Turn off MathJax
Article Contents
Vincent Chiapolino, François-Marie Moussallieh, Philippe Lesot, Boris Gouilleux. 19F-{1H} NMR spectroscopy in weakly orienting solvents for the enantiomeric resolution of fluorinated chiral drugs: The case of fluoxetine[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101469
Citation: Vincent Chiapolino, François-Marie Moussallieh, Philippe Lesot, Boris Gouilleux. 19F-{1H} NMR spectroscopy in weakly orienting solvents for the enantiomeric resolution of fluorinated chiral drugs: The case of fluoxetine[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101469

19F-{1H} NMR spectroscopy in weakly orienting solvents for the enantiomeric resolution of fluorinated chiral drugs: The case of fluoxetine

doi: 10.1016/j.jpha.2025.101469
Funds:

The authors thank the French National Research Agency (ANR) for its financial support (Grant No.: ANR-23-CE29-0005-01) in the developments of this research. The authors also thank the National Center for Scientific Research (CNRS), France and the University of Paris-Saclay, France for their recurrent funding. They would also like to thank the Institute of Molecular Chemistry and Materials of Orsay (ICMMO), France and the University of Paris-Saclay (Mutualized regional equipment (ERM) funding) for their financial participation to the BBFO 5-mm NMR probe as part of the renewal of the technical and scientific platform. Finally, the authors acknowledge Louise Meraud who participated to this work as a Master student.

  • Received Date: Mar. 15, 2025
  • Accepted Date: Oct. 09, 2025
  • Rev Recd Date: Oct. 03, 2025
  • Available Online: Oct. 13, 2025
  • A rapid and simple method combining 19F-{1H} nuclear magnetic resonance (NMR) and weakly orienting chiral solvents is proposed for the spectral discrimination and accurate quantitation of fluoxetine enantiomers. Fluoxetine (FLX) is a well-known bioactive chiral drug in pharmacology with well-established anti-depressant properties (Prozac or Sarafem) and currently used as a racemate. Since 1991, it has been established that the (S)-form of FLX shows different pharmacokinetic and pharmacodynamic profiles in comparison to the (R)-form, hence the development of novel enantioresolved NMR methods for analyzing FLX is of interest. The reported approach, relying on a commercial polymer: poly-γ-benzyl-L-glutamate (PBLG) as chiral selector, addresses the enantiomeric analysis of FLX hydrochloride solutions with a high level of accuracy in a short time. The influence of experimental parameters, such as solute concentration and temperature on the enantiomeric resolution is investigated and discussed in depth. In particular, the uniformity and stability of PBLG-based lyotropic liquid crystals (LLCs) in presence of a hydrochloride analyte is assessed for the first time by 19F NMR imaging. All the outcomes obtained highlight the analytical potential of this NMR approach for the enantiomeric analysis of fluorinated chiral drugs while the spectral data recorded at various conditions in temperature and mesophase composition provide new valuable insights toward a better understanding of chiral recognition processes in polypeptide orienting media.
  • loading
  • [1]
    E. Sanganyado, Z. Lu, Q. Fu, et al., Chiral pharmaceuticals: A review on their environmental occurrence and fate processes, Water Res. 124 (2017) 527-542.
    [2]
    B.S. Sekhon, Exploiting the power of stereochemistry in drugs: An overview of racemic and enantiopure drugs, J. Mod. Med. Chem. 1 (2013) 10-36. https://doi.org/10.12970/2308-8044.2013.01.01.2.
    [3]
    W.H. Brooks, W.C. Guida, K.G. Daniel, The significance of chirality in drug design and development, Curr. Top. Med. Chem. 11 (2011) 760-770.
    [4]
    A. Calcaterra, I. D’Acquarica, The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds, J. Pharm. Biomed. Anal. 147 (2018) 323-340.
    [5]
    I. Agranat, H. Caner, J. Caldwell, Putting chirality to work: the strategy of chiral switches, Nat. Rev. Drug Discov. 1 (2002) 753-768.
    [6]
    S. Orlandini, G. Hancu, Z.I. Szabo, et al., New trends in the quality control of enantiomeric drugs: Quality by design-compliant development of chiral capillary electrophoresis methods, Molecules 27 (2022), 7058.
    [7]
    E.L. Izake, Chiral discrimination and enantioselective analysis of drugs: An overview, J. Pharm. Sci. 96 (2007) 1659-1676.
    [8]
    Y.C. Yip, S.K. Wong, S.M. Choi, Assessment of the chemical and enantiomeric purity of organic reference materials, Trac Trends Anal. Chem. 30 (2011) 628-640.
    [9]
    T.R. Hoye, C.S. Jeffrey, F. Shao, Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons, Nat. Protoc. 2 (2007) 2451-2458.
    [10]
    T.J. Wenzel, C.D. Chisholm, Using NMR spectroscopic methods to determine enantiomeric purity and assign absolute stereochemistry, Prog. Nucl. Magn. Reson. Spectrosc. 59 (2011) 1-63.
    [11]
    D. Parker, NMR determination of enantiomeric purity, Chem. Rev. 91 (1991) 1441-1457. https://doi.org/10.1021/cr00007a009.
    [12]
    S. Jang, H. Kim, Chiral 1H NMR analysis of carbonyl compounds enabled by cationic cobalt complex, Org. Lett. 22 (2020) 4185-4189.
    [13]
    L. Li, B. Ye, Discrimination and enantiomeric excess determination of chiral primary amines based on a chiral-at-metal Ir(III) complex using NMR spectroscopy, Inorg. Chem. 56 (2017) 10717-10723.
    [14]
    M.D. McCreary, D.W. Lewis, D.L. Wernick, et al., Determination of enantiomeric purity using chiral lanthanide shift reagents, J. Am. Chem. Soc. 96 (1974) 1038-1054.
    [15]
    L. Zhang, A.F. Martins, P. Zhao, et al., Enantiomeric recognition of d- and l-lactate by CEST with the aid of a paramagnetic shift reagent, J. Am. Chem. Soc. 139 (2017) 17431-17437.
    [16]
    L. Bai, P. Chen, J. Xiang, et al., Enantiomeric NMR discrimination of carboxylic acids using actinomycin D as a chiral solvating agent, Org. Biomol. Chem. 17 (2019) 1466-1470.
    [17]
    B. Huang, L. Xu, J. Ying, et al., A novel in situ strategy for enantiomeric discrimination and selective identification of multicomponent carboxylic acids in foods, Anal. Chim. Acta 1230 (2022), 340402.
    [18]
    Y. Chen, B. Li, J. Chen, et al., Simultaneous discrimination and quantification of enantiomeric amino acids under physiological conditions by chiral 19F NMR tag, Anal. Chem. 94 (2022) 7853-7860.
    [19]
    L. Xu, Q. Wang, Y. Liu, et al., 19F NMR enantiodiscrimination and diastereomeric purity determination of amino acids, dipeptides, and amines, Analyst 148 (2023) 4548-4556.
    [20]
    B. Huang, L. Xu, N. Wang, et al., trans-4-fluoro-l-proline: A sensitive 19F NMR probe for the rapid simultaneous enantiomeric analysis of multicomponent amines, Anal. Chem. 94 (2022) 1867-1873.
    [21]
    W. Bao, H. Wang, L. Wen, et al., NMR-based chiral discrimination of bulky amines with a 19F-tagged NNO pincer complex, Anal. Chem. 96 (2024) 11448-11454.
    [22]
    H. Dodziuk, W. Kozminski, A. Ejchart, NMR studies of chiral recognition by cyclodextrins, Chirality 16 (2004) 90-105.
    [23]
    S. Shi, X. Wang, Y. Gao, et al., DACH-based chiral sensing platforms as tunable benzamide-chiral solvating agents for NMR enantioselective discrimination, Anal. Chem. 97 (2025) 1900-1908.
    [24]
    L. Yang, T. Wenzel, R.T. Williamson, et al., Expedited selection of NMR chiral solvating agents for determination of enantiopurity, ACS Cent. Sci. 2 (2016) 332-340.
    [25]
    P. Lesot, C. Aroulanda, P. Berdague, et al., Multinuclear NMR in polypeptide liquid crystals: Three fertile decades of methodological developments and analytical challenges, Prog. Nucl. Magn. Reson. Spectrosc. 116 (2020) 85-154.
    [26]
    C. Aroulanda, P. Lesot, Molecular enantiodiscrimination by NMR spectroscopy in chiral oriented systems: Concept, tools, and applications, Chirality 34 (2022) 182-244.
    [27]
    M. Leyendecker, N.C. Meyer, C.M. Thiele, Development of new supramolecular lyotropic liquid crystals and their application as alignment media for organic compounds, Angew. Chem. Int. Ed 56 (2017) 11471-11474.
    [28]
    X. Lei, F. Qiu, H. Sun, et al., A self-assembled oligopeptide as a versatile NMR alignment medium for the measurement of residual dipolar couplings in methanol, Angew. Chem. Int. Ed 56 (2017) 12857-12861.
    [29]
    P. Lesot, P. Berdague, A. Meddour, et al., 2H and 13C NMR-based enantiodetection using polyacetylene versus polypeptide aligning media: Versatile and complementary tools for chemists, ChemPlusChem 84 (2019) 144-153.
    [30]
    P. Berdague, B. Gouilleux, M. Noll, et al., Study and quantification of the enantiodiscrimination power of four polymeric chiral LLCs using NAD 2D-NMR, Phys. Chem. Chem. Phys. 24 (2022) 7338-7348.
    [31]
    M. Schwab, D. Herold, C.M. Thiele, Polyaspartates as thermoresponsive enantiodifferentiating helically chiral alignment media for anisotropic NMR spectroscopy, Chemistry 23 (2017) 14576-14584.
    [32]
    S. Jeziorowski, C.M. Thiele, Poly-γ-p-biphenylmethyl-glutamate as enantiodifferentiating alignment medium for NMR spectroscopy with temperature-tunable properties, Chemistry 24 (2018) 15631-15637.
    [33]
    B. Gouilleux, F.M. Moussallieh, P. Lesot, Potential and performance of anisotropic 19F NMR for the enantiomeric analysis of fluorinated chiral active pharmaceutical ingredients, Analyst 149 (2024) 3204-3213.
    [34]
    L.F. Gram, Fluoxetine, N. Engl. J. Med. 331 (1994) 1354-1361. https://doi.org/10.1056/NEJM199411173312008.
    [35]
    L. Micheli, M. Ceccarelli, G. D’Andrea, et al., Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise, Brain Res. Bull. 143 (2018) 181-193.
    [36]
    R.W. Fuller, H.D. Snoddy, J.H. Krushinski, et al., Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo, Neuropharmacology 31 (1992) 997-1000.
    [37]
    R.W. Fuller, D.T. Wong, D.W. Robertson, Fluoxetine, a selective inhibitor of serotonin uptake, Med. Res. Rev. 11 (1991) 17-34.
    [38]
    A. Solgadi, L. Jean, M.C. Lasne, et al., NMR in chiral polypeptide liquid crystals: The problem of amines, Tetrahedron Asymmetry 18 (2007) 1511-1516.
    [39]
    P. Trigo-Mourino, C. Merle, M.R.M. Koos, et al., Probing spatial distribution of alignment by deuterium NMR imaging, Chemistry 19 (2013) 7013-7019.
    [40]
    D. Elsing, B. Luy, M. Kozlowska, Enantiomer differentiation by interaction-specific prediction of residual dipolar couplings in spherical-like molecules, J. Chem. Theory Comput. 20 (2024) 6454-6469.
    [41]
    M. Mayer, B. Meyer, Characterization of ligand binding by saturation transfer difference NMR spectroscopy, Angew. Chem. Int. Ed 38 (1999) 1784-1788.
    [42]
    S. Monaco, L.E. Tailford, N. Juge, J. Angulo, Differential Epitope Mapping by STD NMR Spectroscopy To Reveal the Nature of Protein-Ligand Contacts, Angew. Chem. Int. Ed 56 (2017) 15289-15293.
    [43]
    S.D. Volpe, R. Listro, M. Parafioriti, M. Di Giacomo, D. Rossi, F.A. Ambrosio, G. Costa, S. Alcaro, F. Ortuso, A.K.H. Hirsch, F. Vasile, S. Collina, BOPC1 Enantiomers preparation and HuR interaction study. From molecular modeling to a curious DEEP-STD NMR application, ACS Med. Chem. Lett. 11 (2020) 883-888.
    [44]
    M. Goldman, Interference effects in the relaxation of a pair of unlike spin- 1 2 nuclei, J. Magn. Reson. 1969 60 (1984) 437-452.
    [45]
    K. Dorai, A. Kumar, Fluorine chemical shift tensors in substituted fluorobenzenes using cross correlations in NMR relaxation, Chem. Phys. Lett. 335 (2001) 176-182.
    [46]
    J.W. Peng, Cross-correlated 19F relaxation measurements for the study of fluorinated ligand-receptor interactions, J. Magn. Reson. 153 (2001) 32-47.
    [47]
    S. Sobajima, NMR studies on orientation of liquid crystals of poly-γ-benzyl-L-glutamate in magnetic fields, J. Phys. Soc. Jpn. 23 (1967) 1070-1078.
    [48]
    R.W. Duke, D.B. Du Pre, W.A. Hines, et al., Poly(gamma-benzyl L-glutamate) helix-coil transition. Pretransition phenomena in the liquid crystal phase, J. Am. Chem. Soc. 98 (1976) 3094-3101.
    [49]
    A. Marx, B. Bottcher, C.M. Thiele, Enhancing the orienting properties of poly(gamma-benzyl-L-glutamate) by means of additives, Chemistry 16 (2010) 1656-1663.
    [50]
    J.N. Dumez, Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy, Prog. Nucl. Magn. Reson. Spectrosc. 109 (2018) 101-134.
    [51]
    A. Marx, C. Thiele, Orientational properties of poly-gamma-benzyl-L-glutamate: Influence of molecular weight and solvent on order parameters of the solute, Chemistry 15 (2009) 254-260.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (44) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return