Citation: | Qinhong Jiang, Yanqi Xie, Chao Song, Caitao Dong, Wenbiao Liao, Qianlin Song, Xiaozhe Su, Heng Xiang, Yunhan Wang, Bobo Cheng, Ziqi He, Sixing Yang. ACAA1 mediates arachidonic acid dysregulation and membrane phospholipid remodeling to promote crystal-cell adhesion and ferroptosis susceptibility in calcium oxalate kidney stone[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101470 |
[1] |
I. Sorokin, C. Mamoulakis, K. Miyazawa, et al., Epidemiology of stone disease across the world, World J. Urol. 35 (2017) 1301-1320.
|
[2] |
K. Wang, J. Ge, W. Han, et al., Risk factors for kidney stone disease recurrence: A comprehensive meta-analysis, BMC Urol. 22 (2022), 62.
|
[3] |
R.Y.P. Tan, N.N. Rao, C.M. Horwood, et al., Recurrent nephrolithiasis and loss of kidney function: A cohort study, Int. Urol. Nephrol. 55 (2023) 1539-1547.
|
[4] |
S.R. Khan, M.S. Pearle, W.G. Robertson, et al., Kidney stones, Nat. Rev. Dis. Primers 2 (2016), 16008.
|
[5] |
T. He, Z. Wang, C. Li, et al., Sulfated Laminarin polysaccharides reduce the adhesion of nano-COM crystals to renal epithelial cells by inhibiting oxidative and endoplasmic reticulum stress, Pharmaceuticals 17 (2024), 805.
|
[6] |
C. Dong, Z. He, W. Liao, et al., CHAC1 mediates endoplasmic reticulum stress-dependent ferroptosis in calcium oxalate kidney stone formation, Adv. Sci. 12 (2025), e2403992.
|
[7] |
A. Nikolai von Krusenstiern, R.N. Robson, N. Qian, et al., Identification of essential sites of lipid peroxidation in ferroptosis, Nat. Chem. Biol. 19 (2023) 719-730.
|
[8] |
V.E. Kagan, G. Mao, F. Qu, et al., Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis, Nat. Chem. Biol. 13 (2017) 81-90.
|
[9] |
S. Doll, B. Proneth, Y.Y. Tyurina, et al., ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat. Chem. Biol. 13 (2017) 91-98.
|
[10] |
N. Sun, J. Wang, J. Qin, et al., Oncogenic RTKs sensitize cancer cells to ferroptosis via c-Myc mediated upregulation of ACSL4, Cell Death Dis. 15 (2024), 861.
|
[11] |
V.V. Phadnis, J. Snider, V. Varadharajan, et al., MMD collaborates with ACSL4 and MBOAT7 to promote polyunsaturated phosphatidylinositol remodeling and susceptibility to ferroptosis, Cell Rep. 42 (2023), 113023.
|
[12] |
Z. Qi, Q. Wang, M. Huang, et al., Dual functions of silibinin in attenuating aortic dissection via regulating iron homeostasis and endoplasmic reticulum stress against ferroptosis, Cell Death Dis. 15 (2024), 900.
|
[13] |
T. Mao, W. Wei, B. Chen, et al., Salivary gland protective and antiinflammatory effects of genistein in Sjogren’s syndrome by inhibiting Xist/ACSL4-mediated ferroptosis following binding to estrogen receptor-alpha, Cell. Mol. Biol. Lett. 29 (2024), 147.
|
[14] |
R.J.A. Wanders, P. Vreken, S. Ferdinandusse, et al., Peroxisomal fatty acid α- and β-oxidation in humans: Enzymology, peroxisomal metabolite transporters and peroxisomal diseases, Biochem. Soc. Trans. 29 (2001) 250-267.
|
[15] |
Y. Zhang, Y. Wang, X. Wang, et al., Acetyl-coenzyme A acyltransferase 2 promote the differentiation of sheep precursor adipocytes into adipocytes, J. Cell. Biochem. 120 (2019) 8021-8031.
|
[16] |
Y. Zhang, H. Guo, H.M. Hassan, et al., Pyrazinamide induced hepatic injury in rats through inhibiting the PPARα pathway, J. Appl. Toxicol. 36 (2016) 1579-1590.
|
[17] |
W. Peng, X. Jin, X. Xu, et al., Inhibition of ACAA1 restrains proliferation and potentiates the response to CDK4/6 inhibitors in triple-negative breast cancer, Cancer Res. 83 (2023) 1711-1724.
|
[18] |
Z. He, C. Song, S. Li, et al., Development and application of the CRISPR-dcas13d-eIF4G translational regulatory system to inhibit ferroptosis in calcium oxalate crystal-induced kidney injury, Adv. Sci. 11 (2024), e2309234.
|
[19] |
Q. Song, C. Song, X. Chen, et al., FKBP5 deficiency attenuates calcium oxalate kidney stone formation by suppressing cell-crystal adhesion, apoptosis and macrophage M1 polarization via inhibition of NF-κB signaling, Cell. Mol. Life Sci. 80 (2023), 301.
|
[20] |
K. Taguchi, S. Hamamoto, A. Okada, et al., Genome-wide gene expression profiling of randall’s plaques in calcium oxalate stone formers, J. Am. Soc. Nephrol. 28 (2017) 333-347.
|
[21] |
C. Dong, J. Zhou, X. Su, et al., Understanding formation processes of calcareous nephrolithiasis in renal interstitium and tubule lumen, J. Cell. Mol. Med. 28 (2024), e18235.
|
[22] |
K. Tang, T. Ye, Y. He, et al., Ferroptosis, necroptosis, and pyroptosis in calcium oxalate crystal-induced kidney injury, Biochim. Biophys. Acta BBA Mol. Basis Dis. 1871 (2025), 167791.
|
[23] |
S. Feng, R. Yan, C. Tang, et al., Modulating ferroptosis for the prevention of urinary stone recurrence: An innovative strategy employing Tetrahedral Framework Nucleic acids and Polydatin conjugates, Chem. Eng. J. 496 (2024), 153655.
|
[24] |
B. Baggio, A. Budakovic, Fatty acids and idiopathic calcium nephrolithiasis, Urol. Int. 75 (2005) 97-101.
|
[25] |
Y. Chao, S. Gao, X. Wang, et al., Untargeted lipidomics based on UPLC-QTOF-MS/MS and structural characterization reveals dramatic compositional changes in serum and renal lipids in mice with glyoxylate-induced nephrolithiasis, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1095 (2018) 258-266.
|
[26] |
B. Baggio, A. Budakovic, M.A. Nassuato, et al., Plasma phospholipid arachidonic acid content and calcium metabolism in idiopathic calcium nephrolithiasis, Kidney Int. 58 (2000) 1278-1284.
|
[27] |
A.L. Rodgers, D. Jappie-Mahomed, P.J. van Jaarsveld, Testing the dogma that total phospholipid fatty acid composition of blood plays a role in kidney stone pathogenesis, using a high-low risk human model: Results from a pilot study, Urolithiasis 47 (2019) 255-261.
|
[28] |
A.L. Rodgers, R. Siener, The efficacy of polyunsaturated fatty acids as protectors against calcium oxalate renal stone formation: A review, Nutrients 12 (2020), 1069.
|
[29] |
G. Gambaro, P.M. Ferraro, G. Capasso, Calcium nephrolithiasis, metabolic syndrome and the cardiovascular risk, Nephrol. Dial. Transplant. 27 (2012) 3008-3010.
|
[30] |
M. Szczuko, M. Kaczkan, A. Drozd, et al., Comparison of fatty acid profiles in a group of female patients with chronic kidney diseases (CKD) and metabolic syndrome (MetS)-Similar trends of changes, different pathophysiology, Int. J. Mol. Sci. 20 (2019), 1719.
|
[31] |
T. Wang, X. Fu, Q. Chen, et al., Arachidonic acid metabolism and kidney inflammation, Int. J. Mol. Sci. 20 (2019), 3683.
|
[32] |
J. Uribarri, Chronic kidney disease and kidney stones, Curr. Opin. Nephrol. Hypertens. 29 (2020) 237-242.
|
[33] |
Y. Wong, P. Cook, P. Roderick, et al., Metabolic syndrome and kidney stone disease: A systematic review of literature, J. Endourol. 30 (2016) 246-253.
|
[34] |
R.K. Saini, Y.S. Keum, Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review, Life Sci. 203 (2018) 255-267.
|
[35] |
M. Tahri-Joutey, P. Andreoletti, S. Surapureddi, et al., Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα, Int. J. Mol. Sci. 22 (2021), 8969.
|
[36] |
K. Taguchi, L. Chen, M. Usawachintachit, et al., Fatty acid-binding protein 4 downregulation drives calcification in the development of kidney stone disease, Kidney Int. 97 (2020) 1042-1056.
|
[37] |
T. Yuan, Y. Xia, S. Pan, et al., STAT6 promoting oxalate crystal deposition-induced renal fibrosis by mediating macrophage-to-myofibroblast transition via inhibiting fatty acid oxidation, Inflamm. Res. 72 (2023) 2111-2126.
|
[38] |
Y. Chao, N. Li, S. Xiong, et al., Lipidomics based on liquid chromatography-high resolution mass spectrometry reveals the protective role of peroxisome proliferator-activated receptor alpha on kidney stone formation in mice treated with glyoxylate, J. Sep. Sci. 46 (2023), e2300452.
|
[39] |
N.M. Maalouf, J.R. Poindexter, B. Adams-Huet, et al., Increased production and reduced urinary buffering of acid in uric acid stone formers is ameliorated by pioglitazone, Kidney Int. 95 (2019) 1262-1268.
|
[40] |
P.J. Sims, T. Wiedmer, Unraveling the mysteries of phospholipid scrambling, Thromb. Haemost. 86 (2001) 266-275.
|
[41] |
Z.D. Nassar, C.Y. Mah, J. Dehairs, et al., Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis, Elife 9 (2020), e54166.
|
[42] |
J. Yang, W. Wu, Y. Amier, et al., Ferroptosis and its emerging role in kidney stone formation, Mol. Biol. Rep. 51 (2024), 314.
|
[43] |
J.Y. Lee, M. Nam, H.Y. Son, et al., Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer, Proc. Natl. Acad. Sci. USA 117 (2020) 32433-32442.
|
[44] |
D. Yamane, Y. Hayashi, M. Matsumoto, et al., FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication, Cell Chem. Biol. 29 (2022) 799-810.e4.
|
[45] |
X. Song, J. Liu, F. Kuang, et al., PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis, Cell Rep. 34 (2021), 108767.
|
[46] |
P. Kong, M. Yang, Y. Wang, et al., Ferroptosis triggered by STAT1- IRF1-ACSL4 pathway was involved in radiation-induced intestinal injury, Redox Biol. 66 (2023), 102857.
|
[47] |
R. Takii, M. Fujimoto, K. Tan, et al., ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex, Mol. Cell. Biol. 35 (2015) 11-25.
|
[48] |
Z. Lu, H. Dong, Z. Tu, et al., Expression, molecular mechanisms and therapeutic potentials of ATF1 in cancers, Life Sci. 360 (2025), 123256.
|
[49] |
R. Stafim da Cunha, P.C. Gregorio, R.A.P. Maciel, et al., Uremic toxins activate CREB/ATF1 in endothelial cells related to chronic kidney disease, Biochem. Pharmacol. 198 (2022), 114984.
|
[50] |
M. Hu, J. Yang, Z. Tan, ATF1 promotes ferroptosis resistance in lung cancer through enhancing mRNA stability of PROM2, Exp. Cell Res. 442 (2024), 114190.
|