| Citation: | Yixue Zhang, Jialu Wu, Yu Kang, Tingjun Hou. A multimodal contrastive learning framework for predicting P-glycoprotein substrates and inhibitors[J]. Journal of Pharmaceutical Analysis, 2025, 15(8): 101313. doi: 10.1016/j.jpha.2025.101313 |
| [1] |
I.I. Ahmed Juvale, A.A. Abdul Hamid, K.B. Abd Halim, et al., P-glycoprotein: New insights into structure, physiological function, regulation and alterations in disease, Heliyon 8 (2022), e09777.
|
| [2] |
M. Elmeliegy, M. Vourvahis, C. Guo, et al., Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp substrates: Review of clinical drug-drug interaction studies, Clin. Pharmacokinet. 59 (2020) 699-714.
|
| [3] |
C. Karthika, R. Sureshkumar, M. Zehravi, et al., Multidrug resistance of cancer cells and the vital role of P-glycoprotein, Life (Basel) 12 (2022), 897.
|
| [4] |
J. Yabut, R. Houle, S. Wang, et al., Selection of an optimal in vitro model to assess P-gp inhibition: Comparison of vesicular and bidirectional transcellular transport inhibition assays, Drug Metab. Dispos. 50 (2022) 909-922.
|
| [5] |
Z. Liu, K. Liu, The transporters of intestinal tract and techniques applied to evaluate interactions between drugs and transporters, Asian J. Pharm. Sci. 8 (2013) 151-158.
|
| [6] |
T.T.V. Tran, H. Tayara, K.T. Chong, Recent studies of artificial intelligence on in silico drug absorption, J. Chem. Inf. Model. 63 (2023) 6198-6211.
|
| [7] |
C. Esposito, S. Wang, U.E.W. Lange, et al., Combining machine learning and molecular dynamics to predict P-glycoprotein substrates, J. Chem. Inf. Model. 60 (2020) 4730-4749.
|
| [8] |
D.S. Wigh, J.M. Goodman, A.A. Lapkin, A review of molecular representation in the age of machine learning, Wiley Interdiscip. Rev. Comput. Mol. Sci. 12 (2022), e1603.
|
| [9] |
Z. Li, M. Jiang, S. Wang, et al., Deep learning methods for molecular representation and property prediction, Drug Discov. Today 27 (2022), 103373.
|
| [10] |
A.L. Nazarova, L. Yang, K. Liu, et al., Dielectric polymer property prediction using recurrent neural networks with optimizations, J. Chem. Inf. Model. 61 (2021) 2175-2186.
|
| [11] |
Z. Wu, D. Jiang, J. Wang, et al., Knowledge-based BERT: A method to extract molecular features like computational chemists, Brief. Bioinform. 23 (2022), bbac131.
|
| [12] |
J. Ross, B. Belgodere, V. Chenthamarakshan, et al., Large-scale chemical language representations capture molecular structure and properties, Nat. Mach. Intell. 4 (2022) 1256-1264.
|
| [13] |
J. Deng, Z. Yang, H. Wang, et al., A systematic study of key elements underlying molecular property prediction, Nat. Commun. 14 (2023), 6395.
|
| [14] |
Y. Wei, S. Li, Z. Li, et al., Interpretable-ADMET: A web service for ADMET prediction and optimization based on deep neural representation, Bioinformatics 38 (2022) 2863-2871.
|
| [15] |
Z. Xiong, D. Wang, X. Liu, et al., Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism, J. Med. Chem. 63 (2020) 8749-8760.
|
| [16] |
Z. Wu, D. Jiang, J. Wang, et al., Mining toxicity information from large amounts of toxicity data, J. Med. Chem. 64 (2021) 6924-6936.
|
| [17] |
Y. Jiang, S. Jin, X. Jin, et al., Pharmacophoric-constrained heterogeneous graph transformer model for molecular property prediction, Commun. Chem. 6 (2023), 60.
|
| [18] |
B. Zhao, W. Xu, J. Guan, et al., Molecular property prediction based on graph structure learning, Bioinformatics 40 (2024), btae304.
|
| [19] |
G.P. Wellawatte, H.A. Gandhi, A. Seshadri, et al., A perspective on explanations of molecular prediction models, J. Chem. Theory Comput. 19 (2023) 2149-2160.
|
| [20] |
P.-H. Wang, Y.-S. Tu, Y. J. Tseng, PgpRules: A decision tree based prediction server for P-glycoprotein substrates and inhibitors, Bioinformatics 35 (2019) 4193-4195.
|
| [21] |
A. Sedykh, D. Fourches, J. Duan, et al., Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions, Pharm. Res. 30 (2013) 996-1007.
|
| [22] |
V. Namasivayam, K. Silbermann, M. Wiese, et al., C@PA: Computer-aided pattern analysis to predict multitarget ABC transporter inhibitors, J. Med. Chem. 64 (2021) 3350-3366.
|
| [23] |
F. Broccatelli, E. Carosati, A. Neri, et al., A novel approach for predicting P-glycoprotein (ABCB1) inhibition using molecular interaction fields, J. Med. Chem. 54 (2011) 1740-1751.
|
| [24] |
D. Li, L. Chen, Y. Li, et al., ADMET evaluation in drug discovery. 13.Development of in silico prediction models for P-glycoprotein substrates, Mol. Pharm. 11 (2014) 716-726.
|
| [25] |
J.W. Polli, S.A. Wring, J.E. Humphreys, et al., Rational use of in vitro P-glycoprotein assays in drug discovery, J. Pharmacol. Exp. Ther. 299 (2001) 620-628.
|
| [26] |
L. Mora Lagares, N. Minovski, M. Novic, Multiclass classifier for P-glycoprotein substrates, inhibitors, and non-active compounds, Molecules 24 (2019), 2006.
|
| [27] |
G. Xiong, Z. Wu, J. Yi, et al., ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res. 49 (2021) W5-W14.
|
| [28] |
Organisation for Economic Co-operation and Development, Assessment of (Q)SAR Models (Model Checklist). (Q)SAR Assessment Framework: Guidance for the Regulatory Assessment of (Quantitative) Structure-Activity Relationship Models, Predictions, and Results Based on Multiple Predictions, OECD Series on Testing and Assessment, No. 386, OECD Publishing, Paris, 2024, pp. 19-25.
|
| [29] |
J. Jo, B. Kwak, H.-S. Choi, et al., The message passing neural networks for chemical property prediction on SMILES, Methods 179 (2020) 65-72.
|
| [30] |
G.B. Goh, N.O. Hodas, C. Siegel, et al., SMILES2Vec: An interpretable general-purpose deep neural network for predicting chemical properties, arXiv. 2017. https://arxiv.org/abs/1712.02034.
|
| [31] |
K. Xu, W. Hu, J. Leskovec, et al., How powerful are graph neural networks, arXiv. 2018. https://arxiv.org/abs/1810.00826.
|
| [32] |
A. Vaswani, N. Shazeer, N. Parmar, et al., Proceedings of the 31st International Conference on Neural Information Processing Systems, Dec. 3-9, 2017, Curran Associates Inc., New York, 2017, pp. 6000-6010.
|
| [33] |
Y. Wang, J. Wang, Z. Cao, et al., Molecular contrastive learning of representations via graph neural networks, Nat. Mach. Intell. 4 (2022) 279-287.
|
| [34] |
Y. Yin, Q. Wang, S. Huang, et al., AutoGCL: Automated graph contrastive learning via learnable view generators, arXiv. 2022. https://doi.org/10.48550/arXiv.2109.10259.
|
| [35] |
T. Chen, S. Kornblith, M. Norouzi, et al., Proceedings of the 37th International Conference on Machine Learning, July 12-18, 2020, JMLR, Cambridge, 2020, pp. 1597-1607.
|
| [36] |
K. Yang, K. Swanson, W. Jin, et al., Analyzing learned molecular representations for property prediction, J. Chem. Inf. Model. 59 (2019) 3370-3388.
|
| [37] |
R.R. Selvaraju, M. Cogswell, A. Das, et al., Grad-CAM: Visual explanations from deep networks via gradient-based localization, October 22-29, 2017, Venice, Italy, 2017, pp. 618-626.
|
| [38] |
M. Sundararajan, A. Taly, Q. Yan, Proceedings of the 34th International Conference on Machine Learning, August 6-11, 2017, Sydney, Australia, 2017, pp. 3319-3328.
|
| [39] |
Y. Hu, D. Stumpfe, J. Bajorath, Computational exploration of molecular scaffolds in medicinal chemistry, J. Med. Chem. 59 (2016) 4062-4076.
|
| [40] |
R.B. Wang, C.L. Kuo, L.L. Lien, et al., Structure-activity relationship: Analyses of p-glycoprotein substrates and inhibitors, J. Clin. Pharm. Ther. 28 (2003) 203-228.
|
| [41] |
H. Cai, H. Zhang, D. Zhao, et al., FP-GNN: A versatile deep learning architecture for enhanced molecular property prediction, Brief. Bioinform. 23 (2022), bbac408.
|
| [42] |
W. Zhu, Y. Zhang, D. Zhao, et al., HiGNN: A hierarchical informative graph neural network for molecular property prediction equipped with feature-wise attention, J. Chem. Inf. Model. 63 (2023) 43-55.
|
| [43] |
J. Jiang, R. Zhang, Z. Zhao, et al., MultiGran-SMILES: Multi-granularity SMILES learning for molecular property prediction, Bioinformatics 38 (2022) 4573-4580.
|
| [44] |
B.-X. Du, Y. Long, X. Li, et al., CMMS-GCL: Cross-modality metabolic stability prediction with graph contrastive learning, Bioinformatics 39 (2023), btad503.
|
| [45] |
T. Wang, Z. Li, L. Zhuo, et al., MS-BACL: Enhancing metabolic stability prediction through bond graph augmentation and contrastive learning, Brief. Bioinform. 25 (2024), bbae127.
|
| [46] |
X. Zhao, J. Di, D. Luo, et al., Recent developments of P-glycoprotein inhibitors and its structure-activity relationship (SAR) studies, Bioorg. Chem. 143 (2024), 106997.
|
| [47] |
H. Zhang, H. Xu, C.R. Ashby Jr., et al., Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp), Med. Res. Rev. 41 (2021) 525-555.
|