| Citation: | Li Shen, Xiaozhe Du, Yakai Yang, Ming Su, Rong Rong, Jia Meng, Lee Wei Lim, David G. Fernig, Zhi-Liang Lu. Development of A Novel NanoBRET High-Throughput Drug Screening Assay for Human GnRH Receptor Using Sulfo-cyanine 5 Fluorophore[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101532 |
| [1] |
J.S. Lorente, A.V. Sokolov, G. Ferguson, et al., GPCR drug discovery: New agents, targets and indications, Nat. Rev. Drug Discov. 24 (2025) 458-479.
|
| [2] |
E.C. Hulme, Z.-L. Lu, M. Bee, et al., The conformational switch in muscarinic acetylcholine receptors, Life Sci. 68 (2001) 2495-2500.
|
| [3] |
K.Y. Chung, S.G.F. Rasmussen, T. Liu, et al., Conformational changes in the G protein Gs induced by the β2 adrenergic receptor, Nature 477 (2011) 611-615.
|
| [4] |
L.A. Stoddart, C.W. White, K. Nguyen, et al., Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding, Br. J. Pharmacol. 173 (2016) 3028-3037.
|
| [5] |
A. Emami-Nemini, T. Roux, M. Leblay, et al., Time-resolved fluorescence ligand binding for G protein-coupled receptors, Nat. Protoc. 8 (2013) 1307-1320.
|
| [6] |
V. Blay, B. Tolani, S.P. Ho, et al., High-throughput screening: Today’s biochemical and cell-based approaches, Drug Discov. Today 25 (2020) 1807-1821.
|
| [7] |
S. Locatelli-Hoops, A.A. Yeliseev, K. Gawrisch, et al., Surface plasmon resonance applied to G protein-coupled receptors, Biomed. Spectrosc. Imaging 2 (2013) 155-181.
|
| [8] |
M. Ray, A. Sayeed, M. Ganshert, et al., Direct binding methods to measure receptor-ligand interactions, J. Phys. Chem. B 128 (2024) 3-19.
|
| [9] |
J. Fu, W. Qin, L. Cao, et al., Advances in receptor chromatography for drug discovery and drug-receptor interaction studies, Drug Discov. Today 28 (2023), 103576.
|
| [10] |
F.X. Vidal, A. Deloche, G. Zeder-Lutz, et al., Ligand screening of membrane proteins embedded in nanodiscs: How to manage non-specific interactions in weak affinity chromatography? Molecules 29 (2024), 2814.
|
| [11] |
T. Machleidt, C.C. Woodroofe, M.K. Schwinn, et al., NanoBRET: A novel BRET platform for the analysis of protein-protein interactions, ACS Chem. Biol. 10 (2015) 1797-1804.
|
| [12] |
L.A. Stoddart, E.K.M. Johnstone, A.J. Wheal, et al., Application of BRET to monitor ligand binding to GPCRs, Nat. Methods 12 (2015) 661-663.
|
| [13] |
N.C. Dale, E.K.M. Johnstone, C.W. White, et al., NanoBRET: The bright future of proximity-based assays, Front. Bioeng. Biotechnol. 7 (2019), 56.
|
| [14] |
C.W. White, E.K.M. Johnstone, H.B. See, et al., NanoBRET ligand binding at a GPCR under endogenous promotion facilitated by CRISPR/Cas9 genome editing, Cell. Signal. 54 (2019) 27-34.
|
| [15] |
R.P. Millar, Z.-L. Lu, A.J. Pawson, et al., Gonadotropin-releasing hormone receptors, Endocr. Rev. 25 (2004) 235-275.
|
| [16] |
C.D. White, M. Coetsee, K. Morgan, et al., A crucial role for Gαq/11, but not Gαi/o or Gαs, in gonadotropin-releasing hormone receptor-mediated cell growth inhibition, Mol. Endocrinol. 22 (2008) 2520-2530.
|
| [17] |
R.P. Millar, A.J. Pawson, K. Morgan, et al., Diversity of actions of GnRHs mediated by ligand-induced selective signaling, Front. Neuroendocrinol. 29 (2008) 17-35.
|
| [18] |
A. Chen, Y. Ganor, S. Rahimipour, et al., The neuropeptides GnRH-II and GnRH-I are produced by human T cells and trigger laminin receptor gene expression, adhesion, chemotaxis and homing to specific organs, Nat. Med. 8 (2002) 1421-1426.
|
| [19] |
G. Zhang, J. Li, S. Purkayastha, et al., Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH, Nature 497 (2013) 211-216.
|
| [20] |
Z. Wang, W. Wu, M.S. Kim, et al., GnRH pulse frequency and irregularity play a role in male aging, Nat. Aging 1 (2021) 904-918.
|
| [21] |
W. Yan, L. Cheng, W. Wang, et al., Structure of the human gonadotropin-releasing hormone receptor GnRH1R reveals an unusual ligand binding mode, Nat. Commun. 11 (2020), 5287.
|
| [22] |
B.S. Conne, M.L. Aubert, P.C. Sizonenko, Quantification of pituitary membrane receptor sites to LHRH: Use of a superactive analog as tracer, Biochem. Biophys. Res. Commun. 90 (1979) 1249-1256.
|
| [23] |
C.A. Flanagan, B.J. Fromme, J.S. Davidson, et al., A high affinity gonadotropin-releasing hormone (GnRH) tracer, radioiodinated at position 6, facilitates analysis of mutant GnRH receptors, Endocrinology 139 (1998) 4115-4119.
|
| [24] |
R. Lopez de Maturana, A.J. Pawson, Z.-L. Lu, et al., Gonadotropin-releasing hormone analog structural determinants of selectivity for inhibition of cell growth: Support for the concept of ligand-induced selective signaling, Mol. Endocrinol. 22 (2008) 1711-1722.
|
| [25] |
L. Anderson, A. McGregor, J.V. Cook, et al., Rapid desensitization of GnRH-stimulated intracellular signalling events in alpha T3-1 and HEK-293 cells expressing the GnRH receptor, Endocrinology 136 (1995) 5228-5231.
|
| [26] |
Z.-L. Lu, C.A. Curtis, P.G. Jones, et al., The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: Mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling, Mol. Pharmacol. 51 (1997) 234-241.
|
| [27] |
R. Forfar, Z.-L. Lu, Role of the transmembrane domain 4/extracellular loop 2 junction of the human gonadotropin-releasing hormone receptor in ligand binding and receptor conformational selection, J. Biol. Chem. 286 (2011) 34617-34626.
|
| [28] |
M.M. Sakyiamah, W. Nomura, T. Kobayakawa, et al., Development of a NanoBRET-based sensitive screening method for CXCR4 ligands, Bioconjug. Chem. 30 (2019) 1442-1450.
|
| [29] |
M. Bresinsky, A. Shahraki, P. Kolb, et al., Development of fluorescent AF64394 analogues enables real-time binding studies for the orphan class A GPCR GPR3, J. Med. Chem. 66 (2023) 15025-15041.
|
| [30] |
M. Coetsee, R.P. Millar, C.A. Flanagan, et al., Identification of Tyr(290(6.58)) of the human gonadotropin-releasing hormone (GnRH) receptor as a contact residue for both GnRH I and GnRH II: Importance for high-affinity binding and receptor activation, Biochemistry 47 (2008) 10305-10313.
|
| [31] |
A.J. Stewart, R. Sellar, D.J. Wilson, et al., Identification of a novel ligand binding residue Arg38(1.35) in the human gonadotropin-releasing hormone receptor, Mol. Pharmacol. 73 (2008) 75-81.
|
| [32] |
Z.-L. Lu, R. Gallagher, R. Sellar, et al., Mutations remote from the human gonadotropin-releasing hormone (GnRH) receptor-binding sites specifically increase binding affinity for GnRH II but not GnRH I: Evidence for ligand-selective, receptor-active conformations, J. Biol. Chem. 280 (2005) 29796-29803.
|
| [33] |
K.E. Ratcliffe, H.M. Fraser, R. Sellar, et al., Bifunctional gonadotropin-releasing hormone antagonist-progesterone analogs with increased efficacy and duration of action, Endocrinology 147 (2006) 571-579.
|
| [34] |
Y. Cheng, W.H. Prusoff, Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction, Biochem. Pharmacol. 22 (1973) 3099-3108.
|
| [35] |
J.H. Zhang, T.D. Chung, K.R. Oldenburg, A simple statistical parameter for use in evaluation and validation of high throughput screening assays, J. Biomol. Screen. 4 (1999) 67-73.
|
| [36] |
G. Halmos, A.V. Schally, Changes in subcellular distribution of pituitary receptors for luteinizing hormone-releasing hormone (LH-RH) after treatment with the LH-RH antagonist cetrorelix, Proc. Natl. Acad. Sci. USA 99 (2002) 961-965.
|
| [37] |
M. Bouzo-Lorenzo, L.A. Stoddart, L. Xia, et al., A live cell NanoBRET binding assay allows the study of ligand-binding kinetics to the adenosine A3 receptor, Purinergic Signal. 15 (2019) 139-153.
|
| [38] |
B.L. Hoare, S. Bruell, A. Sethi, et al., Multi-component mechanism of H2 relaxin binding to RXFP1 through NanoBRET kinetic analysis, iScience 11 (2019) 93-113.
|
| [39] |
Z.-L. Lu, M. Coetsee, C.D. White, et al., Structural determinants for ligand-receptor conformational selection in a peptide G protein-coupled receptor, J. Biol. Chem. 282 (2007) 17921-17929.
|
| [40] |
J.L. Roberts, S.K. Mani, M.J. Woller, et al., LHRH-(1-5): A bioactive peptide regulating reproduction, Trends Endocrinol. Metab. 18 (2007) 386-392.
|
| [41] |
S. Maudsley, L. Davidson, A.J. Pawson, et al., Gonadotropin-releasing hormone (GnRH) antagonists promote proapoptotic signaling in peripheral reproductive tumor cells by activating a Galphai-coupling state of the type I GnRH receptor, Cancer Res. 64 (2004) 7533-7544.
|
| [42] |
M. Ezzati, B.R. Carr, Elagolix, a novel, orally bioavailable GnRH antagonist under investigation for the treatment of endometriosis-related pain, Womens Health 11 (2015) 19-28.
|
| [43] |
W.T. Ashton, R.M. Sisco, Y.T. Yang, et al., Potent nonpeptide GnRH receptor antagonists derived from substituted indole-5-carboxamides and -acetamides bearing a pyridine side-chain terminus, Bioorg. Med. Chem. Lett. 11 (2001) 1727-1731.
|
| [44] |
J. Jiang, R.J. DeVita, M.T. Goulet, et al., Syntheses and structure-activity relationship studies of piperidine-substituted quinolones as nonpeptide gonadotropin releasing hormone antagonists, Bioorg. Med. Chem. Lett. 14 (2004) 1795-1798.
|
| [45] |
D.E. Durrant, E.A. Smith, E.I. Goncharova, et al., Development of a high-throughput NanoBRET screening platform to identify modulators of the RAS/RAF interaction, Mol. Cancer Ther. 20 (2021) 1743-1754.
|
| [46] |
H.Y. Jin, Y. Tudor, K. Choi, et al., High-throughput implementation of the NanoBRET target engagement intracellular kinase assay to reveal differential compound engagement by SIK2/3 isoforms, SLAS Discov. 25 (2020) 215-222.
|
| [47] |
L. Gratz, K. Tropmann, M. Bresinsky, et al., NanoBRET binding assay for histamine H2 receptor ligands using live recombinant HEK293T cells, Sci. Rep. 10 (2020), 13288.
|
| [48] |
M.E. Huber, S.L. Wurnig, A.F.A. Moumbock, et al., Development of a NanoBRET assay platform to detect intracellular ligands for the chemokine receptors CCR6 and CXCR1, ChemMedChem 19 (2024), e202400284.
|
| [49] |
J. van den Bor, N.D. Bergkamp, S.M. Anbuhl, et al., NanoB2 to monitor interactions of ligands with membrane proteins by combining nanobodies and NanoBRET, Cell Rep. Methods 3 (2023), 100422.
|
| [50] |
Y. Xiong, Y. Zhang, Z. Li, et al., Engineered amber-emitting nano luciferase and its use for immunobioluminescence imaging in vivo, J. Am. Chem. Soc. 144 (2022) 14101-14111.
|