Citation: | Vincent Chiapolino, François-Marie Moussallieh, Philippe Lesot, Boris Gouilleux. 19F-{1H} NMR spectroscopy in weakly orienting solvents for the enantiomeric resolution of fluorinated chiral drugs: The case of fluoxetine[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101469 |
[1] |
E. Sanganyado, Z. Lu, Q. Fu, et al., Chiral pharmaceuticals: A review on their environmental occurrence and fate processes, Water Res. 124 (2017) 527-542.
|
[2] |
B.S. Sekhon, Exploiting the power of stereochemistry in drugs: An overview of racemic and enantiopure drugs, J. Mod. Med. Chem. 1 (2013) 10-36. https://doi.org/10.12970/2308-8044.2013.01.01.2.
|
[3] |
W.H. Brooks, W.C. Guida, K.G. Daniel, The significance of chirality in drug design and development, Curr. Top. Med. Chem. 11 (2011) 760-770.
|
[4] |
A. Calcaterra, I. D’Acquarica, The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds, J. Pharm. Biomed. Anal. 147 (2018) 323-340.
|
[5] |
I. Agranat, H. Caner, J. Caldwell, Putting chirality to work: the strategy of chiral switches, Nat. Rev. Drug Discov. 1 (2002) 753-768.
|
[6] |
S. Orlandini, G. Hancu, Z.I. Szabo, et al., New trends in the quality control of enantiomeric drugs: Quality by design-compliant development of chiral capillary electrophoresis methods, Molecules 27 (2022), 7058.
|
[7] |
E.L. Izake, Chiral discrimination and enantioselective analysis of drugs: An overview, J. Pharm. Sci. 96 (2007) 1659-1676.
|
[8] |
Y.C. Yip, S.K. Wong, S.M. Choi, Assessment of the chemical and enantiomeric purity of organic reference materials, Trac Trends Anal. Chem. 30 (2011) 628-640.
|
[9] |
T.R. Hoye, C.S. Jeffrey, F. Shao, Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons, Nat. Protoc. 2 (2007) 2451-2458.
|
[10] |
T.J. Wenzel, C.D. Chisholm, Using NMR spectroscopic methods to determine enantiomeric purity and assign absolute stereochemistry, Prog. Nucl. Magn. Reson. Spectrosc. 59 (2011) 1-63.
|
[11] |
D. Parker, NMR determination of enantiomeric purity, Chem. Rev. 91 (1991) 1441-1457. https://doi.org/10.1021/cr00007a009.
|
[12] |
S. Jang, H. Kim, Chiral 1H NMR analysis of carbonyl compounds enabled by cationic cobalt complex, Org. Lett. 22 (2020) 4185-4189.
|
[13] |
L. Li, B. Ye, Discrimination and enantiomeric excess determination of chiral primary amines based on a chiral-at-metal Ir(III) complex using NMR spectroscopy, Inorg. Chem. 56 (2017) 10717-10723.
|
[14] |
M.D. McCreary, D.W. Lewis, D.L. Wernick, et al., Determination of enantiomeric purity using chiral lanthanide shift reagents, J. Am. Chem. Soc. 96 (1974) 1038-1054.
|
[15] |
L. Zhang, A.F. Martins, P. Zhao, et al., Enantiomeric recognition of d- and l-lactate by CEST with the aid of a paramagnetic shift reagent, J. Am. Chem. Soc. 139 (2017) 17431-17437.
|
[16] |
L. Bai, P. Chen, J. Xiang, et al., Enantiomeric NMR discrimination of carboxylic acids using actinomycin D as a chiral solvating agent, Org. Biomol. Chem. 17 (2019) 1466-1470.
|
[17] |
B. Huang, L. Xu, J. Ying, et al., A novel in situ strategy for enantiomeric discrimination and selective identification of multicomponent carboxylic acids in foods, Anal. Chim. Acta 1230 (2022), 340402.
|
[18] |
Y. Chen, B. Li, J. Chen, et al., Simultaneous discrimination and quantification of enantiomeric amino acids under physiological conditions by chiral 19F NMR tag, Anal. Chem. 94 (2022) 7853-7860.
|
[19] |
L. Xu, Q. Wang, Y. Liu, et al., 19F NMR enantiodiscrimination and diastereomeric purity determination of amino acids, dipeptides, and amines, Analyst 148 (2023) 4548-4556.
|
[20] |
B. Huang, L. Xu, N. Wang, et al., trans-4-fluoro-l-proline: A sensitive 19F NMR probe for the rapid simultaneous enantiomeric analysis of multicomponent amines, Anal. Chem. 94 (2022) 1867-1873.
|
[21] |
W. Bao, H. Wang, L. Wen, et al., NMR-based chiral discrimination of bulky amines with a 19F-tagged NNO pincer complex, Anal. Chem. 96 (2024) 11448-11454.
|
[22] |
H. Dodziuk, W. Kozminski, A. Ejchart, NMR studies of chiral recognition by cyclodextrins, Chirality 16 (2004) 90-105.
|
[23] |
S. Shi, X. Wang, Y. Gao, et al., DACH-based chiral sensing platforms as tunable benzamide-chiral solvating agents for NMR enantioselective discrimination, Anal. Chem. 97 (2025) 1900-1908.
|
[24] |
L. Yang, T. Wenzel, R.T. Williamson, et al., Expedited selection of NMR chiral solvating agents for determination of enantiopurity, ACS Cent. Sci. 2 (2016) 332-340.
|
[25] |
P. Lesot, C. Aroulanda, P. Berdague, et al., Multinuclear NMR in polypeptide liquid crystals: Three fertile decades of methodological developments and analytical challenges, Prog. Nucl. Magn. Reson. Spectrosc. 116 (2020) 85-154.
|
[26] |
C. Aroulanda, P. Lesot, Molecular enantiodiscrimination by NMR spectroscopy in chiral oriented systems: Concept, tools, and applications, Chirality 34 (2022) 182-244.
|
[27] |
M. Leyendecker, N.C. Meyer, C.M. Thiele, Development of new supramolecular lyotropic liquid crystals and their application as alignment media for organic compounds, Angew. Chem. Int. Ed 56 (2017) 11471-11474.
|
[28] |
X. Lei, F. Qiu, H. Sun, et al., A self-assembled oligopeptide as a versatile NMR alignment medium for the measurement of residual dipolar couplings in methanol, Angew. Chem. Int. Ed 56 (2017) 12857-12861.
|
[29] |
P. Lesot, P. Berdague, A. Meddour, et al., 2H and 13C NMR-based enantiodetection using polyacetylene versus polypeptide aligning media: Versatile and complementary tools for chemists, ChemPlusChem 84 (2019) 144-153.
|
[30] |
P. Berdague, B. Gouilleux, M. Noll, et al., Study and quantification of the enantiodiscrimination power of four polymeric chiral LLCs using NAD 2D-NMR, Phys. Chem. Chem. Phys. 24 (2022) 7338-7348.
|
[31] |
M. Schwab, D. Herold, C.M. Thiele, Polyaspartates as thermoresponsive enantiodifferentiating helically chiral alignment media for anisotropic NMR spectroscopy, Chemistry 23 (2017) 14576-14584.
|
[32] |
S. Jeziorowski, C.M. Thiele, Poly-γ-p-biphenylmethyl-glutamate as enantiodifferentiating alignment medium for NMR spectroscopy with temperature-tunable properties, Chemistry 24 (2018) 15631-15637.
|
[33] |
B. Gouilleux, F.M. Moussallieh, P. Lesot, Potential and performance of anisotropic 19F NMR for the enantiomeric analysis of fluorinated chiral active pharmaceutical ingredients, Analyst 149 (2024) 3204-3213.
|
[34] |
L.F. Gram, Fluoxetine, N. Engl. J. Med. 331 (1994) 1354-1361. https://doi.org/10.1056/NEJM199411173312008.
|
[35] |
L. Micheli, M. Ceccarelli, G. D’Andrea, et al., Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise, Brain Res. Bull. 143 (2018) 181-193.
|
[36] |
R.W. Fuller, H.D. Snoddy, J.H. Krushinski, et al., Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo, Neuropharmacology 31 (1992) 997-1000.
|
[37] |
R.W. Fuller, D.T. Wong, D.W. Robertson, Fluoxetine, a selective inhibitor of serotonin uptake, Med. Res. Rev. 11 (1991) 17-34.
|
[38] |
A. Solgadi, L. Jean, M.C. Lasne, et al., NMR in chiral polypeptide liquid crystals: The problem of amines, Tetrahedron Asymmetry 18 (2007) 1511-1516.
|
[39] |
P. Trigo-Mourino, C. Merle, M.R.M. Koos, et al., Probing spatial distribution of alignment by deuterium NMR imaging, Chemistry 19 (2013) 7013-7019.
|
[40] |
D. Elsing, B. Luy, M. Kozlowska, Enantiomer differentiation by interaction-specific prediction of residual dipolar couplings in spherical-like molecules, J. Chem. Theory Comput. 20 (2024) 6454-6469.
|
[41] |
M. Mayer, B. Meyer, Characterization of ligand binding by saturation transfer difference NMR spectroscopy, Angew. Chem. Int. Ed 38 (1999) 1784-1788.
|
[42] |
S. Monaco, L.E. Tailford, N. Juge, J. Angulo, Differential Epitope Mapping by STD NMR Spectroscopy To Reveal the Nature of Protein-Ligand Contacts, Angew. Chem. Int. Ed 56 (2017) 15289-15293.
|
[43] |
S.D. Volpe, R. Listro, M. Parafioriti, M. Di Giacomo, D. Rossi, F.A. Ambrosio, G. Costa, S. Alcaro, F. Ortuso, A.K.H. Hirsch, F. Vasile, S. Collina, BOPC1 Enantiomers preparation and HuR interaction study. From molecular modeling to a curious DEEP-STD NMR application, ACS Med. Chem. Lett. 11 (2020) 883-888.
|
[44] |
M. Goldman, Interference effects in the relaxation of a pair of unlike spin- 1 2 nuclei, J. Magn. Reson. 1969 60 (1984) 437-452.
|
[45] |
K. Dorai, A. Kumar, Fluorine chemical shift tensors in substituted fluorobenzenes using cross correlations in NMR relaxation, Chem. Phys. Lett. 335 (2001) 176-182.
|
[46] |
J.W. Peng, Cross-correlated 19F relaxation measurements for the study of fluorinated ligand-receptor interactions, J. Magn. Reson. 153 (2001) 32-47.
|
[47] |
S. Sobajima, NMR studies on orientation of liquid crystals of poly-γ-benzyl-L-glutamate in magnetic fields, J. Phys. Soc. Jpn. 23 (1967) 1070-1078.
|
[48] |
R.W. Duke, D.B. Du Pre, W.A. Hines, et al., Poly(gamma-benzyl L-glutamate) helix-coil transition. Pretransition phenomena in the liquid crystal phase, J. Am. Chem. Soc. 98 (1976) 3094-3101.
|
[49] |
A. Marx, B. Bottcher, C.M. Thiele, Enhancing the orienting properties of poly(gamma-benzyl-L-glutamate) by means of additives, Chemistry 16 (2010) 1656-1663.
|
[50] |
J.N. Dumez, Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy, Prog. Nucl. Magn. Reson. Spectrosc. 109 (2018) 101-134.
|
[51] |
A. Marx, C. Thiele, Orientational properties of poly-gamma-benzyl-L-glutamate: Influence of molecular weight and solvent on order parameters of the solute, Chemistry 15 (2009) 254-260.
|