Volume 15 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Xingyue Jin, Suyi Liu, Shujing Chen, Rui Han, Xingyi Sun, Mingyan Wei, Yanxu Chang, Lin Li, Han Zhang. Small-molecule probes based on natural products: Elucidation of drug-target mechanisms in stroke[J]. Journal of Pharmaceutical Analysis, 2025, 15(11): 101290. doi: 10.1016/j.jpha.2025.101290
Citation: Xingyue Jin, Suyi Liu, Shujing Chen, Rui Han, Xingyi Sun, Mingyan Wei, Yanxu Chang, Lin Li, Han Zhang. Small-molecule probes based on natural products: Elucidation of drug-target mechanisms in stroke[J]. Journal of Pharmaceutical Analysis, 2025, 15(11): 101290. doi: 10.1016/j.jpha.2025.101290

Small-molecule probes based on natural products: Elucidation of drug-target mechanisms in stroke

doi: 10.1016/j.jpha.2025.101290
Funds:

This work was supported by the Tianjin Science and Technology Plan Project (Project No.: 23ZYJDSS00020), the National Natural Science Foundation of China (Grant No.: 82004331), and the Key Research and Development Program of HuBei Province of China (Program No.: 2022ACA003-02-002). Figures were drawn using BioGDP (https://biogdp.com/).

  • Received Date: Dec. 03, 2024
  • Accepted Date: Mar. 28, 2025
  • Rev Recd Date: Mar. 13, 2025
  • Publish Date: Apr. 03, 2025
  • Natural products (NPs) are an important source of new drugs for the treatment of stroke. Identifying cellular targets for bioactive molecules is a major challenge and critical issue in the development of new drugs for stroke. Small-molecule probes play a unique role in target discovery. However, drawbacks to these probes include non-specificity, unstable activity, and difficulty in synthesis. Small-molecule probes based on NPs at least partially compensate for these shortcomings. NPs feature rich chemical and structural diversity, biocompatibility, and unique biological activities. These features could be exploited to provide new ideas and tools for target discovery. Small-molecule probes based on NPs provide a precise and direct search for interacting protein targets of NPs-active small molecules. This review explores the properties of small-molecule probes based on NPs and their applications in mechanistic studies of stroke and other diseases. We hope that this review will bring new perspectives to the mechanistic study of NPs-active small molecules and accelerate the translation of these ingredients into drug candidates for the treatment of stroke.

  • loading
  • [1]
    W.M. Ren, The design, synthsis and application of small molecule bioactive probes [dissertation], Shanghai: The University of Chinese Academy of Sciences, 2016.
    [2]
    G.S. Xu, Design, synthesis and bio-evaluation of active small molecules on the basis of two natural product privileged structures [dissertation], Shandong: Shandong University, 2022.
    [3]
    M.A. Moskowitz, E.H. Lo, C. Iadecola, The science of stroke: Mechanisms in search of treatments, Neuron 67 (2010) 181-198.
    [4]
    R.L. Sacco, S.E. Kasner, J.P. Broderick, et al., An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association, Stroke 44 (2013) 2064-2089.
    [5]
    L. Dang, Y. Jin, Y. Yuan, et al., Licorice: comprehensive review of its chemical composition, pharmacodynamics, and medicinal value, Acupunct. Herb. Med. 4 (2024) 136-150.
    [6]
    W. Zhang, P. Zhang, L.-H. Xu, et al., Ethanol extract of Verbena officinalis alleviates MCAO-induced ischaemic stroke by inhibiting IL17A pathway-regulated neuroinflammation, Phytomedicine 123 (2024), 155237.
    [7]
    Z. Zhou, W. Li, L. Ni, et al., Icariin improves oxidative stress injury during ischemic stroke via inhibiting mPTP opening, Mol. Med. 30 (2024), 77.
    [8]
    L. Tang, D. Wang, H. Chang, et al., Treating ischemic stroke by improving vascular structure and promoting angiogenesis using Taohong Siwu Decoction: An integrative pharmacology strategy, J. Ethnopharmacol. 332 (2024), 118372.
    [9]
    K.-W. Zeng, J.-K. Wang, L.-C. Wang, et al., Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity, Signal Transduct. Target. Ther. 6 (2021), 71.
    [10]
    G. Wu, L. Zhu, X. Yuan, et al., Britanin ameliorates cerebral ischemia-reperfusion injury by inducing the Nrf2 protective pathway, Antioxid. Redox Signal. 27 (2017) 754-768.
    [11]
    Q. Guo, Y.-C. Zhang, W. Wang, et al., Deoxyhypusine hydroxylase as a novel pharmacological target for ischemic stroke via inducing a unique post-translational hypusination modification, Pharmacol. Res. 176 (2022), 106046.
    [12]
    L.-C. Wang, L.-X. Liao, H.-N. Lv, et al., Highly selective activation of heat shock protein 70 by allosteric regulation provides an insight into efficient neuroinflammation inhibition, EBioMedicine 23 (2017) 160-172.
    [13]
    B. Su, G. Huang, S. Zhu, et al., N-Cinnamoylpyrrole-derived alkaloids from the genus Piper as promising agents for ischemic stroke by targeting eEF1A1, Phytomedicine 128 (2024), 155455.
    [14]
    Y. Mi, Y. Wang, Y. Liu, et al., Kellerin alleviates cerebral ischemic injury by inhibiting ferroptosis via targeting Akt-mediated transcriptional activation of Nrf2, Phytomedicine 128 (2024), 155406.
    [15]
    L.-X. Liao, X.-M. Song, L.-C. Wang, et al., Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy, Proc. Natl. Acad. Sci. USA 114 (2017) E5986-E5994.
    [16]
    K. Zeng, L. Liao, Y. Wan, et al., Pharmacological targets identification and efficacy analysis of phenylethanoid glycosides from Cistanches Herba based on “target fishing” strategy, Chin. Tradit. Herb. Drugs 49 (2018) 173-178.
    [17]
    C.-L. Gao, G.-G. Hou, J. Liu, et al., Synthesis and target identification of benzoxepane derivatives as potential anti-neuroinflammatory agents for ischemic stroke, Angew. Chem. Int. Ed. Engl. 59 (2020) 2429-2439.
    [18]
    C. Sun, N. Cao, Q. Wang, et al., Icaritin induces resolution of inflammation by targeting cathepsin B to prevents mice from ischemia-reperfusion injury, Int. Immunopharmacol. 116 (2023), 109850.
    [19]
    D.-D. Liu, P. Luo, L. Gu, et al., Celastrol exerts a neuroprotective effect by directly binding to HMGB1 protein in cerebral ischemia-reperfusion, J. Neuroinflammation 18 (2021), 174.
    [20]
    R. Ma, K. Norbo, Y. Zhu, et al., Chemical proteomics unveils that seventy flavors pearl pill ameliorates ischemic stroke by regulating oxidative phosphorylation, Bioorg. Chem. 145 (2024), 107187.
    [21]
    Y.-C. Liu, N. Feng, W.-W. Li, et al., Costunolide plays an anti-neuroinflammation role in lipopolysaccharide-induced BV2 microglial activation by targeting cyclin-dependent kinase 2, Molecules 25 (2020), 2840.
    [22]
    X.-W. Zhang, N. Feng, L.-C. Wang, et al., Small-molecule arone protects from neuroinflammation in LPS-activated microglia BV-2 cells by targeting histone-remodeling chaperone ASF1a, Biochem. Pharmacol. 177 (2020), 113932.
    [23]
    C.-H. Li, Y. Zhou, P.-F. Tu, et al., Natural carbazole alkaloid murrayafoline A displays potent anti-neuroinflammatory effect by directly targeting transcription factor Sp1 in LPS-induced microglial cells, Bioorg. Chem. 129 (2022), 106178.
    [24]
    L. Yao, M. Liao, J.-K. Wang, et al., Gold nanoparticle-based photo-cross-linking strategy for cellular target identification of supercomplex molecular systems, Anal. Chem. 94 (2022) 3180-3187.
    [25]
    M.-M. Zhao, L.-D. Li, M.-M. Yang, et al., Identification of Skp1 as a target of mercury sulfide for neuroprotection, Chem. Commun. (Camb) 60 (2024) 1464-1467.
    [26]
    X.-W. Zhang, N. Feng, Y.-C. Liu, et al., Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy, Sci. Adv. 8 (2022), eabo0789.
    [27]
    F. Chen, L. Ouyang, Y. Jiang, et al., Research of ginseng total saponins pull down the proteins in brain, Pharmacol. Clin. Chin. Mater. Med. 32 (2016) 41-45.
    [28]
    J.N. Wei, J.Y. Dai, Research method and application for identifying direct target of bioactive components from traditional Chinese medicine, Chin. Tradit. Herb. Drugs 52 (2021) 5378-5388.
    [29]
    A. Mateus, N. Kurzawa, I. Becher, et al., Thermal proteome profiling for interrogating protein interactions, Mol. Syst. Biol. 16 (2020), e9232.
    [30]
    X.-P. Yang, J.-H. Huang, F.-L. Ye, et al., Echinacoside exerts neuroprotection via suppressing microglial α-synuclein/TLR2/NF-κB/NLRP3 axis in parkinsonian models, Phytomedicine 123 (2024), 155230.
    [31]
    H.F. Zaki, M.A. Abd-El-Fattah, A.S. Attia, Naringenin protects against scopolamine-induced dementia in rats, Bull. Fac. Pharm. Cairo Univ. 52 (2014) 15-25.
    [32]
    Z. Yang, T. Kuboyama, C. Tohda, A systematic strategy for discovering a therapeutic drug for Alzheimer’s disease and its target molecule, Front. Pharmacol. 8 (2017), 340.
    [33]
    M. Vasaturo, R. Cotugno, L. Fiengo, et al., The anti-tumor diterpene oridonin is a direct inhibitor of Nucleolin in cancer cells, Sci. Rep. 8 (2018), 16735.
    [34]
    J. Wang, J. Zhang, C.J. Zhang, et al., In situ proteomic profiling of curcumin targets in HCT116 colon cancer cell line, Sci. Rep. 6 (2016), 22146.
    [35]
    J. Wang, X.F. Tan, V.S. Nguyen, et al., A quantitative chemical proteomics approach to profile the specific cellular targets of andrographolide, a promising anticancer agent that suppresses tumor metastasis, Mol. Cell. Proteomics 13 (2014) 876-886.
    [36]
    Y. Dong, K. Jiang, Z. Li, et al., Tongxinluo and functional outcomes among patients with acute ischemic stroke: A randomized clinical trial, JAMA Netw. Open 7 (2024), e2433463.
    [37]
    Q. Zhang, A. Wang, Q. Xu, et al., Efficacy and safety of ginkgo diterpene lactone meglumine in acute ischemic stroke: A randomized clinical trial, JAMA Netw. Open 6 (2023), e2328828.
    [38]
    S. Liang, Y. Wu, R. Zhang, et al., Therapeutic effects of Buyang Huanwu Tang combined with RT-PA intravenous thrombolysis on stroke of Qi deficiency and blood stasis type and its impact on Keap1-Nrf2/ARE pathway antioxidant stress, Cell. Mol. Biol. (Noisy-le-grand) 69 (2023) 210-216.
    [39]
    J. Lyu, Y. Liu, F. Liu, et al., Therapeutic effect and mechanisms of traditional Chinese medicine compound (Qilong capsule) in the treatment of ischemic stroke, Phytomedicine 132 (2024), 155781.
    [40]
    S. Pan, A. Ding, Y. Li, et al., Small-molecule probes from bench to bedside: Advancing molecular analysis of drug-target interactions toward precision medicine, Chem. Soc. Rev. 52 (2023) 5706-5743.
    [41]
    R. Ferreira de Freitas, M. Schapira, A systematic analysis of atomic protein-ligand interactions in the PDB, Medchemcomm 8 (2017) 1970-1981.
    [42]
    B. Kuhn, E. Gilberg, R. Taylor, et al., How significant are unusual protein-ligand interactions? Insights from database mining, J. Med. Chem. 62 (2019) 10441-10455.
    [43]
    R. Aebersold, M. Mann, Mass spectrometry-based proteomics, Nature 422 (2003) 198-207.
    [44]
    Y. Han, C. Liu, S. Chen, et al., Columbianadin ameliorates rheumatoid arthritis by attenuating synoviocyte hyperplasia through targeted vimentin to inhibit the VAV2/Rac-1 signaling pathway, J. Adv. Res. 2024. https://doi.org/10.1016/j.jare.2024.09.030.
    [45]
    Y. Qian, Q.-H. Han, D. Liu, et al., Anti-tumor target identification and molecular mechanism study of total saponins from Albizia julibrissin, Zhongguo Zhongyao Za Zhi 42 (2017) 3661-3665.
    [46]
    X.H. Huang, X. Yan, Q.H. Zhang, et al., Direct targeting of HSP90 with daurisoline destabilizes β-catenin to suppress lung cancer tumorigenesis, Cancer Lett. 489 (2020) 66-78.
    [47]
    P.D. Dearmond, Y. Xu, E.C. Strickland, et al., Thermodynamic analysis of protein-ligand interactions in complex biological mixtures using a shotgun proteomics approach, J. Proteome Res. 10 (2011) 4948-4958.
    [48]
    I. Nagasawa, M. Muroi, M. Kawatani, et al., Identification of a small compound targeting PKM2-regulated signaling using 2D gel electrophoresis-based proteome-wide CETSA, Cell Chem. Biol. 27 (2020) 186-196.e4.
    [49]
    J. Kakegawa, S. Ohtsuka, M. Yokoyama, et al., Thermal proteome profiling reveals glutathione peroxidase 4 as the target of the autophagy inducer conophylline, Mol. Pharmacol. 100 (2021) 181-192.
    [50]
    A. Mishra, R. Malik, T. Hachiya, et al., Stroke genetics informs drug discovery and risk prediction across ancestries, Nature 611 (2022) 115-123.
    [51]
    N. Zhao, M. Sun, K. Burns-Huang, et al., Identification of Rv3852 as an agrimophol-binding protein in Mycobacterium tuberculosis, PLoS One 10 (2015), e0126211.
    [52]
    R. Huang, L. Zhang, J. Jin, et al., Bruceine D inhibits HIF-1 α-mediated glucose metabolism in hepatocellular carcinoma by blocking ICAT/β-catenin interaction, Acta Pharm. Sin. B 11 (2021) 3481-3492.
    [53]
    Y. Xu, M.A. Wallace, M.C. Fitzgerald, Thermodynamic analysis of the geldanamycin-Hsp90 interaction in a whole cell lysate using a mass spectrometry-based proteomics approach, J. Am. Soc. Mass Spectrom. 27 (2016) 1670-1676.
    [54]
    F.-F. Zhuo, L. Li, T.-T. Liu, et al., Lycorine promotes IDH1 acetylation to induce mitochondrial dynamics imbalance in colorectal cancer cells, Cancer Lett. 573 (2023), 216364.
    [55]
    M.B. Robers, M.L. Dart, C.C. Woodroofe, et al., Target engagement and drug residence time can be observed in living cells with BRET, Nat. Commun. 6 (2015), 10091.
    [56]
    Y. Deng, L. Zeng, H. Liu, et al., Silibinin attenuates ferroptosis in acute kidney injury by targeting FTH1, Redox Biol. 77 (2024), 103360.
    [57]
    K.-W. Zeng, Y.-J. Wan, L.-X. Liao, et al., Identification and function analysis of neuroprotective targets group of modified Wuzi Yanzong pill, Zhongguo Zhongyao Za Zhi 42 (2017) 3656-3660.
    [58]
    L. Xu, Y. Mi, Q. Meng, et al., Anti-inflammatory effects of quinolinyl analog of resveratrol targeting TLR4 in MCAO/R ischemic stroke rat model, Phytomedicine 128 (2024), 155344.
    [59]
    J. Fu, L. Yu, Q. Yu, et al., Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation, J. Ginseng Res. 47 (2023) 274-282.
    [60]
    S. Zhao, P. Zhang, Y. Yan, et al., Network pharmacology-based prediction and validation of the active ingredients and potential mechanisms of the Huangxiong formula for treating ischemic stroke, J. Ethnopharmacol. 312 (2023), 116507.
    [61]
    T. Keravis, C. Lugnier, Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: Benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments, Br. J. Pharmacol. 165 (2012) 1288-1305.
    [62]
    B. Puppala, I. Awan, S. Briyal, et al., Ontogeny of endothelin receptors in the brain, heart, and kidneys of neonatal rats, Brain Dev. 37 (2015) 206-215.
    [63]
    S.J. Keam, Sovateltide: First approval, Drugs 83 (2023) 1239-1244.
    [64]
    M. Chong, J. Sjaarda, M. Pigeyre, et al., Novel drug targets for ischemic stroke identified through mendelian randomization analysis of the blood proteome, Circulation 140 (2019) 819-830.
    [65]
    M. Zhao, T. Ren, J. Wang, et al., Endoplasmic reticulum membrane remodeling by targeting reticulon-4 induces pyroptosis to facilitate antitumor immune, Protein Cell 16 (2025) 121-135.
    [66]
    Y. Wang, X. Chen, Y. Bai, et al., Palmitoylation of PKCδ by ZDHHC5 in hypothalamic microglia presents as a therapeutic target for fatty liver disease, Theranostics 14 (2024) 988-1009.
    [67]
    H.M. Ismail, V. Barton, M. Phanchana, et al., Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7, Proc. Natl. Acad. Sci. USA 113 (2016) 2080-2085.
    [68]
    J. Wang, C.J. Zhang, W.N. Chia, et al., Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum, Nat. Commun. 6 (2015), 10111.
    [69]
    J. Wang, Q. Lin, Chemical proteomics approach reveals the direct targets and the heme-dependent activation mechanism of artemisinin in Plasmodium falciparum using an artemisinin-based activity probe, Microb. Cell 3 (2016) 230-231.
    [70]
    D. Liu, C. Zou, J. Zhang, et al., Target profiling of an anticancer drug curcumin by an in situ chemical proteomics approach, Methods Mol. Biol. 2213 (2021) 147-161.
    [71]
    F. Zhuo, Q. Guo, Y. Zheng, et al., Photoaffinity labeling-based chemoproteomic strategy reveals RBBP4 as a cellular target of protopanaxadiol against colorectal cancer cells, Chembiochem 23 (2022), e202200038.
    [72]
    J. Wang, Y. Nie, Y. Li, et al., Identification of target proteins of mangiferin in mice with acute lung injury using functionalized magnetic microspheres based on click chemistry, J. Agric. Food Chem. 63 (2015) 10013-10021.
    [73]
    W. Yu, M. Liao, Y. Chen, et al., Photoaffinity labelling-based chemoproteomic strategy identifies PEBP1 as the target of ethyl gallate against macrophage activation, Chem. Commun. (Camb) 59 (2023) 1022-1025.
    [74]
    S. Yu, M. Zhao, Y. Zheng, et al., Chemoproteomic strategy identifies PfUCHL3 as the target of halofuginone, ChemBioChem 25 (2024), e202400269.
    [75]
    J. Dai, K. Liang, S. Zhao, et al., Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis, Proc. Natl. Acad. Sci. USA 115 (2018) E5896-E5905.
    [76]
    W. Wang, L. Liu, Z. Yang, et al., Anti-psoriasis molecular targets and active components discovery of Optimized Yinxieling Formula via affinity-purified strategy, Chin. J. Nat. Med. 22 (2024) 127-136.
    [77]
    Y. Kim, Y. Sugihara, T.Y. Kim, et al., Identification and validation of VEGFR2 kinase as a target of voacangine by a systematic combination of DARTS and MSI, Biomolecules 10 (2020), 508.
    [78]
    B. Lomenick, R. Hao, N. Jonai, et al., Target identification using drug affinity responsive target stability (DARTS), Proc. Natl. Acad. Sci. USA 106 (2009) 21984-21989.
    [79]
    M.M. Derry, R.R. Somasagara, K. Raina, et al., Target identification of grape seed extract in colorectal cancer using drug affinity responsive target stability (DARTS) technique: Role of endoplasmic reticulum stress response proteins, Curr. Cancer Drug Targets 14 (2014) 323-336.
    [80]
    F. Dal Piaz, M.B. Vera Saltos, S. Franceschelli, et al., Drug affinity responsive target stability (DARTS) identifies laurifolioside as a new clathrin heavy chain modulator, J. Nat. Prod. 79 (2016) 2681-2692.
    [81]
    M. Ariel Geer Wallace, D.Y. Kwon, D.H. Weitzel, et al., Discovery of manassantin A protein targets using large-scale protein folding and stability measurements, J. Proteome Res. 15 (2016) 2688-2696.
    [82]
    Y. Wan, Q. Guo, D. Liu, et al., Protocatechualdehyde reduces myocardial fibrosis by directly targeting conformational dynamics of collagen, Eur. J. Pharmacol. 855 (2019) 183-191.
    [83]
    A. Yang, K. Zeng, H. Huang, et al., Usenamine A induces apoptosis and autophagic cell death of human hepatoma cells via interference with the Myosin-9/actin-dependent cytoskeleton remodeling, Phytomedicine 116 (2023), 154895.
    [84]
    X. Zhang, L. Li, M. Liao, et al., Thermal proteome profiling strategy identifies CNPY3 as a cellular target of gambogic acid for inducing prostate cancer pyroptosis, J. Med. Chem. 67 (2024) 10005-10011.
    [85]
    C. Sun, J. Zhou, Z. Yu, et al., Kurarinone alleviated Parkinson’s disease via stabilization of epoxyeicosatrienoic acids in animal model, Proc. Natl. Acad. Sci. USA 119 (2022), e2118818119.
    [86]
    Z. Yu, J. Gao, X. Zhang, et al., Correction: Characterization of a small-molecule inhibitor targeting NEMO/IKKβ to suppress colorectal cancer growth, Signal Transduct. Target. Ther. 8 (2023), 330.
    [87]
    D.J. Rodi, R.W. Janes, H.J. Sanganee, et al., Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein, J. Mol. Biol. 285 (1999) 197-203.
    [88]
    Y. Takakusagi, K. Ohta, K. Kuramochi, et al., Synthesis of a biotinylated camptothecin derivative and determination of the binding sequence by T7 phage display technology, Bioorg. Med. Chem. Lett. 15 (2005) 4846-4849.
    [89]
    Y. Wang, Y. Lin, H. Li, et al., The identification of molecular target of (20S) ginsenoside Rh2 for its anti-cancer activity, Sci. Rep. 7 (2017), 12408.
    [90]
    L. Yao, W. Dong, F. Lu, et al., An improved acute gouty arthritis rat model and therapeutic effect of rhizoma Dioscoreae nipponicae on acute gouty arthritis based on the protein-chip methods, Am. J. Chin. Med. 40 (2012) 121-134.
    [91]
    F. Chen, K. Zhu, L. Chen, et al., Protein target identification of ginsenosides in skeletal muscle tissues: Discovery of natural small-molecule activators of muscle-type creatine kinase, J. Ginseng Res. 44 (2020) 461-474.
    [92]
    X. Chen, Y. Zhao, W. Luo, et al., Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells, Theranostics 10 (2020) 10290-10308.
    [93]
    L. Wang, W. Wei, X. Zhang, et al., An integrated proteomics and bioinformatics approach reveals the anti-inflammatory mechanism of carnosic acid, Front. Pharmacol. 9 (2018), 370.
    [94]
    P. Xiang, Q. Li, G. Cui, et al., Investigating the mechanism and efficacy material basis of Xiehuo Xiaoying decoction for treating Graves' disease via thyroid cell apoptosis based on proteomics and molecular docking techniques, J. Ethnopharmacol. 324 (2024), 117753.
    [95]
    H. He, H. Jiang, Y. Chen, et al., Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity, Nat. Commun. 9 (2018), 2550.
    [96]
    M. Zhao, L. Yao, X. Zhang, et al., Global identification of the cellular targets for a multi-molecule system by a photochemically-induced coupling reaction, Chem. Commun. (Camb) 57 (2021) 3449-3452.
    [97]
    M. Chen, K. Zhong, J. Tan, et al., Baicalein is a novel TLR4-targeting therapeutics agent that inhibits TLR4/HIF-1α/VEGF signaling pathway in colorectal cancer, Clin. Transl. Med. 11 (2021), e564.
    [98]
    Y. Zhang, T. Yan, D. Sun, et al., Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced colitis, Free Radic. Biol. Med. 148 (2020) 33-41.
    [99]
    Z. Shu, K. Zeng, X. Ma, et al., Active compounds from Baoyuan decoction with myocardial protection activities and their potential targets, Zhongguo Zhongyao Za Zhi 41 (2016) 922-927.
    [100]
    A.V. Statsuk, R. Bai, J.L. Baryza, et al., Actin is the primary cellular receptor of bistramide A, Nat. Chem. Biol. 1 (2005) 383-388.
    [101]
    C. Liu, Q. Yin, H. Zhou, et al., Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells, Nat. Chem. Biol. 8 (2012) 486-493.
    [102]
    Y. Zhu, N. Wan, X. Shan, et al., Celastrol targets adenylyl cyclase-associated protein 1 to reduce macrophages-mediated inflammation and ameliorates high fat diet-induced metabolic syndrome in mice, Acta Pharm. Sin. B 11 (2021) 1200-1212.
    [103]
    Y. Zhou, W. Li, Y. Xiao, Profiling of multiple targets of artemisinin activated by hemin in cancer cell proteome, ACS Chem. Biol. 11 (2016) 882-888.
    [104]
    T. Dong, C. Li, X. Wang, et al., Ainsliadimer A selectively inhibits IKKα/β by covalently binding a conserved cysteine, Nat. Commun. 6 (2015), 6522.
    [105]
    Q. Guo, L. Yao, Z. Liu, et al., Identification of intestine direct targets of Shouhui Tongbian Capsules using “target fishing” strategy, Zhongguo Zhongyao Za Zhi 46 (2021) 505-510.
    [106]
    X. Chen, Y. Wang, N. Ma, et al., Target identification of natural medicine with chemical proteomics approach: Probe synthesis, target fishing and protein identification, Signal Transduct. Target. Ther. 5 (2020), 72.
    [107]
    Y. Duan, L. Meng, Research progress in multi-targeted anti-tumor natural products, Acta Pharm. Sin. 56 (2021) 403-413.
    [108]
    M. Fairhead, D. Krndija, E.D. Lowe, et al., Plug-and-play pairing via defined divalent streptavidins, J. Mol. Biol. 426 (2014) 199-214.
    [109]
    B.D. Grant, C.A. Smith, K. Karvonen, et al., Highly sensitive two-dimensional paper network incorporating biotin-streptavidin for the detection of malaria, Anal. Chem. 88 (2016) 2553-2557.
    [110]
    Q. Zhao, Y. Ding, Z. Deng, et al., Natural products triptolide, celastrol, and with afer in A inhibit the chaperone activity of peroxiredoxin I, Chem. Sci. 6 (2015) 4124-4130.
    [111]
    S. Wang, Y. Tian, J. Zhang, et al., Targets fishing and identification of calenduloside E as Hsp90AB1: Design, synthesis, and evaluation of clickable activity-based probe, Front. Pharmacol. 9 (2018), 532.
    [112]
    S.E. Martin, T. Ganguly, G.R. Munske, et al., Development of inhibitor-directed enzyme prodrug therapy (IDEPT) for prostate cancer, Bioconjug. Chem. 25 (2014) 1752-1760.
    [113]
    J. Hou, Q. Shi, M. Cao, et al., A novel approach for fluorescent visualization of glycyrrhetic acid on a cell with a quantum dot, Biochemistry (Mosc) 79 (2014) 25-30.
    [114]
    J. Wang, Q. Chen, Y. Shan, et al., Activity-based proteomic profiling: The application of photoaffinity probes in the target identification of bioactive molecules, Trac Trends Anal. Chem. 115 (2019) 110-120.
    [115]
    S. Piao, D. Luo, Review on research methods of material basis of traditional Chinese medicine, China Pharmacy 23 (2012) 2194-2196.
    [116]
    B. Xiao, Y. Wang, Functional targets of Chinese herbal medicine, Zhong Xi Yi Jie He Xue Bao 8 (2010) 1190-1194.
    [117]
    Y. Wan, L. Liao, Y. Liu, et al., Identification and function analysis of target group for cardioprotection of Baoyuan decoction, Zhongguo Zhongyao Za Zhi 42 (2017) 3650-3655.
    [118]
    H. Zhang, J. Yao, G. Xiao, et al., Discovery of drug targets based on traditional Chinese medicine microspheres (TCM-MPs) fishing strategy combined with bio-layer interferometry (BLI) technology, Anal. Chim. Acta 1305 (2024), 342542.
    [119]
    M. Charehsaz, R. Reis, S. Helvacioglu, et al., Safety evaluation of Styrax liquidus from the viewpoint of genotoxicity and mutagenicity, J. Ethnopharmacol. 194 (2016) 506-512.
    [120]
    L. Huang, D. Wang, C. Zhang, Drug affinity responsive target stability (DARTS) assay to detect interaction between a purified protein and a small molecule, Methods Mol. Biol. 2213 (2021) 175-182.
    [121]
    T.T. A, Current advances in CETSA, Front. Mol. Biosci. 9 (2022), 866764.
    [122]
    Y. Tu, L. Tan, H. Tao, et al., CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products, Phytomedicine 116 (2023), 154862.
    [123]
    Z. Cui, C. Li, P. Chen, et al., An update of label-free protein target identification methods for natural active products, Theranostics 12 (2022) 1829-1854.
    [124]
    M.M. Savitski, F.B. Reinhard, H. Franken, et al., Tracking cancer drugs in living cells by thermal profiling of the proteome, Science 346 (2014), 1255784.
    [125]
    V.C. Kirsch, C. Orgler, S. Braig, et al., The cytotoxic natural product vioprolide A targets nucleolar protein 14, which is essential for ribosome biogenesis, Angew. Chem. Int. Ed 59 (2020) 1595-1600.
    [126]
    O. Sagdic, G. Ozkan, M. Ozcan, et al., A study on inhibitory effects of Sigla tree (Liquidambar orientalis Mill. var. Orientalis) storax against several bacteria, Phytother. Res. 19 (2005) 549-551.
    [127]
    S. Wang, Y. Xie, Y. Huo, et al., Airway relaxation mechanisms and structural basis of osthole for improving lung function in asthma, Sci. Signal. 13 (2020), eaax0273.
    [128]
    B. Zhong, W. Peng, S. Du, et al., Oridonin inhibits SARS-CoV-2 by targeting its 3C-like protease, Small Sci. 2 (2022), 2100124.
    [129]
    H.-C. Wang, S.-M. Hao, Y.-Q. Liu, et al., Multiple target fishing hook prepared by photochemically coupling molecules in medicines onto magnetic nanoparticles, Chin. Tradit. Herb. Drugs. 51 (2020) 4142-4150.
    [130]
    S. Wang, Y. Zhang, R. Yu, et al., Labeled and label-free target identifications of natural products, J. Med. Chem. 67 (2024) 17980-17996.
    [131]
    T. Feng, Y. Ma, Protective effect of microRNA on inflammatory response in ischemic stroke and its mechanism, Chin. J. Clin. Neurosci. 29 (2021) 696-700.
    [132]
    S. Pan, H. Zhang, C. Wang, et al., Target identification of natural products and bioactive compounds using affinity-based probes, Nat. Prod. Rep. 33 (2016) 612-620.
    [133]
    D.B. Vieira, L.F. Gamarra, Getting into the brain: Liposome-based strategies for effective drug delivery across the blood-brain barrier, Int. J. Nanomedicine 11 (2016) 5381-5414.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (87) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return