Citation: | Fusheng Zhang, Lijun Zhang, Wei Mao, Yunzhi Ma, Yingxin Lou, Xiaoying Li, Huan Liu, Lin Zhao, Dingding Guo, Zhenyu Li. Unveiling the ‘Eating Poison’ of Polygala tenuifolia xylem: Mood changes and myocardial injury[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101466 |
[1] |
European Medicines Agency, How EMA evaluates medicines for human use.
|
[2] |
Y.-F. Liu, D.-Y. Peng, X.-J. Yang, et al., Comparison of the chemical constituents and pharmacological activities between the cortexes and the roots of Polygala tenuifolia, Chin. Pharm. J. 47 (2012) 1975-1979.
|
[3] |
Y. Wang, B. Zhang, Z. Lin, et al., Chinese materia medica for tranquilization:Safety analysis and pharmacovigilance considerations, China J. Tradit. Chin. Med. Pharm. 31 (2016) 926-930.
|
[4] |
X. Hou, E. Hao, Z. Du, et al., A hypothesis on the Q-markers based on characteristics of opposite-effect of herbs: An example of Sanqi, Acta Pharm. Sin. 54 (2019) 211-221.
|
[5] |
Z. Lin, J. Gu, J. Xiu, et al., Traditional Chinese Medicine for Senile Dementia, Evid-based. Compl. Alt. 2012 (2012) 1-13.
|
[6] |
Y. Hu, P. Liu, D.-H. Guo, et al., Antidepressant effects of the extract YZ-50 from Polygala tenuifolia in chronic mild stress treated rats and its possible mechanisms, Pharm. Biol. 48 (2012) 794-800.
|
[7] |
Y. Hu, H.-B. Liao, D.-H. Guo, et al., Antidepressant-like effects of 3,6’-disinapoyl sucrose on hippocampal neuronal plasticity and neurotrophic signal pathway in chronically mild stressed rats, Neurochem. Int. 56 (2010) 461-465.
|
[8] |
Y. Yao, M. Jia, J.-G. Wu, et al., Anxiolytic and sedative-hypnotic activities of polygalasaponins from Polygala tenuifolia in mice, Pharm. Biol. 48 (2010) 801-807.
|
[9] |
J. Eberhardt, D. Santos-Martins, A.F. Tillack, et al., AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings, J. Chem. Inf. Model. 61 (2021) 3891-3898.
|
[10] |
O. Trott, A.J. Olson, Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading, J. Comput. Chem. 31 (2010) 455-461.
|
[11] |
X. Wang, Z. Li, S. Xue, et al., Quality control over different processed products of Polygalae Radix based on plant metabolomics, Chin. Tradit. Herb. Drugs 43 (2012) 1727-1737.
|
[12] |
J.A. Welsh, D.C.I. Goberdhan, L. O'Driscoll, et al., Minimal information for studies of extracellular vesicles (MISEV2023) : From basic to advanced approaches, J. Extracell. Vesicles 13 (2024), e12404.
|
[13] |
W.F. Zhang, Z.Y. Tao, F. Xu, et al. An Overview of miRNAs Involved in PASMC Phenotypic Switching in Pulmonary Hypertension, Biomed. Res. Int. 2021 (2021), 5765029.
|
[14] |
D.A. Deshpande, A.G.P. Guedes, R. Graeff, et al. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms, Mediat. Inflamm. 2018 (2018), 8942042.
|
[15] |
H. Wang, X.F. Zhou, Injection of brain-derived neurotrophic factor in the rostral ventrolateral medulla increases arterial blood pressure in anaesthetized rats, Neuroscience 112 (2002) 967-975.
|
[16] |
E.A.E. Black, P.M. Smith, W. McIsaac, et al., Brain-derived neurotrophic factor actsat neurons of the subfornical organ to influence cardiovascular function, Physiol. Rep. 6 (2018), e13704.
|
[17] |
H. Wu, Q. Fu, Z. Li, et al., Inhibition of microRNA-122 alleviates pyroptosis by targeting dual-specificity phosphatase 4 in myocardial ischemia/ reperfusion injury, Heliyon 9 (2023), e18238.
|
[18] |
S. Yang, H. Li, L. Chen, MicroRNA-140 attenuates myocardial ischemia-reperfusion injury through suppressing mitochondria-mediated apoptosis by targeting YES1, J. Cell. Biochem. 120 (2019) 3813-3821.
|
[19] |
Y. Wang, N. Ding, G. Guan, et al., Rapid delivery of Hsa-miR-590-3p using targeted exosomes to treat acute myocardial infarction through regulation of the cell cycle, J. Biomed. Nanotechnol. 14 (2018) 968-977.
|
[20] |
J.-F. Zou, X.-N. Wu, R.-H. Shi, et al., Inhibition of microRNA-184 reduces H2O2-mediated cardiomyocyte injury via targeting FBXO28, Eur. Rev. Med. Pharmacol. Sci. 24 (2020) 11251-11258.
|
[21] |
R.-Y. Zhu, D. Zhang, H.-D. Zou, et al., MiR-28 inhibits cardiomyocyte survival through suppressing PDK1/Akt/mTOR signaling, In. Vitro. Cell. Dev-an. 52 (2016) 1020-1025.
|
[22] |
S.-P. Li, B. Liu, B. Song, et al., miR-28 promotes cardiac ischemia by targeting mitochondrial aldehyde dehydrogenase 2 (ALDH2) in mus musculus cardiac myocytes, Eur. Rev. Med. Pharmacol. Sci. 19 (2015) 752-758.
|
[23] |
L. Braga, H. Ali, I. Secco, et al., Non-coding RNA therapeutics for cardiac regeneration, Cardiovasc. Res. 117 (2021) 674-693.
|
[24] |
B. Wang, C. Ning, X. Su, et al., Study on the Processing Technology of Honey-stir-baked Polygalae Radix, J. Chin. Med. Mater. 43 (2020) 1872-1876.
|
[25] |
R. Wang, T. Wu, Y. Liu, et al., The Effect of Radix Polygala and Honey Stir-baking Radix Polygala on Acute Gastrointestinal Toxicity of Mice, Chin. Med. Mod. Dist. Educ. 16 (2018) 88-90.
|
[26] |
S. Peng, W. Deng, Y. Fu, et al., Changes and significance of somatization symptoms and serum thyroid hormone, GABA, and BDNF levels in patients with depressive disorders and bipolar disorder with depressive episodes, J. Psychiatry 36 (2023) 633-637.
|
[27] |
G.N. Pandey, A. Sharma, H.S. Rizavi, et al., Dysregulation of Protein Kinase C in Adult Depression and Suicide: Evidence From Postmortem Brain Studies, Int. J. Neuropsychoph. 24 (2021) 400-408.
|
[28] |
G.N. Pandey, Y. Dwivedi, J. SridharaRao, et al., Protein kinase C and phospholipase C activity and expression of their specific isozymes is decreased and expression of MARCKS is increased in platelets of bipolar but not in unipolar patients, Neuropsychopharmacology 26 (2002) 216-228.
|
[29] |
S.-Y. Qu, X.-Y. Li, X. Heng, et al., Analysis of Antidepressant Activity of Huang-Lian Jie-Du Decoction Through Network Pharmacology and Metabolomics, Front. Pharmacol. 12 (2021), 619288.
|
[30] |
R.Y. Wang, G.K. Aghajanian, Physiological evidence for habenula as major link between forebrain and midbrain raphe, Science 197(1977) 89-91.
|
[31] |
G.R. Christoph, R.J. Leonzio, K.S. Wilcox, Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat, J. Neurosci. 6 (1986) 613-619.
|
[32] |
M. Matsumoto, O. Hikosaka, Lateral habenula as a source of negative reward signals in dopamine neurons, Nature 447 (2007) 1111-1115.
|
[33] |
J. Shumake, E. Edwards, F. Gonzalez-Lima, Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior, Brain. Res. 963 (2003) 274-281.
|
[34] |
Y. Cui, Y. Yang, Z. Ni, et al., Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression, Nature 554 (2018) 323-327.
|
[35] |
Y. Yang, Y. Cui, K. Sang, et al., Ketamine blocks bursting in the lateral habenula to rapidly relieve depression, Nature 554 (2018) 317-322.
|
[36] |
K. Li, T. Zhou, L. Liao, et al., βCaMKII in Lateral Habenula Mediates Core Symptoms of Depression, Science 341 (2013) 1016-1020.
|
[37] |
K. He, L. Song, L.W. Cummings, et al., Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation, Natl. Acad. Sci. Usa. 106 (2009) 20033-20038.
|
[38] |
M.C. Oh, V.A. Derkach, Dominant role of the GluR2 subunit in regulation of AMPA receptors by CaMKII, Nat. Neurosci. 8 (2005) 853-854.
|
[39] |
W. Zhou, N. Wang, C. Yang, et al., Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex, Eur. Psychiat. 29 (2014) 419-423.
|
[40] |
A.E. Autry, M. Adachi, E. Nosyreva, et al., NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses, Nature 475 (2011) 91-95.
|
[41] |
M. Mackowiak, M.J, O’Neill, C.A. Hicks, et al., An AMPA receptor potentiator modulates hippocampal expression of BDNF: an in vivo study, Neuropharmacol. 43 (2002) 1-10.
|
[42] |
S. Maeng, C.A. Zarate, J. Du, et al., Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, Biological. Psychiatry. 63 (2008) 349-352.
|
[43] |
Z. Huang, W. Pei, S. Jayaseelan, et al., RNA aptamers selected against the GluR2 glutamate receptor channel. Biochem. 46 (2007) 12648-12655.
|
[44] |
S. Shi, C. Leites, D. He, et al. MicroRNA-9 and microRNA-326 regulate human dopamine D2 receptor expression, and the microRNA-mediated expression regulation is altered by a genetic variant, J. Biol. Chem. 289 (2014) 13434-13444.
|
[45] |
M.E. Flores-Soto, V. Chaparro-Huerta, M. Escoto-Delgadillo, et al., Structure and function of NMDA-type glutamate receptor subunits, Neurologia. 27 (2012) 301-310.
|
[46] |
D. Lodge, J. C. Watkins, Z.A. Bortolotto, et al., The 1980s: D-AP5, LTP and a decade of NMDA receptor discoveries, Neurochem. Res. 44 (2019) 516-530.
|
[47] |
M.V. Fogaca, R.S. Duman, Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions, Front. Cell. Neurosci. 13 (2019), 87.
|
[48] |
S. Marwaha, E. Palmer, T. Suppes, et al., Novel and emerging treatments for major depression, Lancet 401 (2023) 141-153.
|
[49] |
S.J. Shabel, C.D. Proulx, J. Piriz, et al., GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment, Science 345 (2014) 1494-1498.
|