Volume 15 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
Lanqing Zhao, Yu Chen, Xiaoxu Ding, Hongxi Li, Jinwei Li. Targeting Atf4 for enhanced neuroprotection: Role of quercetin-loaded EVs in ischemic stroke[J]. Journal of Pharmaceutical Analysis, 2025, 15(9): 101312. doi: 10.1016/j.jpha.2025.101312
Citation: Lanqing Zhao, Yu Chen, Xiaoxu Ding, Hongxi Li, Jinwei Li. Targeting Atf4 for enhanced neuroprotection: Role of quercetin-loaded EVs in ischemic stroke[J]. Journal of Pharmaceutical Analysis, 2025, 15(9): 101312. doi: 10.1016/j.jpha.2025.101312

Targeting Atf4 for enhanced neuroprotection: Role of quercetin-loaded EVs in ischemic stroke

doi: 10.1016/j.jpha.2025.101312
Funds:

This study was supported by Liaoning Xingliao Talent Program, China (Grant No.: YXMJ-JC-05). Figs. 1A and 9 were created using BioRender.com.

  • Received Date: Oct. 08, 2024
  • Accepted Date: Apr. 10, 2025
  • Rev Recd Date: Mar. 29, 2025
  • Publish Date: Sep. 30, 2025
  • This study investigates the neuroprotective potential of extracellular vesicles (EVs) delivering quercetin-3-O-β-d-glucuronic acid (QG-EVs) in cerebral ischemia-reperfusion injury (CIRI). Targeted brain delivery of QG-EVs was confirmed, with neuron cells identified as pivotal in modulating CIRI through single-cell RNA sequencing (scRNA-seq). Activating transcription factor 4 (Atf4) was highlighted as a critical regulatory factor, and in vitro studies revealed that silencing Atf4 diminished the neuroprotective effects of QG-EVs, increasing oxidative stress levels and neuronal apoptosis. In a CIRI mouse model, the knockdown of Atf4 attenuated the protective outcomes provided by QG-EVs, further affirming the role of Atf4 in mediating neuroprotection. Behavioral assessments and protein analysis showed that QG-EVs significantly reduced neuronal damage and pro-apoptotic markers, while improving neurological function via Atf4 upregulation. The outcomes hint at the potential of QG-EVs as a beneficial therapeutic modality to mitigate neuronal damage in CIRI by enhancing Atf4 expression, highlighting its potential for improving ischemic stroke outcomes.

  • loading
  • [1]
    L. Luo, M. Liu, Y. Fan, et al., Intermittent Theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice, J. Neuroinflammation 19 (2022), 141.
    [2]
    Z. Mao, L. Tian, J. Liu, et al., Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy, Phytomedicine 101 (2022), 154111.
    [3]
    M. Wang, W. Pan, Y. Xu, et al., Microglia-mediated neuroinflammation: A potential target for the treatment of cardiovascular diseases, J. Inflamm. Res. 15 (2022) 3083-3094.
    [4]
    T. Zhang, Z. Zhang, W. Lin, et al., Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the anti- ferroptosis system: Based on a novel rat model, Neural Regen. Res. 18 (2023) 2229-2236.
    [5]
    C. Sandroni, T. Cronberg, M. Sekhon, Brain injury after cardiac arrest: Pathophysiology, treatment, and prognosis, Intensive Care Med. 47 (2021) 1393-1414.
    [6]
    M. Haupt, S.T. Gerner, M. Bahr, et al., Neuroprotective strategies for ischemic stroke-future perspectives, Int. J. Mol. Sci. 24 (2023), 4334.
    [7]
    P.D. Lyden, Cerebroprotection for acute ischemic stroke: Looking ahead, Stroke 52 (2021) 3033-3044.
    [8]
    A. Hernandez-Diazcouder, C. Diaz-Godinez, J.C. Carrero, Extracellular vesicles in COVID-19 prognosis, treatment, and vaccination: An update, Appl. Microbiol. Biotechnol. 107 (2023) 2131-2141.
    [9]
    E. Chiodi, G.G. Daaboul, A.M. Marn, et al., Multiplexed affinity measurements of extracellular vesicles binding kinetics, Sensors 21 (2021), 2634.
    [10]
    L. Cheng, A.F. Hill, Therapeutically harnessing extracellular vesicles, Nat. Rev. Drug Discov. 21 (2022) 379-399.
    [11]
    E.C. Lee, T.W. Ha, D. Lee, et al., Utility of exosomes in ischemic and hemorrhagic stroke diagnosis and treatment, Int. J. Mol. Sci. 23 (2022), 8367.
    [12]
    T. Yin, Y. Liu, W. Ji, et al., Engineered mesenchymal stem cell-derived extracellular vesicles: A state-of-the-art multifunctional weapon against Alzheimer’s disease, Theranostics 13 (2023) 1264-1285.
    [13]
    Y. Chen, Y. Huang, Y. Deng, et al., Cancer therapy empowered by extracellular vesicle-mediated targeted delivery, Biol. Pharm. Bull. 46 (2023) 1353-1364.
    [14]
    S.M. Davidson, I. Andreadou, L. Barile, et al., Circulating blood cells and extracellular vesicles in acute cardioprotection, Cardiovasc. Res. 115 (2019) 1156-1166.
    [15]
    M. Wen, Z. Gong, C. Huang, et al., Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24, Cell Death Dis. 9 (2018), 320.
    [16]
    L. Wang, G. Wang, W. Mao, et al., Bioinspired engineering of fusogen and targeting moiety equipped nanovesicles, Nat. Commun. 14 (2023), 3366.
    [17]
    R. Zhang, T. Mesquita, J.H. Cho, et al., Systemic delivery of extracellular vesicles attenuates atrial fibrillation in heart failure with preserved ejection fraction, JACC Clin. Electrophysiol. 9 (2023) 147-158.
    [18]
    X. Liu, M. Zhang, H. Liu, et al., Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes, Exp. Neurol. 341 (2021), 113700.
    [19]
    R. Zhang, W. Mao, L. Niu, et al., NSC-derived exosomes enhance therapeutic effects of NSC transplantation on cerebral ischemia in mice, Elife 12 (2023), e84493.
    [20]
    J. Ye, F. Huang, H. Zeng, et al., Multi-omics and network pharmacology study reveals the effects of Dengzhan Shengmai capsule against neuroinflammatory injury and thrombosis induced by ischemic stroke, J. Ethnopharmacol. 305 (2023), 116092.
    [21]
    R. Gopalakrishna, A. Oh, L. Hou, et al., Flavonoid quercetin and its glucuronide and sulfate conjugates bind to 67-kDa laminin receptor and prevent neuronal cell death induced by serum starvation, Biochem. Biophys. Res. Commun. 671 (2023) 116-123.
    [22]
    A.T. Ha, L. Rahmawati, L. You, et al., Anti-inflammatory, antioxidant, moisturizing, and antimelanogenesis effects of quercetin 3-O-β-D-glucuronide in human keratinocytes and melanoma cells via activation of NF-κB and AP-1 pathways, Int. J. Mol. Sci. 23 (2021), 433.
    [23]
    L. Zhou, F. Li, H. Xu, et al., Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95, Nat. Med. 16 (2010) 1439-1443.
    [24]
    J. Hou, Q. Shen, X. Wan, et al., Ubiquitin-specific protease 29 exacerbates cerebral ischemia-reperfusion injury in mice, Oxid. Med. Cell. Longev. 2021 (2021), 6955628.
    [25]
    Q. Deng, H. Yang, F. Yan, et al., Blocking sympathetic nervous system reverses partially stroke-induced immunosuppression but does not aggravate functional outcome after experimental stroke in rats, Neurochem. Res. 41 (2016) 1877-1886.
    [26]
    Q. Xia, G. Zhan, M. Mao, et al., TRIM45 causes neuronal damage by aggravating microglia-mediated neuroinflammation upon cerebral ischemia and reperfusion injury, Exp. Mol. Med. 54 (2022) 180-193.
    [27]
    T. Tian, L. Cao, C. He, et al., Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia, Theranostics 11 (2021) 6507-6521.
    [28]
    M. Ali, A. Pham, X. Wang, et al., Extracellular vesicles for treatment of solid organ ischemia-reperfusion injury, Am. J. Transplant. 20 (2020) 3294-3307.
    [29]
    Y. Song, Z. Li, T. He, et al., M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124, Theranostics 9 (2019) 2910-2923.
    [30]
    E. Derlindati, M. Dall’Asta, D. Ardigo, et al., Quercetin-3-O-glucuronide affects the gene expression profile of M1 and M2a human macrophages exhibiting anti-inflammatory effects, Food Funct. 3 (2012) 1144-1152.
    [31]
    X. Guo, D. Zhang, X. Gao, et al., Quercetin and quercetin-3-O-glucuronide are equally effective in ameliorating endothelial insulin resistance through inhibition of reactive oxygen species-associated inflammation, Mol. Nutr. Food Res. 57 (2013) 1037-1045.
    [32]
    S. Baral, R. Pariyar, J. Kim, et al., Quercetin-3-O-glucuronide promotes the proliferation and migration of neural stem cells, Neurobiol. Aging 52 (2017) 39-52.
    [33]
    L. Ho, M.G. Ferruzzi, E.M. Janle, et al., Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease, FASEB J. 27 (2013) 769-781.
    [34]
    I.M.N. Wortel, L.T. van der Meer, M.S. Kilberg, et al., Surviving stress: Modulation of ATF4-mediated stress responses in normal and malignant cells, Trends Endocrinol. Metab. 28 (2017) 794-806.
    [35]
    Y. Wu, X. Fan, S. Chen, et al., Geraniol-mediated suppression of endoplasmic reticulum stress protects against cerebral ischemia-reperfusion injury via the PERK-ATF4-CHOP pathway, Int. J. Mol. Sci. 24 (2022), 544.
    [36]
    Q. He, Z. Li, C. Meng, et al., Parkin-dependent mitophagy is required for the inhibition of ATF4 on NLRP3 inflammasome activation in cerebral ischemia-reperfusion injury in rats, Cells 8 (2019), 897.
    [37]
    L.P. Poole, K.F. MacLeod, Mitophagy in tumorigenesis and metastasis, Cell. Mol. Life Sci. 78 (2021) 3817-3851.
    [38]
    H. Kalkavan, M.J. Chen, J.C. Crawford, et al., Sublethal cytochrome c release generates drug-tolerant persister cells, Cell 185 (2022) 3356-3374.e22.
    [39]
    S. Manzoor, D.A. Almarghalani, A.W. James, et al., Synthesis and pharmacological evaluation of novel triazole-pyrimidine hybrids as potential neuroprotective and anti-neuroinflammatory agents, Pharm. Res. 40 (2023) 167-185.
    [40]
    Y. Li, H. Fan, R. Sun, et al., Wuzi Yanzong pill plays A neuroprotective role in Parkinson’s disease mice via regulating unfolded protein response mediated by endoplasmic reticulum stress, Chin. J. Integr. Med. 29 (2023) 19-27.
    [41]
    R. Li, Y. Zheng, J. Zhang, et al., Gomisin N attenuated cerebral ischemia-reperfusion injury through inhibition of autophagy by activating the PI3K/AKT/mTOR pathway, Phytomedicine 110 (2023), 154644.
    [42]
    W. Zhang, P. Zhang, L. Xu, et al., Ethanol extract of Verbena officinalis alleviates MCAO-induced ischaemic stroke by inhibiting IL17A pathway-regulated neuroinflammation, Phytomedicine 123 (2024), 155237.
    [43]
    C. Gao, Y. Zhou, Z. Chen, et al., Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis, Theranostics 12 (2022) 5596-5614.
    [44]
    H. Mizuta, K. Okada, M. Araki, et al., Gilteritinib overcomes lorlatinib resistance in ALK-rearranged cancer, Nat. Commun. 12 (2021), 1261.
    [45]
    H. Liu, T. Zhang, W. Zhang, et al., Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through NRF2/SLC7A11/GPX4 pathway, Exp. Neurol. 369 (2023), 114541.
    [46]
    L. Gu, Z. Wang, H. Gu, et al., Atf4 regulates angiogenic differences between alveolar bone and long bone macrophages by regulating M1 polarization, based on single-cell RNA sequencing, RNA-seq and ATAC-seq analysis, J. Transl. Med. 21 (2023), 193.
    [47]
    Q. Yao, Q. Sun, J. Ren, et al., Comparison of robotic-assisted versus conventional laparoscopic surgery for mid-low rectal cancer: A systematic review and meta-analysis, J. Cancer Res. Clin. Oncol. 149 (2023) 15207-15217.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (117) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return