Turn off MathJax
Article Contents
Li Shen, Xiaozhe Du, Yakai Yang, Ming Su, Rong Rong, Jia Meng, Lee Wei Lim, David G. Fernig, Zhi-Liang Lu. Development of A Novel NanoBRET High-Throughput Drug Screening Assay for Human GnRH Receptor Using Sulfo-cyanine 5 Fluorophore[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101532
Citation: Li Shen, Xiaozhe Du, Yakai Yang, Ming Su, Rong Rong, Jia Meng, Lee Wei Lim, David G. Fernig, Zhi-Liang Lu. Development of A Novel NanoBRET High-Throughput Drug Screening Assay for Human GnRH Receptor Using Sulfo-cyanine 5 Fluorophore[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101532

Development of A Novel NanoBRET High-Throughput Drug Screening Assay for Human GnRH Receptor Using Sulfo-cyanine 5 Fluorophore

doi: 10.1016/j.jpha.2025.101532
Funds:

This work was supported by the XJTLU Research Development Fund, China (Grant No.: RDF-22-01-045 and RDF-TP-003), the XJTLU Key Program Special Fund, China (Grant No.: KSF-E-33), and the National Natural Science Foundation of China (Grant No.: NSFC 81373469).

  • Received Date: Apr. 17, 2025
  • Accepted Date: Dec. 15, 2025
  • Rev Recd Date: Dec. 15, 2025
  • Available Online: Dec. 18, 2025
  • G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors and targets for over 30% of current clinical drugs, remain crucial for future therapeutic development. This study introduces a novel NanoLuciferase (NanoLuc, Nluc) bioluminescence resonance energy transfer (NanoBRET)-based ligand binding assay, utilizing the gonadotrophin-releasing hormone (GnRH) receptor as a model system. Our study demonstrates that sulfo-cyanine 5 (sCy5) is an ideal fluorophore compatible with NanoBRET, enabling sensitive measurement of ligand binding on living cell membranes. A novel GnRH analogue, sCy5-D-Lys6-GnRH, was synthesised by conjugating sCy5 on the substituted D-Lys6 of the native GnRH I. Substitution of Gly6 of GnRH I with sCy5-D-Lys6 stabilises the βII’ turn configuration of the decapeptide that exhibits high affinity and specificity for GnRH receptors while maintaining agonist activity. To address the characteristically low expression of the human GnRH receptor (hGnRHR), we engineered a modified receptor by fusing NanoLuc with an interleukin-6 secretory signal peptide (secNluc) to the N-terminus of the hGnRHR and deleting Lys191 (K191Δ) within the 2nd extracellular loop. This modification (N-secNluc-hGnRHR-K191Δ) significantly enhances receptor expression without altering ligand binding affinity, resulting in a robust BRET signal detection (Z' ≥ 0.5) between sCy5-D-Lys6-GnRH and the modified receptor. Our innovative approach using sCy5 to conjugate ligands offers several key advantages: high sensitivity and specificity, remarkably low non-specific binding (NSB), compatibility with live-cell assays, and suitability for high-throughput drug screening, which may accelerate the discovery of new therapeutics for GnRH receptor signal-selective drugs and potentially for other GPCRs.
  • loading
  • [1]
    J.S. Lorente, A.V. Sokolov, G. Ferguson, et al., GPCR drug discovery: New agents, targets and indications, Nat. Rev. Drug Discov. 24 (2025) 458-479.
    [2]
    E.C. Hulme, Z.-L. Lu, M. Bee, et al., The conformational switch in muscarinic acetylcholine receptors, Life Sci. 68 (2001) 2495-2500.
    [3]
    K.Y. Chung, S.G.F. Rasmussen, T. Liu, et al., Conformational changes in the G protein Gs induced by the β2 adrenergic receptor, Nature 477 (2011) 611-615.
    [4]
    L.A. Stoddart, C.W. White, K. Nguyen, et al., Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding, Br. J. Pharmacol. 173 (2016) 3028-3037.
    [5]
    A. Emami-Nemini, T. Roux, M. Leblay, et al., Time-resolved fluorescence ligand binding for G protein-coupled receptors, Nat. Protoc. 8 (2013) 1307-1320.
    [6]
    V. Blay, B. Tolani, S.P. Ho, et al., High-throughput screening: Today’s biochemical and cell-based approaches, Drug Discov. Today 25 (2020) 1807-1821.
    [7]
    S. Locatelli-Hoops, A.A. Yeliseev, K. Gawrisch, et al., Surface plasmon resonance applied to G protein-coupled receptors, Biomed. Spectrosc. Imaging 2 (2013) 155-181.
    [8]
    M. Ray, A. Sayeed, M. Ganshert, et al., Direct binding methods to measure receptor-ligand interactions, J. Phys. Chem. B 128 (2024) 3-19.
    [9]
    J. Fu, W. Qin, L. Cao, et al., Advances in receptor chromatography for drug discovery and drug-receptor interaction studies, Drug Discov. Today 28 (2023), 103576.
    [10]
    F.X. Vidal, A. Deloche, G. Zeder-Lutz, et al., Ligand screening of membrane proteins embedded in nanodiscs: How to manage non-specific interactions in weak affinity chromatography? Molecules 29 (2024), 2814.
    [11]
    T. Machleidt, C.C. Woodroofe, M.K. Schwinn, et al., NanoBRET: A novel BRET platform for the analysis of protein-protein interactions, ACS Chem. Biol. 10 (2015) 1797-1804.
    [12]
    L.A. Stoddart, E.K.M. Johnstone, A.J. Wheal, et al., Application of BRET to monitor ligand binding to GPCRs, Nat. Methods 12 (2015) 661-663.
    [13]
    N.C. Dale, E.K.M. Johnstone, C.W. White, et al., NanoBRET: The bright future of proximity-based assays, Front. Bioeng. Biotechnol. 7 (2019), 56.
    [14]
    C.W. White, E.K.M. Johnstone, H.B. See, et al., NanoBRET ligand binding at a GPCR under endogenous promotion facilitated by CRISPR/Cas9 genome editing, Cell. Signal. 54 (2019) 27-34.
    [15]
    R.P. Millar, Z.-L. Lu, A.J. Pawson, et al., Gonadotropin-releasing hormone receptors, Endocr. Rev. 25 (2004) 235-275.
    [16]
    C.D. White, M. Coetsee, K. Morgan, et al., A crucial role for Gαq/11, but not Gαi/o or Gαs, in gonadotropin-releasing hormone receptor-mediated cell growth inhibition, Mol. Endocrinol. 22 (2008) 2520-2530.
    [17]
    R.P. Millar, A.J. Pawson, K. Morgan, et al., Diversity of actions of GnRHs mediated by ligand-induced selective signaling, Front. Neuroendocrinol. 29 (2008) 17-35.
    [18]
    A. Chen, Y. Ganor, S. Rahimipour, et al., The neuropeptides GnRH-II and GnRH-I are produced by human T cells and trigger laminin receptor gene expression, adhesion, chemotaxis and homing to specific organs, Nat. Med. 8 (2002) 1421-1426.
    [19]
    G. Zhang, J. Li, S. Purkayastha, et al., Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH, Nature 497 (2013) 211-216.
    [20]
    Z. Wang, W. Wu, M.S. Kim, et al., GnRH pulse frequency and irregularity play a role in male aging, Nat. Aging 1 (2021) 904-918.
    [21]
    W. Yan, L. Cheng, W. Wang, et al., Structure of the human gonadotropin-releasing hormone receptor GnRH1R reveals an unusual ligand binding mode, Nat. Commun. 11 (2020), 5287.
    [22]
    B.S. Conne, M.L. Aubert, P.C. Sizonenko, Quantification of pituitary membrane receptor sites to LHRH: Use of a superactive analog as tracer, Biochem. Biophys. Res. Commun. 90 (1979) 1249-1256.
    [23]
    C.A. Flanagan, B.J. Fromme, J.S. Davidson, et al., A high affinity gonadotropin-releasing hormone (GnRH) tracer, radioiodinated at position 6, facilitates analysis of mutant GnRH receptors, Endocrinology 139 (1998) 4115-4119.
    [24]
    R. Lopez de Maturana, A.J. Pawson, Z.-L. Lu, et al., Gonadotropin-releasing hormone analog structural determinants of selectivity for inhibition of cell growth: Support for the concept of ligand-induced selective signaling, Mol. Endocrinol. 22 (2008) 1711-1722.
    [25]
    L. Anderson, A. McGregor, J.V. Cook, et al., Rapid desensitization of GnRH-stimulated intracellular signalling events in alpha T3-1 and HEK-293 cells expressing the GnRH receptor, Endocrinology 136 (1995) 5228-5231.
    [26]
    Z.-L. Lu, C.A. Curtis, P.G. Jones, et al., The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: Mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling, Mol. Pharmacol. 51 (1997) 234-241.
    [27]
    R. Forfar, Z.-L. Lu, Role of the transmembrane domain 4/extracellular loop 2 junction of the human gonadotropin-releasing hormone receptor in ligand binding and receptor conformational selection, J. Biol. Chem. 286 (2011) 34617-34626.
    [28]
    M.M. Sakyiamah, W. Nomura, T. Kobayakawa, et al., Development of a NanoBRET-based sensitive screening method for CXCR4 ligands, Bioconjug. Chem. 30 (2019) 1442-1450.
    [29]
    M. Bresinsky, A. Shahraki, P. Kolb, et al., Development of fluorescent AF64394 analogues enables real-time binding studies for the orphan class A GPCR GPR3, J. Med. Chem. 66 (2023) 15025-15041.
    [30]
    M. Coetsee, R.P. Millar, C.A. Flanagan, et al., Identification of Tyr(290(6.58)) of the human gonadotropin-releasing hormone (GnRH) receptor as a contact residue for both GnRH I and GnRH II: Importance for high-affinity binding and receptor activation, Biochemistry 47 (2008) 10305-10313.
    [31]
    A.J. Stewart, R. Sellar, D.J. Wilson, et al., Identification of a novel ligand binding residue Arg38(1.35) in the human gonadotropin-releasing hormone receptor, Mol. Pharmacol. 73 (2008) 75-81.
    [32]
    Z.-L. Lu, R. Gallagher, R. Sellar, et al., Mutations remote from the human gonadotropin-releasing hormone (GnRH) receptor-binding sites specifically increase binding affinity for GnRH II but not GnRH I: Evidence for ligand-selective, receptor-active conformations, J. Biol. Chem. 280 (2005) 29796-29803.
    [33]
    K.E. Ratcliffe, H.M. Fraser, R. Sellar, et al., Bifunctional gonadotropin-releasing hormone antagonist-progesterone analogs with increased efficacy and duration of action, Endocrinology 147 (2006) 571-579.
    [34]
    Y. Cheng, W.H. Prusoff, Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction, Biochem. Pharmacol. 22 (1973) 3099-3108.
    [35]
    J.H. Zhang, T.D. Chung, K.R. Oldenburg, A simple statistical parameter for use in evaluation and validation of high throughput screening assays, J. Biomol. Screen. 4 (1999) 67-73.
    [36]
    G. Halmos, A.V. Schally, Changes in subcellular distribution of pituitary receptors for luteinizing hormone-releasing hormone (LH-RH) after treatment with the LH-RH antagonist cetrorelix, Proc. Natl. Acad. Sci. USA 99 (2002) 961-965.
    [37]
    M. Bouzo-Lorenzo, L.A. Stoddart, L. Xia, et al., A live cell NanoBRET binding assay allows the study of ligand-binding kinetics to the adenosine A3 receptor, Purinergic Signal. 15 (2019) 139-153.
    [38]
    B.L. Hoare, S. Bruell, A. Sethi, et al., Multi-component mechanism of H2 relaxin binding to RXFP1 through NanoBRET kinetic analysis, iScience 11 (2019) 93-113.
    [39]
    Z.-L. Lu, M. Coetsee, C.D. White, et al., Structural determinants for ligand-receptor conformational selection in a peptide G protein-coupled receptor, J. Biol. Chem. 282 (2007) 17921-17929.
    [40]
    J.L. Roberts, S.K. Mani, M.J. Woller, et al., LHRH-(1-5): A bioactive peptide regulating reproduction, Trends Endocrinol. Metab. 18 (2007) 386-392.
    [41]
    S. Maudsley, L. Davidson, A.J. Pawson, et al., Gonadotropin-releasing hormone (GnRH) antagonists promote proapoptotic signaling in peripheral reproductive tumor cells by activating a Galphai-coupling state of the type I GnRH receptor, Cancer Res. 64 (2004) 7533-7544.
    [42]
    M. Ezzati, B.R. Carr, Elagolix, a novel, orally bioavailable GnRH antagonist under investigation for the treatment of endometriosis-related pain, Womens Health 11 (2015) 19-28.
    [43]
    W.T. Ashton, R.M. Sisco, Y.T. Yang, et al., Potent nonpeptide GnRH receptor antagonists derived from substituted indole-5-carboxamides and -acetamides bearing a pyridine side-chain terminus, Bioorg. Med. Chem. Lett. 11 (2001) 1727-1731.
    [44]
    J. Jiang, R.J. DeVita, M.T. Goulet, et al., Syntheses and structure-activity relationship studies of piperidine-substituted quinolones as nonpeptide gonadotropin releasing hormone antagonists, Bioorg. Med. Chem. Lett. 14 (2004) 1795-1798.
    [45]
    D.E. Durrant, E.A. Smith, E.I. Goncharova, et al., Development of a high-throughput NanoBRET screening platform to identify modulators of the RAS/RAF interaction, Mol. Cancer Ther. 20 (2021) 1743-1754.
    [46]
    H.Y. Jin, Y. Tudor, K. Choi, et al., High-throughput implementation of the NanoBRET target engagement intracellular kinase assay to reveal differential compound engagement by SIK2/3 isoforms, SLAS Discov. 25 (2020) 215-222.
    [47]
    L. Gratz, K. Tropmann, M. Bresinsky, et al., NanoBRET binding assay for histamine H2 receptor ligands using live recombinant HEK293T cells, Sci. Rep. 10 (2020), 13288.
    [48]
    M.E. Huber, S.L. Wurnig, A.F.A. Moumbock, et al., Development of a NanoBRET assay platform to detect intracellular ligands for the chemokine receptors CCR6 and CXCR1, ChemMedChem 19 (2024), e202400284.
    [49]
    J. van den Bor, N.D. Bergkamp, S.M. Anbuhl, et al., NanoB2 to monitor interactions of ligands with membrane proteins by combining nanobodies and NanoBRET, Cell Rep. Methods 3 (2023), 100422.
    [50]
    Y. Xiong, Y. Zhang, Z. Li, et al., Engineered amber-emitting nano luciferase and its use for immunobioluminescence imaging in vivo, J. Am. Chem. Soc. 144 (2022) 14101-14111.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return