Turn off MathJax
Article Contents
Gaoshuang Fu, Mingmin Pan, Qingling Sun, Guangxin Yue, Tong Lei. Natural product-based strategies targeting inflammation in Alzheimer's disease: Mechanisms, drug delivery, and clinical trials[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101535
Citation: Gaoshuang Fu, Mingmin Pan, Qingling Sun, Guangxin Yue, Tong Lei. Natural product-based strategies targeting inflammation in Alzheimer's disease: Mechanisms, drug delivery, and clinical trials[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101535

Natural product-based strategies targeting inflammation in Alzheimer's disease: Mechanisms, drug delivery, and clinical trials

doi: 10.1016/j.jpha.2025.101535
Funds:

We are grateful for the support of The Fundamental Research Funds for the Central Public Welfare Research Institutes (Grants Nos.: ZZ17-YQ-033, YZX-202403, CYZ-202514 and ZZ18-YQ-060)

Youth Fund of the National Natural Science Foundation of China (Grant No.: 82405385).

  • Received Date: Jun. 12, 2025
  • Accepted Date: Dec. 17, 2025
  • Rev Recd Date: Dec. 15, 2025
  • Available Online: Dec. 19, 2025
  • Recent studies have shown that neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease (AD), exacerbating disease progression. Due to their multi-target mechanisms and favorable safety profiles, natural products have gradually emerged as a potential therapeutic strategy for modulating neuroinflammation and improving the symptoms in AD. This study aims to review the pharmacological mechanism and clinical application of natural products in the treatment of AD, and explore the drug delivery forms of natural products, such as self-assembly and nanoparticle loading. The natural products targeting neuroinflammation were summarized, such as Ginkgo biloba leaf extract, curcumin and resveratrol, and their mechanisms in ameliorating AD-related cognitive impairment. Additionally, it was highlighted the progress of clinical trials involving natural products for AD treatment, analyzing their potential in improving cognitive function, psychiatric symptoms, and slowing disease progression in AD patients. Finally, the challenges and future directions of natural products in AD therapy were discussed, emphasizing the importance of enhancing their bioavailability and developing novel drug delivery systems. This review may provide a theoretical foundation and practical reference for research on natural products targeting neuroinflammation to improve cognitive impairment and mental symptom in AD.
  • loading
  • [1]
    C. Marino, V. Malotaux, A. Giudicessi, et al., Protective genetic variants against Alzheimer's disease, Lancet Neurol. 24 (2025) 524-534.
    [2]
    S. Chen, Z. Cao, A. Nandi, et al., The global macroeconomic burden of Alzheimer's disease and other dementias: Estimates and projections for 152 countries or territories, Lancet Glob. Health 12 (2024) e1534-e1543.
    [3]
    J. Jia, Y. Ning, M. Chen, et al., Biomarker changes during 20 years preceding Alzheimer's disease, N. Engl. J. Med. 390 (2024) 712-722.
    [4]
    E. Topol, Predicting and preventing Alzheimer's disease, Science 388 (2025), eady3217.
    [5]
    A. G. Almutary, M. Y. Begum, A. K. Kyada, et al., Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions, Ageing Res. Rev. 104 (2025), 102548.
    [6]
    T. Lei, Z. Xiao, W. Bi, et al., Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases, Ageing Res. Rev. 82 (2022), 101769.
    [7]
    T. Lei, X. Zhang, G. Fu, et al., Advances in human cellular mechanistic understanding and drug discovery of brain organoids for neurodegenerative diseases, Ageing Res. Rev. 102 (2024), 102517.
    [8]
    C. Xing, X. Zhang, D. Wang, et al., Neuroprotective effects of mesenchymal stromal cells in mouse models of Alzheimer's Disease: The Mediating role of gut microbes and their metabolites via the Microbiome-Gut-Brain axis, Brain Behav. Immun. 122 (2024) 510-526.
    [9]
    T. Lei, G. Fu, X. Xue, et al., Tianma Gouteng Decoction improve neuronal synaptic plasticity and oligodendrocyte apoptosis in Parkinson's disease mice, Phytomedicine 140 (2025), 156553.
    [10]
    L. Gao, X. N. Yang, Y. X. Dong, et al., The potential therapeutic strategy in combating neurodegenerative diseases: Focusing on natural products, Pharmacol. Ther. 264 (2024), 108751.
    [11]
    X. Liu, W. Hao, Y. Qin, et al., Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer's disease, Brain Behav. Immun. 46 (2015) 121-131.
    [12]
    H. J. Kim, S. W. Jung, S. Y. Kim, et al., Panax ginseng as an adjuvant treatment for Alzheimer's disease, J. Ginseng Res. 42 (2018) 401-411.
    [13]
    Y. Bian, Y. Chen, X. Wang, et al., Oxyphylla A ameliorates cognitive deficits and alleviates neuropathology via the Akt-GSK3β and Nrf2-Keap1-HO-1 pathways in vitro and in vivo murine models of Alzheimer's disease, J. Adv. Res. 34 (2021) 1-12.
    [14]
    X. Wang, G. Sun, T. Feng, et al., Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression, Cell Res. 29 (2019) 787-803.
    [15]
    S. Nan, P. Wang, Y. Zhang, et al., Epigallocatechin-3-gallate provides protection against Alzheimer's disease-induced learning and memory impairments in rats, Drug Des. Devel. Ther. 15 (2021) 2013-2024.
    [16]
    W. Feng, D. Liu, Y. F. Shang, et al., Neuroimmune modulators derived from natural products: Mechanisms and potential therapies, Pharmacol. Ther. 269 (2025), 108830.
    [17]
    H. Liu, X. Jin, S. Liu, et al., Recent advances in self-targeting natural product-based nanomedicines, J. Nanobiotechnology 23 (2025), 31.
    [18]
    B. Twarowski, M. Herbet, Inflammatory processes in Alzheimer's disease-pathomechanism, diagnosis and treatment: A review, Int. J. Mol. Sci. 24 (2023), 6518.
    [19]
    M. T. Heneka, M. J. Carson, J. El Khoury, et al., Neuroinflammation in Alzheimer's disease, Lancet Neurol. 14 (2015) 388-405.
    [20]
    H. G. Lee, M. A. Wheeler, F. J. Quintana, Function and therapeutic value of astrocytes in neurological diseases, Nat. Rev. Drug Discov. 21 (2022) 339-358.
    [21]
    P. Eikelenboom, C. E. Hack, W. Kamphorst, et al., Distribution pattern and functional state of complement proteins and alpha 1-antichymotrypsin in cerebral beta/A4 deposits in Alzheimer's disease, Res. Immunol. 143 (1992) 617-620.
    [22]
    M. C. Dalakas, H. Alexopoulos, P. J. Spaeth, Complement in neurological disorders and emerging complement-targeted therapeutics, Nat. Rev. Neurol. 16 (2020) 601-617.
    [23]
    D. Singh, Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease, J. Neuroinflammation 19 (2022), 206.
    [24]
    Y. Shen, F. Liu, M. Zhang, Therapeutic potential of plant-derived natural compounds in Alzheimer's disease: Targeting microglia-mediated neuroinflammation, Biomed. Pharmacother. 178 (2024), 117235.
    [25]
    F. Leng, P. Edison, Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here?, Nat. Rev. Neurol. 17 (2021) 157-172.
    [26]
    Y. Chen, Y. Yu, Tau and neuroinflammation in Alzheimer's disease: Interplay mechanisms and clinical translation, J. Neuroinflammation 20 (2023), 165.
    [27]
    Y. N. Paudel, E. Angelopoulou, C. Piperi, et al., Impact of HMGB1, RAGE, and TLR4 in Alzheimer's disease (AD): From risk factors to therapeutic targeting, Cells 9 (2020), 383.
    [28]
    M. E. Bamberger, M. E. Harris, D. R. McDonald, et al., A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation, J. Neurosci. 23 (2003) 2665-2674.
    [29]
    O. Takeuchi, S. Akira, Pattern recognition receptors and inflammation, Cell 140 (2010) 805-820.
    [30]
    R. Bai, J. Guo, X. Ye, et al., Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease, Ageing Res. Rev. 77 (2022), 101619.
    [31]
    P. Liu, T. Zhang, Y. Wu, et al., A peptide-drug conjugate-based nanoplatform for immunometabolic activation and in situ nerve regeneration in advanced-stage Alzheimer's disease, Adv. Mater. 36 (2024), e2408729.
    [32]
    J. H. Pedder, A. M. Sonabend, M. D. Cearns, et al., Crossing the blood-brain barrier: Emerging therapeutic strategies for neurological disease, Lancet Neurol. 24 (2025) 246-260.
    [33]
    Y. Inoue, F. Shue, G. Bu, et al., Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease, Mol. Neurodegener. 18 (2023), 46.
    [34]
    S. Dhillon, Aducanumab: First approval, Drugs 81 (2021) 1437-1443.
    [35]
    S. M. Hoy, Lecanemab: First approval, Drugs 83 (2023) 359-365.
    [36]
    C. Kang, Donanemab: First approval, Drugs 84 (2024) 1313-1318.
    [37]
    J. Sevigny, C. Ping, T. Bussiere, et al., The antibody aducanumab reduces Aβ plaques in Alzheimer's disease, Nature 537 (2016) 50-56.
    [38]
    S. Tucker, C. Moller, K. Tegerstedt,et al., The murine version of BAN2401 (MAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice, J. Alzheimers Dis. 43 (2015) 575-588.
    [39]
    R. B. Demattos, J. Lu, Y. Tang, et al., A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer's disease mice, Neuron 76 (2012) 908-920.
    [40]
    A. Ardura-Fabregat, E. W.G.M. Boddeke, A. Boza-Serrano, et al., Targeting neuroinflammation to treat Alzheimer's disease, CNS Drugs 31 (2017) 1057-1082.
    [41]
    S. Sanchez-Sarasua, I. Fernandez-Perez, V. Espinosa-Fernandez,et al., Can we treat neuroinflammation in Alzheimer's disease?, Int. J. Mol. Sci. 21 (2020) 8751.
    [42]
    P. F. Meyer, J. Tremblay-Mercier, J. Leoutsakos, et al., INTREPAD: A randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease, Neurology 92 (2019) e2070-e2080.
    [43]
    A.R. Group, Follow-up evaluation of cognitive function in the randomized Alzheimer's Disease Anti-inflammatory Prevention Trial and its Follow-up Study, Alzheimers. Dement. 11 (2015) 216-225.e1.
    [44]
    J. Shi, W. Shen, J. Chen, et al., Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains, Brain Res. 1368 (2011) 239-247.
    [45]
    J. Shi, B. Wang, W. Jiang, et al., Cognitive improvement with intrathecal administration of infliximab in a woman with Alzheimer's disease, J. Am. Geriatr. Soc. 59 (2011) 1142-1144.
    [46]
    W. Ou, J. Yang, J. Simanauskaite,et al., Biologic TNF-α inhibitors reduce microgliosis, neuronal loss, and tau phosphorylation in a transgenic mouse model of tauopathy, J. Neuroinflammation 18 (2021), 312.
    [47]
    A. M. Saunders, D. K. Burns, W. K. Gottschalk, Reassessment of pioglitazone for Alzheimer's disease, Front. Neurosci. 15 (2021), 666958.
    [48]
    R. C. Coll, A. A.B. Robertson, J. J. Chae, et al., A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases, Nat. Med. 21 (2015) 248-255.
    [49]
    C. Dempsey, A. Rubio Araiz, K. J. Bryson, et al., Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice, Brain Behav. Immun. 61 (2017) 306-316.
    [50]
    I. C. Stancu, N. Cremers, H. Vanrusselt, et al., Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo, Acta Neuropathol. 137 (2019) 599-617.
    [51]
    T. Xu, X. Shen, L. Sun, et al., Ginsenoside Rg1 protects against H2O2-induced neuronal damage due to inhibition of the NLRP1 inflammasome signalling pathway in hippocampal neurons in vitro, Int. J. Mol. Med. 43 (2019) 717-726.
    [52]
    L. She, J. Sun, L. Xiong, et al., Ginsenoside RK1 improves cognitive impairments and pathological changes in Alzheimer's disease via stimulation of the AMPK/Nrf2 signaling pathway, Phytomedicine 122 (2024), 155168.
    [53]
    F. Cao, P. Zhang, Y. Chi, et al., Celastrol ameliorated Alzheimer's disease in mice by enhancing TBX21/TREM2 expression in microglia and inhibiting tau phosphorylation, Neurochem. Res. 50 (2025), 126.
    [54]
    C. Yang, C. Su, A. Iyaswamy, et al., Celastrol enhances transcription factor EB (TFEB)-mediated autophagy and mitigates Tau pathology: Implications for Alzheimer's disease therapy, Acta Pharm. Sin. B 12 (2022) 1707-1722.
    [55]
    R. P. Fisher, L. Matheny, S. Ankeny, et al., Adolescent binge alcohol exposure accelerates Alzheimer's disease-associated basal forebrain neuropathology through proinflammatory HMGB1 signaling, Front. Aging Neurosci. 17 (2025), 1531628.
    [56]
    Z. Zhou, J. Hou, Y. Mo, et al., Geniposidic acid ameliorates spatial learning and memory deficits and alleviates neuroinflammation via inhibiting HMGB-1 and downregulating TLR4/2 signaling pathway in APP/PS1 mice, Eur. J. Pharmacol. 869 (2020), 172857.
    [57]
    R. Han, T. Yuan, Z. Yang, et al., Ulmoidol, an unusual nortriterpenoid from Eucommia ulmoides Oliv. Leaves prevents neuroinflammation by targeting the PU.1 transcriptional signaling pathway, Bioorg. Chem. 116 (2021), 105345.
    [58]
    J. Tang, L. Huang, J. Deng, et al., Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model, Redox Biol. 50 (2022), 102229.
    [59]
    R. Gallego, Z. J. Suarez-Montenegro, E. Ibanez, et al., In vitro neuroprotective potential and lipidomics study of olive leaves extracts enriched in triterpenoids, Front. Nutr. 8 (2021), 769218.
    [60]
    I. M. Abdallah, K. M. Al-Shami, E. Yang, et al., Oleuropein-rich olive leaf extract attenuates neuroinflammation in the Alzheimer's disease mouse model, ACS Chem. Neurosci. 13 (2022) 1002-1013.
    [61]
    C. Bartra, Y. Yuan, K. Vuraic, et al., Resveratrol activates antioxidant protective mechanisms in cellular models of Alzheimer's disease inflammation, Antioxidants 13 (2024), 177.
    [62]
    J. Cheng-Chung Wei, H. C. Huang, W. J. Chen, et al., Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia, Eur. J. Pharmacol. 770 (2016) 16-24.
    [63]
    W. Qiu, R. Pan, Y. Tang, et al., Lychee seed polyphenol inhibits Aβ-induced activation of NLRP3 inflammasome via the LRP1/AMPK mediated autophagy induction, Biomed. Pharmacother. 130 (2020), 110575.
    [64]
    R. Xiong, X. Zhou, Y. Tang, et al., Lychee seed polyphenol protects the blood-brain barrier through inhibiting Aβ(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy in bEnd.3 cells and APP/PS1 mice, Phytother. Res. 35 (2021) 954-973.
    [65]
    C. Wang, S. Chen, H. Guo, et al., Forsythoside a mitigates Alzheimer's-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation, Int. J. Biol. Sci. 18 (2022) 2075-2090.
    [66]
    F. Kong, X. Jiang, R. Wang, et al., Forsythoside B attenuates memory impairment and neuroinflammation via inhibition on NF-κB signaling in Alzheimer's disease, J. Neuroinflammation 17 (2020), 305.
    [67]
    S. Chen, H. Liu, S. Wang, et al., The neuroprotection of verbascoside in Alzheimer's disease mediated through mitigation of neuroinflammation via blocking NF-κB-p65 signaling, Nutrients 14 (2022), 1417.
    [68]
    J. Zhou, Y. Deng, F. Li, et al., Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats, Biomed. Pharmacother. 111 (2019) 315-324.
    [69]
    Y. Deng, L. Long, K. Wang, et al., Icariside II, a broad-spectrum anti-cancer agent, reverses beta-amyloid-induced cognitive impairment through reducing inflammation and apoptosis in rats, Front. Pharmacol. 8 (2017), 39.
    [70]
    B. He, F. Xu, T. Yan, et al., Tectochrysin from Alpinia Oxyphylla Miq. alleviates Aβ(1-42) induced learning and memory impairments in mice, Eur. J. Pharmacol. 842 (2019) 365-372.
    [71]
    X. Chang, D. Zhang, W. Shi, et al., An Arabinoxylan (AOP70-1) isolated from Alpinia oxyphylla alleviates neuroinflammation and neurotoxicity by TLR4/MyD88/NF-κB pathway, Int. J. Biol. Macromol. 277 (2024), 134339.
    [72]
    C. Sun, X. Gao, S. Sha, et al., Berberine alleviates Alzheimer's disease by activating autophagy and inhibiting ferroptosis through the JNK-p38MAPK signaling pathway, Int. Immunopharmacol. 155 (2025), 114550.
    [73]
    C. Sun, S. Dong, W. Chen, et al., Berberine alleviates Alzheimer's disease by regulating the gut microenvironment, restoring the gut barrier and brain-gut axis balance, Phytomedicine 129 (2024), 155624.
    [74]
    Y. Yang, J. Wu, L. Jia, et al., Berberine modulates microglial polarization by activating TYROBP in Alzheimer's disease, Phytomedicine 135 (2024), 156237.
    [75]
    Z. Xu, X. Zhou, X. Hong, et al., Essential oil of Acorus tatarinowii Schott inhibits neuroinflammation by suppressing NLRP3 inflammasome activation in 3 × Tg-AD transgenic mice, Phytomedicine 112 (2023), 154695.
    [76]
    M. Xu, X. Zhang, F. Ren, et al., Essential oil of Schisandra chinensis ameliorates cognitive decline in mice by alleviating inflammation, Food Funct. 10 (2019) 5827-5842.
    [77]
    R. Pratiwi, C. Nantasenamat, W. Ruankham, et al., Mechanisms and neuroprotective activities of stigmasterol against oxidative stress-induced neuronal cell death via sirtuin family, Front Nutr. 8 (2021), 648995.
    [78]
    J. Zhong, X. Qiu, Q. Yu, et al., A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways, Int. J. Biol. Macromol. 163 (2020) 464-475.
    [79]
    M. Xu, J. Wang, X. Zhang, et al., Polysaccharide from Schisandra chinensis acts via LRP-1 to reverse microglia activation through suppression of the NF-κB and MAPK signaling, J. Ethnopharmacol. 256 (2020), 112798.
    [80]
    M. Xu, T. Yan, K. Fan, et al., Polysaccharide of Schisandra Chinensis Fructus ameliorates cognitive decline in a mouse model of Alzheimer's disease, J. Ethnopharmacol. 237 (2019) 354-365.
    [81]
    F. Jie, X. Yang, B. Yang, et al., Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation, Biomed. Pharmacother. 153 (2022), 113317.
    [82]
    B. Ding, C. Lin, Q. Liu, et al., Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro, J. Neuroinflammation 17 (2020), 302.
    [83]
    B. Gargouri, J. Carstensen, H. S. Bhatia, et al., Anti-neuroinflammatory effects of Ginkgo biloba extract EGb761 in LPS-activated primary microglial cells, Phytomedicine 44 (2018) 45-55.
    [84]
    W. Wan, C. Zhang, M. Danielsen, et al., EGb761 improves cognitive function and regulates inflammatory responses in the APP/PS1 mouse, Exp. Gerontol. 81 (2016) 92-100.
    [85]
    H. I. Baek, K. C. Ha, Y. K. Park, et al., Efficacy and safety of Panax ginseng sprout extract in subjective memory impairment: A randomized, double-blind, placebo-controlled clinical trial, Nutrients 16 (2024), 1952.
    [86]
    F. Cao, L. Xu, X. He, et al., Celastrol attenuates Alzheimer's disease-mediated learning and memory impairment by inhibiting endoplasmic reticulum stress-induced inflammation and oxidative stress, Arch. Med. Sci. 21 (2025) 538-554.
    [87]
    J. Song, G. He, L. Dai, A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes, Biomed. Pharmacother. 162 (2023), 114705.
    [88]
    Z. Fan, J. Liu, X. Li, et al., Glycyrrhizin-induced pseudohyperaldosteronism: A case report, Chin. J. Integr. Med. 28 (2022) 644-649.
    [89]
    M. Zhang, Z. Tang, Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation, Biomed. Pharmacother. 161 (2023), 114474.
    [90]
    A. Shaito, A. M. Posadino, N. Younes, et al., Potential adverse effects of resveratrol: A literature review, Int. J. Mol. Sci. 21 (2020), 2084.
    [91]
    V. Valverde-Salazar, D. Ruiz-Gabarre, V. Garcia-Escudero, Alzheimer's disease and green tea: Epigallocatechin-3-gallate as a modulator of inflammation and oxidative stress, Antioxidants 12 (2023), 1460.
    [92]
    M. Younes, P. Aggett, F. Aguilar, et al., Scientific opinion on the safety of green tea catechins, Efsa j. 16 (2018), e05239.
    [93]
    X. Sun, L. Li, Q. Dong, et al., Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer's disease, J. Neuroinflammation 18 (2021), 131.
    [94]
    A. Calderaro, G. T. Patane, E. Tellone, et al., The neuroprotective potentiality of flavonoids on Alzheimer's disease, Int. J. Mol. Sci. 23 (2022) 14835.
    [95]
    C. Yang, Y. Mu, S. Li, et al., Tanshinone IIA: A Chinese herbal ingredient for the treatment of atherosclerosis, Front. Pharmacol. 14 (2023), 1321880.
    [96]
    X. Morato, J. P. Tartari, V. Pytel, et al., Pharmacodynamic and clinical effects of Ginkgo biloba Extract EGb 761 and its phytochemical components in Alzheimer's disease, J. Alzheimers Dis. 101 (2024) S285-S298.
    [97]
    X. Wang, Z. Xie, J. Yuan, et al., Sodium oligomannate disrupts the adherence of Rib(high) bacteria to gut epithelia to block SAA-triggered Th1 inflammation in 5XFAD transgenic mice, Cell Discov. 10 (2024), 115.
    [98]
    X. Hong, T. Chen, Y. Liu, et al., Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease, Ageing. Res. Rev. 105 (2025), 102669.
    [99]
    D. E. Nayab, F. U. Din, H. Ali, et al., Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: An up-to-date perspective, J. Nanobiotechnology 21 (2023), 477.
    [100]
    Y. Liu, X. Xia, M. Zheng, et al., Bio-nano toolbox for precision Alzheimer's disease gene therapy, Adv. Mater. 36 (2024), e2314354.
    [101]
    Y. J. Jang, S. J. Kang, H. S. Park, et al., Drug delivery strategies with lipid-based nanoparticles for Alzheimer's disease treatment, J. Nanobiotechnology 23 (2025), 99.
    [102]
    E. Azzini, S. I. Pena-Corona, H. Hernandez-Parra, et al., Neuroprotective and anti-inflammatory effects of curcumin in Alzheimer's disease: Targeting neuroinflammation strategies, Phytother. Res. 38 (2024) 3169-3189.
    [103]
    T. Lei, C. Li, Y. Liu, et al., Microfluidics-enabled mesenchymal stem cell derived Neuron like cell membrane coated nanoparticles inhibit inflammation and apoptosis for Parkinson's Disease, J. Nanobiotechnology 22 (2024), 370.
    [104]
    Q. Feng, X. Zhang, X. Zhao, et al., Intranasal delivery of pure nanodrug loaded liposomes for Alzheimer's disease treatment by efficiently regulating microglial polarization, Small 20 (2024), 2405781.
    [105]
    M. Raju, S. S. Kunde, S. T. Auti, et al., Berberine loaded nanostructured lipid carrier for Alzheimer's disease: Design, statistical optimization and enhanced in vivo performance, Life Sci. 285 (2021), 119990.
    [106]
    W. Zhang, A. Mehta, Z. Tong, et al., Development of polymeric nanoparticles for blood-brain barrier transfer-strategies and challenges, Adv. Sci. 8 (2021), 2003937.
    [107]
    L. Yang, Y. Wang, Z. Li, et al., Brain targeted peptide-functionalized chitosan nanoparticles for resveratrol delivery: Impact on insulin resistance and gut microbiota in obesity-related Alzheimer's disease, Carbohydr. Polym. 310 (2023), 120714.
    [108]
    C. Arbez-Gindre, B. R. Steele, M. Micha-Screttas, Dendrimers in Alzheimer's disease: recent approaches in multi-targeting strategies, Pharmaceutics 15 (2023), 898.
    [109]
    A. Gothwal, H. Kumar, K. T. Nakhate, et al., Lactoferrin coupled lower generation PAMAM dendrimers for brain targeted delivery of memantine in aluminum-chloride-induced Alzheimer's disease in mice, Bioconjug. Chem. 30 (2019) 2573-2583.
    [110]
    L. T. Varma, N. Singh, B. Gorain, et al., Recent advances in self-assembled nanoparticles for drug delivery, Curr. Drug. Deliv. 17 (2020) 279-291.
    [111]
    Y. Chen, X. Yang, J. Li, et al., A nasally administrated reactive oxygen species-responsive carrier-free gene delivery nanosystem for Alzheimer's disease combination therapy, J. Control. Release 381 (2025), 113604.
    [112]
    S. I. Gavrilova, U. W. Preuss, J. W.M. Wong, et al., Efficacy and safety of Ginkgo biloba extract EGb 761 in mild cognitive impairment with neuropsychiatric symptoms: A randomized, placebo-controlled, double-blind, multi-center trial, Int. J. Geriatr. Psychiatry 29 (2014) 1087-1095.
    [113]
    H. Herrschaft, A. Nacu, S. Likhachev, et al., Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: A randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 Mg, J. Psychiatr. Res. 46 (2012) 716-723.
    [114]
    S. T. DeKosky, J. D. Williamson, A. L. Fitzpatrick, et al., Ginkgo biloba for prevention of dementia: A randomized controlled trial, JAMA 300 (2008) 2253-2262.
    [115]
    B. Vellas, N. Coley, P. J. Ousset, et al., Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer's disease (GuidAge): A randomised placebo-controlled trial, Lancet. Neurol. 11 (2012) 851-859.
    [116]
    R. Lee, H. Lee, W. W. Kim, et al., Cognitive function improvement effects of gintonin-enriched fraction in subjective memory impairment: An Assessor- and participant-blinded placebo-controlled study, J. Ginseng. Res. 47 (2023) 735-742.
    [117]
    K. C. Park, H. Jin, R. Zheng, et al., Cognition enhancing effect of Panax ginseng in Korean volunteers with mild cognitive impairment: A randomized, double-blind, placebo-controlled clinical trial, Transl. Clin. Pharmacol. 27 (2019) 92-97.
    [118]
    J. H. Heo, S. T. Lee, M. J. Oh, et al., Improvement of cognitive deficit in Alzheimer's disease patients by long term treatment with Korean red ginseng, J. Ginseng. Res. 35 (2011) 457-461.
    [119]
    S. R. Rainey-Smith, B. M. Brown, H. R. Sohrabi, et al., Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults, Br. J. Nutr. 115 (2016) 2106-2113.
    [120]
    K. H. M. Cox, D. J. White, A. Pipingas, et al., Further evidence of benefits to mood and working memory from lipidated curcumin in healthy older people: A 12-week, double-blind, placebo-controlled, partial replication study, Nutrients 12 (2020), 1678.
    [121]
    J. M. Ringman, S. A. Frautschy, E. Teng, et al., Oral curcumin for Alzheimer's disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study, Alzheimers Res. Ther. 4 (2012), 43.
    [122]
    R. S. Turner, R. G. Thomas, S. Craft, et al., A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease, Neurology 85 (2015) 1383-1391.
    [123]
    C. Moussa, M. Hebron, X. Huang, et al., Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease, J. Neuroinflammation 14 (2017), 1.
    [124]
    S. Xiao, P. Chan, T. Wang, et al., A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer's dementia, Alzheimers. Res. Ther. 13 (2021) 62.
    [125]
    J. Vina, J. Escudero, M. Baquero, et al., Genistein effect on cognition in prodromal Alzheimer's disease patients. The GENIAL clinical trial, Alzheimers Res. Ther. 14 (2022), 164.
    [126]
    Y. Tomata, K. Sugiyama, Y. Kaiho, et al., Green tea consumption and the risk of incident dementia in elderly Japanese: The Ohsaki Cohort 2006 Study, Am. J. Geriatr. Psychiatry 24 (2016) 881-889.
    [127]
    A. Koreki, S. Nozaki, R. Shikimoto, et al., A longitudinal cohort study demonstrating the beneficial effect of moderate consumption of green tea and coffee on the prevention of dementia: The JPHC Saku Mental Health Study, J. Alzheimers Dis. 103 (2025) 519-527.
    [128]
    M. G. Fernando, R. Silva, W. M.A.D.B. Fernando, et al., Effect of virgin coconut oil supplementation on cognition of individuals with mild-to-moderate Alzheimer's disease in Sri Lanka (VCO-AD study): A randomized placebo-controlled trial, J. Alzheimers Dis. 96 (2023) 1195-1206.
    [129]
    T. Chatzikostopoulos, M. Gialaouzidis, A. Koutoupa, et al., The effects of pomegranate seed oil on mild cognitive impairment, J. Alzheimers Dis. 97 (2024) 1961-1970.
    [130]
    H. Balshem, M. Helfand, H. J. Schunemann, et al., GRADE guidelines: 3. Rating the quality of evidence, J. Clin. Epidemiol. 64 (2011) 401-406.
    [131]
    B. Scherrer, S. Andrieu, P. J. Ousset, et al., Analysing time to event data in dementia prevention trials: The example of the GuidAge study of EGb761, J. Nutr. Health Aging 19 (2015) 1009-1011.
    [132]
    J. M. Garcia-Alberca, E. Gris, S. Mendoza, Combined treatment with Ginkgo biloba extract EGb 761 plus acetylcholinesterase inhibitors improved cognitive function and neuropsychiatric symptoms in patients with mild cognitive impairment, Alzheimers Dement. 8 (2022), e12338.
    [133]
    Y. Yao, J. Zhao, C. Li, et al., Ginkgo biloba extract safety: Insights from a real-world pharmacovigilance study of FDA adverse event reporting system (FAERS) events, J. Ethnopharmacol. 337 (2025), 119010.
    [134]
    X. Dang, R. Wang, Y. Liu, Disulfiram-like reaction with ginaton: A case report and literature review, Clin. Ther. 45 (2023) 1151-1154.
    [135]
    J. H. Heo, M. H. Park, J. H. Lee, Effect of Korean red ginseng on cognitive function and quantitative EEG in patients with Alzheimer's disease: A preliminary study, J. Altern. Complement. Med. 22 (2016) 280-285.
    [136]
    E. Namgung, J. Kim, H. Jeong, et al., Effects of Korean red ginseng on human gray matter volume and cognitive function: A voxel-based morphometry study, Hum. Psychopharmacol. 36 (2021), e2767.
    [137]
    Z. Ren, S. Zheng, Z. Sun, et al., Resveratrol: Molecular mechanisms, health benefits, and potential adverse effects, MedComm 6 (2025), e70252.
    [138]
    T. Wang, W. Kuang, W. Chen, et al., A phase II randomized trial of sodium oligomannate in Alzheimer's dementia, Alzheimers Res. Ther. 12 (2020), 110.
    [139]
    J. Vina, C. Borras, C. Mas-Bargues, Genistein, a phytoestrogen, delays the transition to dementia in prodromal Alzheimer's disease patients, J. Alzheimers Dis. 101 (2024) S275-S283.
    [140]
    K. Uchida, K. Meno, T. Korenaga, et al., Effect of matcha green tea on cognitive functions and sleep quality in older adults with cognitive decline: A randomized controlled study over 12 months, PLoS One 19 (2024), e0309287.
    [141]
    J. Takeishi, Y. Tatewaki, T. Nakase, et al., Alzheimer's disease and type 2 diabetes mellitus: The use of MCT oil and a ketogenic diet, Int. J. Mol. Sci. 22 (2021), 12310.
    [142]
    H. T. T. Phan, K. Samarat, Y. Takamura, et al., Polyphenols modulate Alzheimer's amyloid beta aggregation in a structure-dependent manner, Nutrients 11 (2019), 756.
    [143]
    Z. Li, Y. Dai, From biological potency absorbed components to artificial intelligence mining: A review of analytical strategies for the discovery and validation of quality marker in traditional Chinese medicine in the past decade, Guidel. Stand. Chin. Med. 2 (2024) 156-166.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return