| Citation: | Xin Zhang, Yang Xiang, Qingyan Wang, Xinyue Bai, Dinglun Meng, Juan Wu, Keyao Sun, Lei Zhang, Rongrong Qiang, Wenhan Liu, Xiang Zhang, Jingling Qiang, Xiaolong Liu, Yanling Yang. Regulation of iron metabolism in ferroptosis: From mechanism research to clinical translation[J]. Journal of Pharmaceutical Analysis, 2025, 15(10): 101304. doi: 10.1016/j.jpha.2025.101304 |
Iron is an essential trace element in the human body, crucial in maintaining normal physiological functions. Recent studies have identified iron ions as a significant factor in initiating the ferroptosis process, a novel mode of programmed cell death characterized by iron overload and lipid peroxide accumulation. The iron metabolism pathway is one of the primary mechanisms regulating ferroptosis, as it maintains iron homeostasis within the cell. Numerous studies have demonstrated that abnormalities in iron metabolism can trigger the Fenton reaction, exacerbating oxidative stress, and leading to cell membrane rupture, cellular dysfunction, and damage to tissue structures. Therefore, regulation of iron metabolism represents a key strategy for ameliorating ferroptosis and offers new insights for treating diseases associated with iron metabolism imbalances. This review first summarizes the mechanisms that regulate iron metabolic pathways in ferroptosis and discusses the connections between the pathogenesis of various diseases and iron metabolism. Next, we introduce natural and synthetic small molecule compounds, hormones, proteins, and new nanomaterials that can affect iron metabolism. Finally, we provide an overview of the challenges faced by iron regulators in clinical translation and a summary and outlook on iron metabolism in ferroptosis, aiming to pave the way for future exploration and optimization of iron metabolism regulation strategies.
| [1] |
Z. Wang, Iron regulation in ferroptosis, Nat. Cell Biol. 25 (2023), 515.
|
| [2] |
D. Tang, G. Kroemer, Ferroptosis, Curr. Biol. 30 (2020) R1292-R1297.
|
| [3] |
S. Li, G. Zhang, J. Hu, et al., Ferroptosis at the nexus of metabolism and metabolic diseases, Theranostics 14 (2024) 5826-5852.
|
| [4] |
D. Wang, L. Tang, Y. Zhang, et al., Regulatory pathways and drugs associated with ferroptosis in tumors, Cell Death Dis. 13 (2022), 544.
|
| [5] |
N.C. Andrews, Disorders of iron metabolism, N. Engl. J. Med. 341 (1999) 1986-1995.
|
| [6] |
P. Arosio, New advances in iron metabolism, ferritin and hepcidin research, Int. J. Mol. Sci. 23 (2022), 14700.
|
| [7] |
H. Bayir, S.J. Dixon, Y.Y. Tyurina, et al., Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney, Nat. Rev. Nephrol. 19 (2023) 315-336.
|
| [8] |
W. Bao, P. Pang, X. Zhou, et al., Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease, Cell Death Differ. 28 (2021) 1548-1562.
|
| [9] |
K.E. Gumilar, B. Priangga, C.H. Lu, et al., Iron metabolism and ferroptosis: A pathway for understanding preeclampsia, Biomed. Pharmacother. 167 (2023), 115565.
|
| [10] |
D.D. Zhang, Ironing out the details of ferroptosis, Nat. Cell Biol. 26 (2024) 1386-1393.
|
| [11] |
J.D. Berndt, Ironing out the details with autophagy, Sci. Signal. 7 (2014), ec99.
|
| [12] |
Y. Liu, Y. Gong, Q. Sun, et al., Ferritinophagy induced ferroptosis in the management of cancer, Cell. Oncol. (Dordr) 47 (2024) 19-35.
|
| [13] |
E.M. Terzi, V.O. Sviderskiy, S.W. Alvarez, et al., Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5, Sci. Adv. 7 (2021), eabg4302.
|
| [14] |
F. Sun, Z. Zhao, M.M. Willoughby, et al., HRG-9 homologues regulate haem trafficking from haem-enriched compartments, Nature 610 (2022) 768-774.
|
| [15] |
Y. Yu, Y. Yan, F. Niu, et al., Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases, Cell Death Discov. 7 (2021), 193.
|
| [16] |
P. Ponka, Cellular iron metabolism, Kidney Int. 55 (1999) S2-S11.
|
| [17] |
M. Jakaria, A. Ali Belaidi, A.I. Bush, et al., Ferroptosis as a mechanism of neurodegeneration in Alzheimer’s disease, J. Neurochem. 159 (2021) 804-825.
|
| [18] |
R.R. Qiang, Y. Xiang, L. Zhang, et al., Ferroptosis: A new strategy for targeting Alzheimer’s disease, Neurochem. Int. 178 (2024), 105773.
|
| [19] |
X. Zhang, Y. Gou, Y. Zhang, et al., Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice, Cell Death Discov. 6 (2020), 113.
|
| [20] |
X.S. Ding, L. Gao, Z. Han, et al., Ferroptosis in Parkinson’s disease: Molecular mechanisms and therapeutic potential, Ageing Res. Rev. 91 (2023), 102077.
|
| [21] |
L. Mahoney-Sanchez, H. Bouchaoui, S. Ayton, et al., Ferroptosis and its potential role in the physiopathology of Parkinson’s disease, Prog. Neurobiol. 196 (2021), 101890.
|
| [22] |
C. Zhang, B. Wu, X. Wang, et al., Vascular, flow and perfusion abnormalities in Parkinson’s disease, Park. Relat. Disord. 73 (2020) 8-13.
|
| [23] |
K.M.L. Cramb, D. Beccano-Kelly, S.J. Cragg, et al., Impaired dopamine release in Parkinson’s disease, Brain 146 (2023) 3117-3132.
|
| [24] |
J.B. Perot, M. Celestine, M. Palombo, et al., Longitudinal multimodal MRI characterization of a knock-in mouse model of Huntington’s disease reveals early gray and white matter alterations, Hum. Mol. Genet. 31 (2022) 3581-3596.
|
| [25] |
S. Agrawal, J.H. Fox, Novel proteomic changes in brain mitochondria provide insights into mitochondrial dysfunction in mouse models of Huntington’s disease, Mitochondrion 47 (2019) 318-329.
|
| [26] |
A. Popovic-Bijelic, M. Mojovic, S. Stamenkovic, et al., Iron-sulfur cluster damage by the superoxide radical in neural tissues of the SOD1(G93A) ALS rat model, Free Radic. Biol. Med. 96 (2016) 313-322.
|
| [27] |
X. Hu, Y. Xu, H. Xu, et al., Progress in understanding ferroptosis and its targeting for therapeutic benefits in traumatic brain and spinal cord injuries, Front. Cell Dev. Biol. 9 (2021), 705786.
|
| [28] |
J. Deng, F. Meng, K. Zhang, et al., Emerging roles of microglia depletion in the treatment of spinal cord injury, Cells 11 (2022), 1871.
|
| [29] |
W. Dong, F. Gong, Y. Zhao, et al., Ferroptosis and mitochondrial dysfunction in acute central nervous system injury, Front. Cell. Neurosci. 17 (2023), 1228968.
|
| [30] |
M. Daglas, P.H. Truong, L.Q. Miles, et al., Deferiprone attenuates neuropathology and improves outcome following traumatic brain injury, Br. J. Pharmacol. 180 (2023) 214-234.
|
| [31] |
Y. Cheng, W. Qu, J. Li, et al., Ferristatin II, an iron uptake inhibitor, exerts neuroprotection against traumatic brain injury via suppressing ferroptosis, ACS Chem. Neurosci. 13 (2022) 664-675.
|
| [32] |
M. Daglas, P.A. Adlard, The involvement of iron in traumatic brain injury and neurodegenerative disease, Front. Neurosci. 12 (2018), 981.
|
| [33] |
Y. Zhang, L. Chen, Y. Xuan, et al., Iron overload in hypothalamic AgRP neurons contributes to obesity and related metabolic disorders, Cell Rep. 43 (2024), 113900.
|
| [34] |
N. Joffin, C.M. Gliniak, J.B. Funcke, et al., Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations, Nat. Metab. 4 (2022) 1474-1494.
|
| [35] |
N.U. Stoffel, C. El-Mallah, I. Herter-Aeberli, et al., The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women, Int. J. Obes. (Lond) 44 (2020) 1291-1300.
|
| [36] |
R.J. Pan, Z. Luo, Y.S. You, et al., Relationship between whole blood iron levels and lipid profile parameters in the general population: Findings from routine physical examination report, Biol. Trace Elem. Res. (2024).
|
| [37] |
C. Song, K. Pantopoulos, G. Chen, et al., Iron increases lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the HIF1α-PPARγ pathway, Cell. Mol. Life Sci. 79 (2022), 394.
|
| [38] |
R. Rodriguez-Mortera, R. Caccavello, R. Hermo, et al., Higher hepcidin levels in adolescents with obesity are associated with metabolic syndrome dyslipidemia and visceral fat, Antioxidants (Basel) 10 (2021), 751.
|
| [39] |
M. Zhang, M. Sun, C. Guo, et al., Effect of tetramethylpyrazine and hyperlipidemia on hepcidin homeostasis in mice, Int. J. Mol. Med. 43 (2019) 501-506.
|
| [40] |
D.O. Moon, NADPH dynamics: Linking insulin resistance and β-cells ferroptosis in diabetes mellitus, Int. J. Mol. Sci. 25 (2023), 342.
|
| [41] |
P. Zhao, X. Lv, Z. Zhou, et al., Indexes of ferroptosis and iron metabolism were associated with the severity of diabetic nephropathy in patients with type 2 diabetes mellitus: A cross-sectional study, Front. Endocrinol. (Lausanne) 14 (2023), 1297166.
|
| [42] |
T.B. Aydemir, C. Troche, M.H. Kim, et al., Hepatic ZIP14-mediated zinc transport contributes to endosomal insulin receptor trafficking and glucose metabolism, J. Biol. Chem. 291 (2016) 23939-23951.
|
| [43] |
Z Meng, Z Zhang, J. Tsukuda, et al., Abstract P346: Ferroptosis is critical in diabetic atherosclerosis through heme oxygenase 1 regulated lipid peroxidation pathway, Circ. Res. 129 (2021).
|
| [44] |
Z. Jiang, H. Wang, G. Qi, et al., Iron overload-induced ferroptosis of osteoblasts inhibits osteogenesis and promotes osteoporosis: An in vitro and in vivo study, IUBMB Life 74 (2022) 1052-1069.
|
| [45] |
P. Zhang, S. Wang, L. Wang, et al., Hepcidin is an endogenous protective factor for osteoporosis by reducing iron levels, J. Mol. Endocrinol. 60 (2018) 297-306.
|
| [46] |
T. Li, Y. Liu, C. Feng, et al., Saikosaponin A attenuates osteoclastogenesis and bone loss by inducing ferroptosis, Front. Mol. Biosci. 11 (2024), 1390257.
|
| [47] |
J. Kohrle, Selenium, iodine and iron-essential trace elements for thyroid hormone synthesis and metabolism, Int. J. Mol. Sci. 24 (2023), 3393.
|
| [48] |
R.R. da Conceicao, G. Giannocco, R.H. Herai, et al., Thyroid dysfunction alters gene expression of proteins related to iron homeostasis and metabolomics in male rats, Mol. Cell. Endocrinol. 579 (2024), 112086.
|
| [49] |
V. Garofalo, R.A. Condorelli, R. Cannarella, et al., Relationship between iron deficiency and thyroid function: A systematic review and meta-analysis, Nutrients 15 (2023), 4790.
|
| [50] |
J. Luo, X. Wang, L. Yuan, et al., Iron deficiency, a risk factor of thyroid disorders in reproductive-age and pregnant women: A systematic review and meta-analysis, Front. Endocrinol. (Lausanne) 12 (2021), 629831.
|
| [51] |
B. Jin, Z. Zhang, Y. Zhang, et al., Ferroptosis and myocardial ischemia-reperfusion: Mechanistic insights and new therapeutic perspectives, Front. Pharmacol. 15 (2024), 1482986.
|
| [52] |
X. Fang, H. Ardehali, J. Min, et al., The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease, Nat. Rev. Cardiol. 20 (2023) 7-23.
|
| [53] |
P. Wang, Y. Cui, Y. Liu, et al., Mitochondrial ferritin alleviates apoptosis by enhancing mitochondrial bioenergetics and stimulating glucose metabolism in cerebral ischemia reperfusion, Redox Biol. 57 (2022), 102475.
|
| [54] |
H. Soran, J.D. Schofield, S. Adam, et al., Diabetic dyslipidaemia, Curr. Opin. Lipidol. 27 (2016) 313-322.
|
| [55] |
W. Li, W. Li, Y. Wang, et al., Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury, Cell Death Discov. 7 (2021), 267.
|
| [56] |
M. Nairz, G. Weiss, Iron in infection and immunity, Mol. Aspects Med. 75 (2020), 100864.
|
| [57] |
R. Ma, L. Fang, L. Chen, et al., Ferroptotic stress promotes macrophages against intracellular bacteria, Theranostics 12 (2022) 2266-2289.
|
| [58] |
K.R. Michels, Z. Zhang, A.M. Bettina, et al., Hepcidin-mediated iron sequestration protects against bacterial dissemination during pneumonia, JCI Insight 2 (2017), e92002.
|
| [59] |
A. Ouyang, T. Chen, Y. Feng, et al., The hemagglutinin of influenza A virus induces ferroptosis to facilitate viral replication, Adv. Sci. (Weinh) 11 (2024), e2404365.
|
| [60] |
B. Qiu, F. Zandkarimi, A. Saqi, et al., Fatal COVID-19 pulmonary disease involves ferroptosis, Nat. Commun. 15 (2024), 3816.
|
| [61] |
X. Zheng, Y. Zhang, L. Zhang, et al., Taurolithocholic acid protects against viral haemorrhagic fever via inhibition of ferroptosis, Nat. Microbiol. 9 (2024) 2583-2599.
|
| [62] |
K.R. Michels, N.J. Lambrecht, W.F. Carson, et al., The role of iron in the susceptibility of neonatal mice to Escherichia coli K1 sepsis, J. Infect. Dis. 220 (2019) 1219-1229.
|
| [63] |
J. Wu, Q. Liu, X. Zhang, et al., The interaction between STING and NCOA4 exacerbates lethal sepsis by orchestrating ferroptosis and inflammatory responses in macrophages, Cell Death Dis. 13 (2022), 653.
|
| [64] |
T. Luo, Y. Wang, J. Wang, Ferroptosis assassinates tumor, J. Nanobiotechnology 20 (2022), 467.
|
| [65] |
Y. Jiang, C. Glandorff, M. Sun, GSH and ferroptosis: Side-by-side partners in the fight against tumors, Antioxidants (Basel) 13 (2024), 697.
|
| [66] |
Y. Zhang, Y. Han, W. Li, et al., Tumor iron homeostasis and immune regulation, Trends Pharmacol. Sci. 45 (2024) 145-156.
|
| [67] |
H.T. Nghi, S. Shahmohammadi, K.H. Ebrahimi, Ancient complexes of iron and sulfur modulate oncogenes and oncometabolism, Curr. Opin. Chem. Biol. 76 (2023), 102338.
|
| [68] |
N. Geng, B.J. Shi, S.L. Li, et al., Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 3826-3836.
|
| [69] |
Q. Wang, Q. Cui, J. Gao, et al., Role of iron biomarkers and iron intakes in lung cancer risk: A systematic review and meta-analysis, J. Trace Elem. Med. Biol. 74 (2022), 127060.
|
| [70] |
Z. Song, X. Xiang, J. Li, et al., Ruscogenin induces ferroptosis in pancreatic cancer cells, Oncol. Rep. 43 (2020) 516-524.
|
| [71] |
J. Zhao, Y. Wang, L. Tao, et al., Iron transporters and ferroptosis in malignant brain tumors, Front. Oncol. 12 (2022), 861834.
|
| [72] |
Q. Song, S. Peng, Z. Sun, et al., Temozolomide drives ferroptosis via a DMT1-dependent pathway in glioblastoma cells, Yonsei Med. J. 62 (2021) 843-849.
|
| [73] |
K. Zhao, J. Li, Q. Zhang, et al., Efficacy of desferrioxamine mesylate in intracerebral hematoma: A systemic review and meta-analysis, Neurol. Sci. 43 (2022) 6771-6782.
|
| [74] |
M.A. Thorwald, J.A. Godoy-Lugo, N. Santa Maria, et al., Iron chelation by oral deferoxamine treatment decreased brain iron and iron signaling proteins, bioRxiv (2024), 2024.08.14.607970.
|
| [75] |
F. Laine, B. Laviolle, E. Bardou-Jacquet, et al., Curcuma decreases serum hepcidin levels in healthy volunteers: A placebo-controlled, randomized, double-blind, cross-over study, Fundam. Clin. Pharmacol. 31 (2017) 567-573.
|
| [76] |
J. Guo, Y. Le, A. Yuan, et al., Astragaloside IV ameliorates cisplatin-induced liver injury by modulating ferroptosis-dependent pathways, J. Ethnopharmacol. 328 (2024), 118080.
|
| [77] |
Z. Sajadi Hezaveh, A. Azarkeivan, L. Janani, et al., The effect of quercetin on iron overload and inflammation in β-thalassemia major patients: A double-blind randomized clinical trial, Complement. Ther. Med. 46 (2019) 24-28.
|
| [78] |
Y. Jin, S. Wu, L. Zhang, et al., Artesunate inhibits osteoclast differentiation by inducing ferroptosis and prevents iron overload-induced bone loss, Basic Clin. Pharmacol. Toxicol. 132 (2023) 144-153.
|
| [79] |
H. Shi, L. Xiong, G. Yan, et al., Susceptibility of cervical cancer to dihydroartemisinin-induced ferritinophagy-dependent ferroptosis, Front. Mol. Biosci. 10 (2023), 1156062.
|
| [80] |
X. Wang, L. Xu, Y. Meng, et al., FOXO1-NCOA4 axis contributes to cisplatin-induced cochlea spiral ganglion neuron ferroptosis via ferritinophagy, Adv. Sci. (Weinh) 11 (2024), e2402671.
|
| [81] |
C. Hu, D. Zu, J. Xu, et al., Polyphyllin B suppresses gastric tumor growth by modulating iron metabolism and inducing ferroptosis, Int. J. Biol. Sci. 19 (2023) 1063-1079.
|
| [82] |
Y. Zhang, Z. Ni, E. Elam, et al., Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells, Food Funct. 12 (2021) 4947-4959.
|
| [83] |
X. Lai, Y. Sun, X. Zhang, et al., Honokiol induces ferroptosis by upregulating HMOX1 in acute myeloid leukemia cells, Front. Pharmacol. 13 (2022), 897791.
|
| [84] |
S. Ayton, D. Barton, B. Brew, et al., Deferiprone in Alzheimer disease: A randomized clinical trial, JAMA Neurol. 82 (2025) 11-18.
|
| [85] |
D. Devos, J. Labreuche, O. Rascol, et al., Trial of deferiprone in Parkinson’s disease, N. Engl. J. Med. 387 (2022) 2045-2055.
|
| [86] |
K. Ishimaru, M. Ikeda, H.D. Miyamoto, et al., Deferasirox targeting ferroptosis synergistically ameliorates myocardial ischemia reperfusion injury in conjunction with cyclosporine A, J. Am. Heart Assoc. 13 (2024), e031219.
|
| [87] |
C. Zhang, Y. Lu, J. Zhang, et al., Novel 3-hydroxypyridin-4(1H)-One derivatives as ferroptosis inhibitors with iron-chelating and reactive oxygen species scavenging activities and therapeutic effect in cisplatin-induced cytotoxicity, Eur. J. Med. Chem. 263 (2024), 115945.
|
| [88] |
A.M. Samuni, M.C. Krishna, W. DeGraff, et al., Mechanisms underlying the cytotoxic effects of tachpyr: A novel metal Chelator, Biochim. Biophys. Acta 1571 (2002) 211-218.
|
| [89] |
L. Reisbeck, B. Linder, G. Tascher, et al., The iron Chelator and OXPHOS inhibitor VLX600 induces mitophagy and an autophagy-dependent type of cell death in glioblastoma cells, Am. J. Physiol. Cell Physiol. 325 (2023) C1451-C1469.
|
| [90] |
H. Zhang, M. Wen, J. Chen, et al., Pyridoxal isonicotinoyl hydrazone improves neurological recovery by attenuating ferroptosis and inflammation in cerebral hemorrhagic mice, Biomed Res. Int. 2021 (2021), 9916328.
|
| [91] |
T. Simunek, M. Sterba, O. Popelova, et al., Anthracycline toxicity to cardiomyocytes or cancer cells is differently affected by iron chelation with salicylaldehyde isonicotinoyl hydrazone, Br. J. Pharmacol. 155 (2008) 138-148.
|
| [92] |
L.K. Charkoudian, T. Dentchev, N. Lukinova, et al., Iron Prochelator BSIH protects retinal pigment epithelial cells against cell death induced by hydrogen peroxide, J. Inorg. Biochem. 102 (2008) 2130-2135.
|
| [93] |
W. Yang, B. Mu, J. You, et al., Non-classical ferroptosis inhibition by a small molecule targeting PHB2, Nat. Commun. 13 (2022), 7473.
|
| [94] |
Y. Fang, X. Chen, Q. Tan, et al., Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: A new mechanism of action, ACS Cent. Sci. 7 (2021) 980-989.
|
| [95] |
L. Horonchik, M. Wessling-Resnick, The small-molecule iron transport inhibitor ferristatin/NSC306711 promotes degradation of the transferrin receptor, Chem. Biol. 15 (2008) 647-653.
|
| [96] |
S.L. Byrne, P.D. Buckett, J. Kim, et al., Ferristatin II promotes degradation of transferrin receptor-1 in vitro and in vivo, PLoS One 8 (2013), e70199.
|
| [97] |
N. Li, W. Wang, H. Zhou, et al., Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury, Free. Radic. Biol. Med. 160 (2020) 303-318.
|
| [98] |
W. Feng, Y. Xiao, C. Zhao, et al., New deferric amine compounds efficiently chelate excess iron to treat iron overload disorders and to prevent ferroptosis, Adv. Sci. (Weinh) 9 (2022), e2202679.
|
| [99] |
A.J. Schwartz, N.K. Das, S.K. Ramakrishnan, et al., Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload, J. Clin. Invest. 129 (2019) 336-348.
|
| [100] |
S. Rivera, V. Gabayan, T. Ganz, In chronic inflammation, there exists an IL-6 independent pathway for the induction of hepcidin, Blood 104 (2004), 3205.
|
| [101] |
Y. Zhang, Y. Qian, J. Zhang, et al., Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2, Genes Dev. 31 (2017) 1243-1256.
|
| [102] |
H. Ji, W. Wang, X. Li, et al., p53: A double-edged sword in tumor ferroptosis, Pharmacol. Res. 177 (2022), 106013.
|
| [103] |
P. La, V. Ghiaccio, J. Zhang, et al., An orchestrated balance between mitochondria biogenesis, iron-sulfur cluster synthesis and cellular iron acquisition, Blood 132 (2018), 1048.
|
| [104] |
W. Gu, C. Fillebeen, K. Pantopoulos, Human IRP1 translocates to the nucleus in a cell-specific and iron-dependent manner, Int. J. Mol. Sci. 23 (2022), 10740.
|
| [105] |
G.J. Connell, I.M. Abasiri, E.H. Chaney, A temporal difference in the stabilization of two mRNAs with a 3' iron-responsive element during iron deficiency, RNA 29 (2023) 1117-1125.
|
| [106] |
L. Wang, C. Wang, X. Li, et al., Melatonin and erastin emerge synergistic anti-tumor effects on oral squamous cell carcinoma by inducing apoptosis, ferroptosis, and inhibiting autophagy through promoting ROS, Cell. Mol. Biol. Lett. 28 (2023), 36.
|
| [107] |
X. Yu, S. Wang, X. Wang, et al., Melatonin improves stroke by inhibiting autophagy-dependent ferroptosis mediated by NCOA4 binding to FTH1, Exp. Neurol. 379 (2024), 114868.
|
| [108] |
N.E. Piloni, R. Vargas, V. Fernandez, et al., Effects of acute iron overload on Nrf2-related glutathione metabolism in rat brain, Biometals 34 (2021) 1017-1027.
|
| [109] |
C. Meng, J. Zhan, D. Chen, et al., The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2, Oncogene 40 (2021) 1706-1720.
|
| [110] |
C.W. Brown, J.J. Amante, P. Chhoy, et al., Prominin2 drives ferroptosis resistance by stimulating iron export, Dev. Cell 51 (2019) 575-586.e4.
|
| [111] |
O. Protchenko, E. Baratz, S. Jadhav, et al., Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis, Hepatology 73 (2021) 1176-1193.
|
| [112] |
Z. Zhou, A. Luo, I. Shrivastava, et al., Regulation of XIAP turnover reveals a role for USP11 in promotion of tumorigenesis, EBioMedicine 15 (2017) 48-61.
|
| [113] |
J.D. Mancias, L. Pontano Vaites, S. Nissim, et al., Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis, Elife 4 (2015), e10308.
|
| [114] |
T. Moroishi, T. Yamauchi, M. Nishiyama, et al., HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism, J. Biol. Chem. 289 (2014) 16430-16441.
|
| [115] |
J.I. Lachowicz, G. Pichiri, M. Piludu, et al., Thymosin β4 is an endogenous iron Chelator and molecular switcher of ferroptosis, Int. J. Mol. Sci. 23 (2022), 551.
|
| [116] |
S.W. Alvarez, V.O. Sviderskiy, E.M. Terzi, et al., NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis, Nature 551 (2017) 639-643.
|
| [117] |
V. Doerr, R. Montalvo, C. Jacintho Moritz, et al., The role of mitochondrial ABCB8 in exercise-induced protection against DOX cardiotoxicity, Physiology 38 (2023), 5796072.
|
| [118] |
L. Jiang, J. Wang, K. Wang, et al., RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation, Blood 138 (2021) 689-705.
|
| [119] |
Y. Zhang, Y. Kong, Y. Ma, et al., Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines, Oncogene 40 (2021) 1425-1439.
|
| [120] |
W. Ni, K. Jiang, Q. Ke, et al., Development of an intelligent heterojunction Fenton catalyst for chemodynamic/starvation synergistic cancer therapy, J. Mater. Sci. Technol. 141 (2023) 11-20.
|
| [121] |
M. Mu, Y. Wang, S. Zhao, et al., Engineering a pH/glutathione-responsive tea polyphenol nanodevice as an apoptosis/ferroptosis-inducing agent, ACS Appl. Bio Mater. 3 (2020) 4128-4138.
|
| [122] |
M. Chen, Y. Shen, Y. Pu, et al., Biomimetic inducer enabled dual ferroptosis of tumor and M2-type macrophages for enhanced tumor immunotherapy, Biomaterials 303 (2023), 122386.
|
| [123] |
Z. Shen, T. Liu, Y. Li, et al., Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors, ACS Nano 12 (2018) 11355-11365.
|
| [124] |
M. Huo, L. Wang, Y. Chen, et al., Tumor-selective catalytic nanomedicine by nanocatalyst delivery, Nat. Commun. 8 (2017), 357.
|
| [125] |
X. Zhao, W. Wang, X. Li, et al., Core-shell structure of Fe3O4@MTX-LDH/Au NPs for cancer therapy, Mater. Sci. Eng. C Mater. Biol. Appl. 89 (2018) 422-428.
|
| [126] |
Q. Jiang, K. Wang, X. Zhang, et al., Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy, Small 16 (2020), e2001704.
|
| [127] |
X. Liang, M. Chen, P. Bhattarai, et al., Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles, ACS Nano 15 (2021) 20164-20180.
|
| [128] |
Q. Chen, X. Ma, L. Xie, et al., Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment, Nanoscale 13 (2021) 4855-4870.
|
| [129] |
M. Sang, R. Luo, Y. Bai, et al., Mitochondrial membrane anchored photosensitive nano-device for lipid hydroperoxides burst and inducing ferroptosis to surmount therapy-resistant cancer, Theranostics 9 (2019) 6209-6223.
|
| [130] |
M. Huo, L. Wang, Y. Wang, et al., Nanocatalytic tumor therapy by single-atom catalysts, ACS Nano 13 (2019) 2643-2653.
|
| [131] |
C. Xue, M. Li, Y. Zhao, et al., Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells, Sci. Adv. 6 (2020), eaax1346.
|
| [132] |
H. Liang, X. Wu, G. Zhao, et al., Renal clearable ultrasmall single-crystal Fe nanoparticles for highly selective and effective ferroptosis therapy and immunotherapy, J. Am. Chem. Soc. 143 (2021) 15812-15823.
|
| [133] |
W. Jiang, L. Wei, B. Chen, et al., Correction to: Platinum prodrug nanoparticles inhibiting tumor recurrence and metastasis by concurrent chemoradiotherapy, J. Nanobiotechnology 20 (2022), 234.
|
| [134] |
Y. Xu, Y. Guo, C. Zhang, et al., Fibronectin-coated metal-phenolic networks for cooperative tumor chemo-/ chemodynamic/immune therapy via enhanced ferroptosis-mediated immunogenic cell death, ACS Nano 16 (2022) 984-996.
|
| [135] |
L. Chen, Z. Lin, L. Liu, et al., Fe2+/Fe3+ ions chelated with ultrasmall polydopamine nanoparticles induce ferroptosis for cancer therapy, ACS Biomater. Sci. Eng. 5 (2019) 4861-4869.
|
| [136] |
W. Chen, X. Yuan, Z. Li, et al., CN128: A new orally active hydroxypyridinone iron Chelator, J. Med. Chem. 63 (2020) 4215-4226.
|
| [137] |
L. Tao, X. Yang, C. Ge, et al., Integrative clinical and preclinical studies identify FerroTerminator1 as a potent therapeutic drug for MASH, Cell Metab. 36 (2024) 2190-2206.e5.
|
| [138] |
A. Premawardhena, C. Perera, M.N. Wijethilaka, et al., Efficacy and safety of deferoxamine, deferasirox and deferiprone triple iron Chelator combination therapy for transfusion-dependent β-thalassaemia with very high iron overload: A protocol for randomised controlled clinical trial, BMJ Open 14 (2024), e077342.
|
| [139] |
J. Ji, Y. Jin, S. Ma, et al., Discovery of a NCOA4 degrader for labile iron-dependent ferroptosis inhibition, J. Med. Chem. 67 (2024) 12521-12533.
|
| [140] |
C. Lu, L. Han, J. Wang, et al., Engineering of magnetic nanoparticles as magnetic particle imaging tracers, Chem. Soc. Rev. 50 (2021) 8102-8146.
|
| [141] |
K.S. Kim, B. Choi, H. Choi, et al., Enhanced natural killer cell anti-tumor activity with nanoparticles mediated ferroptosis and potential therapeutic application in prostate cancer, J. Nanobiotechnology 20 (2022), 428.
|
| [142] |
E. Kipps, K. Young, N. Starling, Liposomal irinotecan in gemcitabine-refractory metastatic pancreatic cancer: Efficacy, safety and place in therapy, Ther. Adv. Med. Oncol. 9 (2017) 159-170.
|
| [143] |
Y. Bentur, M. McGuigan, G. Koren, Deferoxamine (desferrioxamine). New toxicities for an old drug, Drug Saf. 6 (1991) 37-46.
|
| [144] |
C.H. Lin, X. Chen, C.C. Wu, et al., Therapeutic mechanism of combined oral chelation therapy to maximize efficacy of iron removal in transfusion-dependent thalassemia major - a pilot study, Expert Rev. Hematol. 12 (2019) 265-272.
|
| [145] |
C. Tanaka, Clinical pharmacology of deferasirox, Clin. Pharmacokinet. 53 (2014) 679-694.
|
| [146] |
Q. Liu, Y. Duo, J. Fu, et al., Nano-immunotherapy: Unique mechanisms of nanomaterials in synergizing cancer immunotherapy, Nano Today 36 (2021), 101023.
|
| [147] |
P. Sharp, The molecular basis of copper and iron interactions, Proc. Nutr. Soc. 63 (2004) 563-569.
|
| [148] |
C.H. Hill, G. Matrone, W.L. Payne, et al., In vivo interactions of cadmium with copper, zinc and iron, J. Nutr. 80 (1963) 227-235.
|
| [149] |
T. Rolic, M. Yazdani, S. Mandic, et al., Iron metabolism, calcium, magnesium and trace elements: A review, Biol. Trace Elem. Res. (2024).
|
| [150] |
F. Vana, Z. Szabo, M. Masarik, et al., The interplay of transition metals in ferroptosis and pyroptosis, Cell Div. 19 (2024), 24.
|