Volume 15 Issue 8
Sep.  2025
Turn off MathJax
Article Contents
Tingting Fu, Kuo Zhang, Tingjun Hou, Caisheng Wu, Feng Zhu. Artificial intelligence empowering the full spectrum of drug discovery[J]. Journal of Pharmaceutical Analysis, 2025, 15(8): 101438. doi: 10.1016/j.jpha.2025.101438
Citation: Tingting Fu, Kuo Zhang, Tingjun Hou, Caisheng Wu, Feng Zhu. Artificial intelligence empowering the full spectrum of drug discovery[J]. Journal of Pharmaceutical Analysis, 2025, 15(8): 101438. doi: 10.1016/j.jpha.2025.101438

Artificial intelligence empowering the full spectrum of drug discovery

doi: 10.1016/j.jpha.2025.101438
  • Available Online: Sep. 23, 2025
  • Publish Date: Sep. 17, 2025
  • loading
  • [1]
    K. Zhang, X. Yang, Y. Wang, et al., Artificial intelligence in drug development, Nat. Med. 31 (2025) 45−59.
    [2]
    C. Fu, Q. Chen, The future of pharmaceuticals: Artificial intelligence in drug discovery and development, J. Pharm. Anal. 15 (2025), 101248.
    [3]
    J. Zhang, J. Peng, C. Yu, et al., Prioritization of potential drug targets for diabetic kidney disease using integrative omics data mining and causal inference, J. Pharm. Anal. 2025. 15 (2025), 101265.
    [4]
    Z. Zhou, Y. Yu, C. Yang, et al., GPT2-ICC: A data-driven approach for accurate ion channel identification using pre-trained large language models, J. Pharm. Anal. 15 (2025), 101302.
    [5]
    Y. Zhang, L. Zheng, N. You, et al., LocPro: A deep learning-based prediction of protein subcellular localization for promoting multi-directional pharmaceutical research, J. Pharm. Anal. 15 (2025), 101255.
    [6]
    X. Liu, H. Yang, X. Liu, et al., Discovery of selective HDAC6 inhibitors driven by artificial intelligence and molecular dynamics simulation approaches, J. Pharm. Anal. 15 (2025), 101338.
    [7]
    Y. Zhang, J. Wu, Y. Kang, et al., A multimodal contrastive learning framework for predicting P-glycoprotein substrates and inhibitors, J. Pharm. Anal. 15 (2025), 101313.
    [8]
    D. Luo, Z. Sha, J. Mao, et al., Repurposing drugs for the human dopamine transporter through WHALES descriptors-based virtual screening and bioactivity evaluation, J. Pharm. Anal. 15 (2025), 101368.
    [9]
    X. Sheng, Y. Gui, J. Yu, et al., Optimizing blood-brain barrier permeability in KRAS inhibitors: A structure-constrained molecular generation approach, J. Pharm. Anal. 15 (2025), 101337.
    [10]
    J. Yu, C. Shi, Y. Zhou, et al., DTLCDR: A target-based multimodal fusion deep learning framework for cancer drug response prediction, J. Pharm. Anal. 15 (2025), 101315.
    [11]
    X. Yu, Y. Wang, L. Chen, et al., ACtriplet: An improved deep learning model for activity cliffs prediction by integrating triplet loss and pre-training, J. Pharm. Anal. 15 (2025), 101317.
    [12]
    J. He, Y. Wu, L. Yuan, et al., An inductive learning-based method for predicting drug-gene interactions using a multi-relational drug-disease-gene graph, J. Pharm. Anal. 15 (2025), 101347.
    [13]
    W. Wang, Q. Yan, Q. Liao, et al., Multi-scale information fusion and decoupled representation learning for robust microbe-disease interaction prediction, J. Pharm. Anal. 15 (2025), 101134.
    [14]
    K. Liu, H. Cui, X. Yu, et al., Predicting cardiotoxicity in drug development: A deep learning approach, J. Pharm. Anal. 15 (2025), 101263.
    [15]
    Y. He, X. Lv, W. Long, et al., ToxBERT: An explainable AI framework for enhancing prediction of adverse drug reactions and structural insights, J. Pharm. Anal. 15 (2025), 101387.
    [16]
    M.Z. Zhang, J. Wang, S.L. Li, et al., Artificial intelligence and computational methods in human metabolism research: A comprehensive survey, J. Pharm. Anal. 15 (2025), 101437.
    [17]
    D.T. Tran, N.T. Pham, N.D. Hieu Nguyen, et al., HyPepTox-Fuse: An interpretable hybrid framework for accurate peptide toxicity prediction fusing protein language model-based embeddings with conventional descriptors, J. Pharm. Anal. 15 (2025), 101410.
    [18]
    L. Weng, H. Wang, C. Zhai, et al., Spatial metabolomics combined with machine learning in colon cancer diagnosis research, J. Pharm. Anal. 15 (2025), 101367.
    [19]
    O. Peterfi, N. Kallai-Szabo, K.R. Demeter, et al., Artificial intelligence-aided endoscopic in-line particle size analysis during the pellet layering process, J. Pharm. Anal. 15 (2025), 101227.
    [20]
    Y. Hong, S. Zhu, Y. Liu, et al., The integration of machine learning into traditional Chinese medicine, J. Pharm. Anal. 15 (2025), 101157.
    [21]
    J. Zeng, X. Jia, Quantifying compatibility mechanisms in traditional Chinese medicine with interpretable graph neural networks, J. Pharm. Anal. 15 (2025), 101342.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (78) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return