Su, A. Iyaswamy, et al., Celastrol enhances transcription factor EB (TFEB)-mediated autophagy and mitigates Tau pathology: Implications for Alzheimer's disease therapy, Acta Pharm. Sin. B 12 (2022) 1707-1722.
|
| [55] |
R. P. Fisher, L. Matheny, S. Ankeny, et al., Adolescent binge alcohol exposure accelerates Alzheimer's disease-associated basal forebrain neuropathology through proinflammatory HMGB1 signaling, Front. Aging Neurosci. 17 (2025), 1531628.
|
| [56] |
Z. Zhou, J. Hou, Y. Mo, et al., Geniposidic acid ameliorates spatial learning and memory deficits and alleviates neuroinflammation via inhibiting HMGB-1 and downregulating TLR4/2 signaling pathway in APP/PS1 mice, Eur. J. Pharmacol. 869 (2020), 172857.
|
| [57] |
R. Han, T. Yuan, Z. Yang, et al., Ulmoidol, an unusual nortriterpenoid from Eucommia ulmoides Oliv. Leaves prevents neuroinflammation by targeting the PU.1 transcriptional signaling pathway, Bioorg. Chem. 116 (2021), 105345.
|
| [58] |
J. Tang, L. Huang, J. Deng, et al., Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model, Redox Biol. 50 (2022), 102229.
|
| [59] |
R. Gallego, Z. J. Suarez-Montenegro, E. Ibanez, et al., In vitro neuroprotective potential and lipidomics study of olive leaves extracts enriched in triterpenoids, Front. Nutr. 8 (2021), 769218.
|
| [60] |
I. M. Abdallah, K. M. Al-Shami, E. Yang, et al., Oleuropein-rich olive leaf extract attenuates neuroinflammation in the Alzheimer's disease mouse model, ACS Chem. Neurosci. 13 (2022) 1002-1013.
|
| [61] |
C. Bartra, Y. Yuan, K. Vuraic, et al., Resveratrol activates antioxidant protective mechanisms in cellular models of Alzheimer's disease inflammation, Antioxidants 13 (2024), 177.
|
| [62] |
J. Cheng-Chung Wei, H. C. Huang, W. J. Chen, et al., Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia, Eur. J. Pharmacol. 770 (2016) 16-24.
|
| [63] |
W. Qiu, R. Pan, Y. Tang, et al., Lychee seed polyphenol inhibits Aβ-induced activation of NLRP3 inflammasome via the LRP1/AMPK mediated autophagy induction, Biomed. Pharmacother. 130 (2020), 110575.
|
| [64] |
R. Xiong, X. Zhou, Y. Tang, et al., Lychee seed polyphenol protects the blood-brain barrier through inhibiting Aβ(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy in bEnd.3 cells and APP/PS1 mice, Phytother. Res. 35 (2021) 954-973.
|
| [65] |
C. Wang, S. Chen, H. Guo, et al., Forsythoside a mitigates Alzheimer's-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation, Int. J. Biol. Sci. 18 (2022) 2075-2090.
|
| [66] |
F. Kong, X. Jiang, R. Wang, et al., Forsythoside B attenuates memory impairment and neuroinflammation via inhibition on NF-κB signaling in Alzheimer's disease, J. Neuroinflammation 17 (2020), 305.
|
| [67] |
S. Chen, H. Liu, S. Wang, et al., The neuroprotection of verbascoside in Alzheimer's disease mediated through mitigation of neuroinflammation via blocking NF-κB-p65 signaling, Nutrients 14 (2022), 1417.
|
| [68] |
J. Zhou, Y. Deng, F. Li, et al., Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats, Biomed. Pharmacother. 111 (2019) 315-324.
|
| [69] |
Y. Deng, L. Long, K. Wang, et al., Icariside II, a broad-spectrum anti-cancer agent, reverses beta-amyloid-induced cognitive impairment through reducing inflammation and apoptosis in rats, Front. Pharmacol. 8 (2017), 39.
|
| [70] |
B. He, F. Xu, T. Yan, et al., Tectochrysin from Alpinia Oxyphylla Miq. alleviates Aβ(1-42) induced learning and memory impairments in mice, Eur. J. Pharmacol. 842 (2019) 365-372.
|
| [71] |
X. Chang, D. Zhang, W. Shi, et al., An Arabinoxylan (AOP70-1) isolated from Alpinia oxyphylla alleviates neuroinflammation and neurotoxicity by TLR4/MyD88/NF-κB pathway, Int. J. Biol. Macromol. 277 (2024), 134339.
|
| [72] |
C. Sun, X. Gao, S. Sha, et al., Berberine alleviates Alzheimer's disease by activating autophagy and inhibiting ferroptosis through the JNK-p38MAPK signaling pathway, Int. Immunopharmacol. 155 (2025), 114550.
|
| [73] |
C. Sun, S. Dong, W. Chen, et al., Berberine alleviates Alzheimer's disease by regulating the gut microenvironment, restoring the gut barrier and brain-gut axis balance, Phytomedicine 129 (2024), 155624.
|
| [74] |
Y. Yang, J. Wu, L. Jia, et al., Berberine modulates microglial polarization by activating TYROBP in Alzheimer's disease, Phytomedicine 135 (2024), 156237.
|
| [75] |
Z. Xu, X. Zhou, X. Hong, et al., Essential oil of Acorus tatarinowii Schott inhibits neuroinflammation by suppressing NLRP3 inflammasome activation in 3 × Tg-AD transgenic mice, Phytomedicine 112 (2023), 154695.
|
| [76] |
M. Xu, X. Zhang, F. Ren, et al., Essential oil of Schisandra chinensis ameliorates cognitive decline in mice by alleviating inflammation, Food Funct. 10 (2019) 5827-5842.
|
| [77] |
R. Pratiwi, C. Nantasenamat, W. Ruankham, et al., Mechanisms and neuroprotective activities of stigmasterol against oxidative stress-induced neuronal cell death via sirtuin family, Front Nutr. 8 (2021), 648995.
|
| [78] |
J. Zhong, X. Qiu, Q. Yu, et al., A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways, Int. J. Biol. Macromol. 163 (2020) 464-475.
|
| [79] |
M. Xu, J. Wang, X. Zhang, et al., Polysaccharide from Schisandra chinensis acts via LRP-1 to reverse microglia activation through suppression of the NF-κB and MAPK signaling, J. Ethnopharmacol. 256 (2020), 112798.
|
| [80] |
M. Xu, T. Yan, K. Fan, et al., Polysaccharide of Schisandra Chinensis Fructus ameliorates cognitive decline in a mouse model of Alzheimer's disease, J. Ethnopharmacol. 237 (2019) 354-365.
|
| [81] |
F. Jie, X. Yang, B. Yang, et al., Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation, Biomed. Pharmacother. 153 (2022), 113317.
|
| [82] |
B. Ding, C. Lin, Q. Liu, et al., Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro, J. Neuroinflammation 17 (2020), 302.
|
| [83] |
B. Gargouri, J. Carstensen, H. S. Bhatia, et al., Anti-neuroinflammatory effects of Ginkgo biloba extract EGb761 in LPS-activated primary microglial cells, Phytomedicine 44 (2018) 45-55.
|
| [84] |
W. Wan, C. Zhang, M. Danielsen, et al., EGb761 improves cognitive function and regulates inflammatory responses in the APP/PS1 mouse, Exp. Gerontol. 81 (2016) 92-100.
|
| [85] |
H. I. Baek, K. C. Ha, Y. K. Park, et al., Efficacy and safety of Panax ginseng sprout extract in subjective memory impairment: A randomized, double-blind, placebo-controlled clinical trial, Nutrients 16 (2024), 1952.
|
| [86] |
F. Cao, L. Xu, X. He, et al., Celastrol attenuates Alzheimer's disease-mediated learning and memory impairment by inhibiting endoplasmic reticulum stress-induced inflammation and oxidative stress, Arch. Med. Sci. 21 (2025) 538-554.
|
| [87] |
J. Song, G. He, L. Dai, A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes, Biomed. Pharmacother. 162 (2023), 114705.
|
| [88] |
Z. Fan, J. Liu, X. Li, et al., Glycyrrhizin-induced pseudohyperaldosteronism: A case report, Chin. J. Integr. Med. 28 (2022) 644-649.
|
| [89] |
M. Zhang, Z. Tang, Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation, Biomed. Pharmacother. 161 (2023), 114474.
|
| [90] |
A. Shaito, A. M. Posadino, N. Younes, et al., Potential adverse effects of resveratrol: A literature review, Int. J. Mol. Sci. 21 (2020), 2084.
|
| [91] |
V. Valverde-Salazar, D. Ruiz-Gabarre, V. Garcia-Escudero, Alzheimer's disease and green tea: Epigallocatechin-3-gallate as a modulator of inflammation and oxidative stress, Antioxidants 12 (2023), 1460.
|
| [92] |
M. Younes, P. Aggett, F. Aguilar, et al., Scientific opinion on the safety of green tea catechins, Efsa j. 16 (2018), e05239.
|
| [93] |
X. Sun, L. Li, Q. Dong, et al., Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer's disease, J. Neuroinflammation 18 (2021), 131.
|
| [94] |
A. Calderaro, G. T. Patane, E. Tellone, et al., The neuroprotective potentiality of flavonoids on Alzheimer's disease, Int. J. Mol. Sci. 23 (2022) 14835.
|
| [95] |
C. Yang, Y. Mu, S. Li, et al., Tanshinone IIA: A Chinese herbal ingredient for the treatment of atherosclerosis, Front. Pharmacol. 14 (2023), 1321880.
|
| [96] |
X. Morato, J. P. Tartari, V. Pytel, et al., Pharmacodynamic and clinical effects of Ginkgo biloba Extract EGb 761 and its phytochemical components in Alzheimer's disease, J. Alzheimers Dis. 101 (2024) S285-S298.
|
| [97] |
X. Wang, Z. Xie, J. Yuan, et al., Sodium oligomannate disrupts the adherence of Rib(high) bacteria to gut epithelia to block SAA-triggered Th1 inflammation in 5XFAD transgenic mice, Cell Discov. 10 (2024), 115.
|
| [98] |
X. Hong, T. Chen, Y. Liu, et al., Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease, Ageing. Res. Rev. 105 (2025), 102669.
|
| [99] |
D. E. Nayab, F. U. Din, H. Ali, et al., Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: An up-to-date perspective, J. Nanobiotechnology 21 (2023), 477.
|
| [100] |
Y. Liu, X. Xia, M. Zheng, et al., Bio-nano toolbox for precision Alzheimer's disease gene therapy, Adv. Mater. 36 (2024), e2314354.
|
| [101] |
Y. J. Jang, S. J. Kang, H. S. Park, et al., Drug delivery strategies with lipid-based nanoparticles for Alzheimer's disease treatment, J. Nanobiotechnology 23 (2025), 99.
|
| [102] |
E. Azzini, S. I. Pena-Corona, H. Hernandez-Parra, et al., Neuroprotective and anti-inflammatory effects of curcumin in Alzheimer's disease: Targeting neuroinflammation strategies, Phytother. Res. 38 (2024) 3169-3189.
|
| [103] |
T. Lei, C. Li, Y. Liu, et al., Microfluidics-enabled mesenchymal stem cell derived Neuron like cell membrane coated nanoparticles inhibit inflammation and apoptosis for Parkinson's Disease, J. Nanobiotechnology 22 (2024), 370.
|
| [104] |
Q. Feng, X. Zhang, X. Zhao, et al., Intranasal delivery of pure nanodrug loaded liposomes for Alzheimer's disease treatment by efficiently regulating microglial polarization, Small 20 (2024), 2405781.
|
| [105] |
M. Raju, S. S. Kunde, S. T. Auti, et al., Berberine loaded nanostructured lipid carrier for Alzheimer's disease: Design, statistical optimization and enhanced in vivo performance, Life Sci. 285 (2021), 119990.
|
| [106] |
W. Zhang, A. Mehta, Z. Tong, et al., Development of polymeric nanoparticles for blood-brain barrier transfer-strategies and challenges, Adv. Sci. 8 (2021), 2003937.
|
| [107] |
L. Yang, Y. Wang, Z. Li, et al., Brain targeted peptide-functionalized chitosan nanoparticles for resveratrol delivery: Impact on insulin resistance and gut microbiota in obesity-related Alzheimer's disease, Carbohydr. Polym. 310 (2023), 120714.
|
| [108] |
C. Arbez-Gindre, B. R. Steele, M. Micha-Screttas, Dendrimers in Alzheimer's disease: recent approaches in multi-targeting strategies, Pharmaceutics 15 (2023), 898.
|
| [109] |
A. Gothwal, H. Kumar, K. T. Nakhate, et al., Lactoferrin coupled lower generation PAMAM dendrimers for brain targeted delivery of memantine in aluminum-chloride-induced Alzheimer's disease in mice, Bioconjug. Chem. 30 (2019) 2573-2583.
|
| [110] |
L. T. Varma, N. Singh, B. Gorain, et al., Recent advances in self-assembled nanoparticles for drug delivery, Curr. Drug. Deliv. 17 (2020) 279-291.
|
| [111] |
Y. Chen, X. Yang, J. Li, et al., A nasally administrated reactive oxygen species-responsive carrier-free gene delivery nanosystem for Alzheimer's disease combination therapy, J. Control. Release 381 (2025), 113604.
|
| [112] |
S. I. Gavrilova, U. W. Preuss, J. W.M. Wong, et al., Efficacy and safety of Ginkgo biloba extract EGb 761 in mild cognitive impairment with neuropsychiatric symptoms: A randomized, placebo-controlled, double-blind, multi-center trial, Int. J. Geriatr. Psychiatry 29 (2014) 1087-1095.
|
| [113] |
H. Herrschaft, A. Nacu, S. Likhachev, et al., Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: A randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 Mg, J. Psychiatr. Res. 46 (2012) 716-723.
|
| [114] |
S. T. DeKosky, J. D. Williamson, A. L. Fitzpatrick, et al., Ginkgo biloba for prevention of dementia: A randomized controlled trial, JAMA 300 (2008) 2253-2262.
|
| [115] |
B. Vellas, N. Coley, P. J. Ousset, et al., Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer's disease (GuidAge): A randomised placebo-controlled trial, Lancet. Neurol. 11 (2012) 851-859.
|
| [116] |
R. Lee, H. Lee, W. W. Kim, et al., Cognitive function improvement effects of gintonin-enriched fraction in subjective memory impairment: An Assessor- and participant-blinded placebo-controlled study, J. Ginseng. Res. 47 (2023) 735-742.
|
| [117] |
K. C. Park, H. Jin, R. Zheng, et al., Cognition enhancing effect of Panax ginseng in Korean volunteers with mild cognitive impairment: A randomized, double-blind, placebo-controlled clinical trial, Transl. Clin. Pharmacol. 27 (2019) 92-97.
|
| [118] |
J. H. Heo, S. T. Lee, M. J. Oh, et al., Improvement of cognitive deficit in Alzheimer's disease patients by long term treatment with Korean red ginseng, J. Ginseng. Res. 35 (2011) 457-461.
|
| [119] |
S. R. Rainey-Smith, B. M. Brown, H. R. Sohrabi, et al., Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults, Br. J. Nutr. 115 (2016) 2106-2113.
|
| [120] |
K. H. M. Cox, D. J. White, A. Pipingas, et al., Further evidence of benefits to mood and working memory from lipidated curcumin in healthy older people: A 12-week, double-blind, placebo-controlled, partial replication study, Nutrients 12 (2020), 1678.
|
| [121] |
J. M. Ringman, S. A. Frautschy, E. Teng, et al., Oral curcumin for Alzheimer's disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study, Alzheimers Res. Ther. 4 (2012), 43.
|
| [122] |
R. S. Turner, R. G. Thomas, S. Craft, et al., A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease, Neurology 85 (2015) 1383-1391.
|
| [123] |
C. Moussa, M. Hebron, X. Huang, et al., Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease, J. Neuroinflammation 14 (2017), 1.
|
| [124] |
S. Xiao, P. Chan, T. Wang, et al., A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer's dementia, Alzheimers. Res. Ther. 13 (2021) 62.
|
| [125] |
J. Vina, J. Escudero, M. Baquero, et al., Genistein effect on cognition in prodromal Alzheimer's disease patients. The GENIAL clinical trial, Alzheimers Res. Ther. 14 (2022), 164.
|
| [126] |
Y. Tomata, K. Sugiyama, Y. Kaiho, et al., Green tea consumption and the risk of incident dementia in elderly Japanese: The Ohsaki Cohort 2006 Study, Am. J. Geriatr. Psychiatry 24 (2016) 881-889.
|
| [127] |
A. Koreki, S. Nozaki, R. Shikimoto, et al., A longitudinal cohort study demonstrating the beneficial effect of moderate consumption of green tea and coffee on the prevention of dementia: The JPHC Saku Mental Health Study, J. Alzheimers Dis. 103 (2025) 519-527.
|
| [128] |
M. G. Fernando, R. Silva, W. M.A.D.B. Fernando, et al., Effect of virgin coconut oil supplementation on cognition of individuals with mild-to-moderate Alzheimer's disease in Sri Lanka (VCO-AD study): A randomized placebo-controlled trial, J. Alzheimers Dis. 96 (2023) 1195-1206.
|
| [129] |
T. Chatzikostopoulos, M. Gialaouzidis, A. Koutoupa, et al., The effects of pomegranate seed oil on mild cognitive impairment, J. Alzheimers Dis. 97 (2024) 1961-1970.
|
| [130] |
H. Balshem, M. Helfand, H. J. Schunemann, et al., GRADE guidelines: 3. Rating the quality of evidence, J. Clin. Epidemiol. 64 (2011) 401-406.
|
| [131] |
B. Scherrer, S. Andrieu, P. J. Ousset, et al., Analysing time to event data in dementia prevention trials: The example of the GuidAge study of EGb761, J. Nutr. Health Aging 19 (2015) 1009-1011.
|
| [132] |
J. M. Garcia-Alberca, E. Gris, S. Mendoza, Combined treatment with Ginkgo biloba extract EGb 761 plus acetylcholinesterase inhibitors improved cognitive function and neuropsychiatric symptoms in patients with mild cognitive impairment, Alzheimers Dement. 8 (2022), e12338.
|
| [133] |
Y. Yao, J. Zhao, C. Li, et al., Ginkgo biloba extract safety: Insights from a real-world pharmacovigilance study of FDA adverse event reporting system (FAERS) events, J. Ethnopharmacol. 337 (2025), 119010.
|
| [134] |
X. Dang, R. Wang, Y. Liu, Disulfiram-like reaction with ginaton: A case report and literature review, Clin. Ther. 45 (2023) 1151-1154.
|
| [135] |
J. H. Heo, M. H. Park, J. H. Lee, Effect of Korean red ginseng on cognitive function and quantitative EEG in patients with Alzheimer's disease: A preliminary study, J. Altern. Complement. Med. 22 (2016) 280-285.
|
| [136] |
E. Namgung, J. Kim, H. Jeong, et al., Effects of Korean red ginseng on human gray matter volume and cognitive function: A voxel-based morphometry study, Hum. Psychopharmacol. 36 (2021), e2767.
|
| [137] |
Z. Ren, S. Zheng, Z. Sun, et al., Resveratrol: Molecular mechanisms, health benefits, and potential adverse effects, MedComm 6 (2025), e70252.
|
| [138] |
T. Wang, W. Kuang, W. Chen, et al., A phase II randomized trial of sodium oligomannate in Alzheimer's dementia, Alzheimers Res. Ther. 12 (2020), 110.
|
| [139] |
J. Vina, C. Borras, C. Mas-Bargues, Genistein, a phytoestrogen, delays the transition to dementia in prodromal Alzheimer's disease patients, J. Alzheimers Dis. 101 (2024) S275-S283.
|
| [140] |
K. Uchida, K. Meno, T. Korenaga, et al., Effect of matcha green tea on cognitive functions and sleep quality in older adults with cognitive decline: A randomized controlled study over 12 months, PLoS One 19 (2024), e0309287.
|
| [141] |
J. Takeishi, Y. Tatewaki, T. Nakase, et al., Alzheimer's disease and type 2 diabetes mellitus: The use of MCT oil and a ketogenic diet, Int. J. Mol. Sci. 22 (2021), 12310.
|
| [142] |
H. T. T. Phan, K. Samarat, Y. Takamura, et al., Polyphenols modulate Alzheimer's amyloid beta aggregation in a structure-dependent manner, Nutrients 11 (2019), 756.
|
| [143] |
Z. Li, Y. Dai, From biological potency absorbed components to artificial intelligence mining: A review of analytical strategies for the discovery and validation of quality marker in traditional Chinese medicine in the past decade, Guidel. Stand. Chin. Med. 2 (2024) 156-166.
|